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Dream: Optimal Optimization

Given a problem, tell me the best algorithm for it!!!

Given an instance of a problem, tell me the best algorithm for it

Taxonomize problems and instances

Taxonomize algorithms
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Outline of the presentation

1 Functions as permutations

2 The Fourier transform on the symmetric group: where
combinatorial optimization problems meet
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Functions as permutations

Taxonomization

The most common taxonomy: P vs NP-complete
More advanced: parameterized complexity

Challenges

Problems have disparate definitions: distances, flows, etc..
There are infinite number of functions
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Functions as permutations

Infinite number of functions

The space of permutations

Most heuristic algorithms do not use f (x) but its ranking
These algorithms behave the same in two functions f and
g such that for all x and y if f (x) > (<)f (y) then
g(x) > (<)g(y)
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Functions as permutations

Taxonomization

Any function can be seen as a permutation of the solutions

f (x) x
0 (1,0,1)
1 (1,0,0)
2 (0,1,1)
7 (1,1,0)

13 (0,0,1)
22 (1,1,1)
40 (0,1,0)

100 (0,0,0)

g(x) x
15 (1,0,1)
25 (1,0,0)
53 (0,1,1)
69 (1,1,0)
93 (0,0,1)

122 (1,1,1)
140 (0,1,0)
200 (0,0,0)
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Functions as permutations

Taxonomization

Any function can be seen as a permutation of the solutions

f (x) x ranking
0 (1,0,1) 1
1 (1,0,0) 2
2 (0,1,1) 3
7 (1,1,0) 4

13 (0,0,1) 5
22 (1,1,1) 6
40 (0,1,0) 7

100 (0,0,0) 8

g(x) x ranking
15 (1,0,1) 1
25 (1,0,0) 2
53 (0,1,1) 3
69 (1,1,0) 4
93 (0,0,1) 5

122 (1,1,1) 6
140 (0,1,0) 7
200 (0,0,0) 8
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Functions as permutations

The space of permutations

Any injective function f : Ω→ R can be considered as a
permutation of the numbers {1,2, . . . ,m} with |Ω| = m

Expansion of a combinatorial optimization problem P:

Em(P) ⊂ Σm
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Interesting questions

Given a problem P, what is the set of rankings that it can
generate, Em(P)?
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Functions as permutations

Interesting questions

Given a problem P, what is the set of rankings that it can
generate, Em(P)?
Given two problems P and Q, which is set of permutations
that can be generated by both problems? i.e.
Em(P) ∩ Em(Q)

Some rankings could be efficiently solved for some
algorithms. Therefore knowing the rankings that can be
produced by a problem could give us an idea of the
goodness of an algorithm for that particular problem
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Functions as permutations

Even more interesting questions?

Is there a problem (with a closed form expression for the
objective function) able to generate all the possible
permutations depending on a polynomial number of
parameters?
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Functions as permutations

Even more interesting questions?

Is there a problem (with a closed form expression for the
objective function) able to generate all the possible
permutations depending on a polynomial number of
parameters?
Given two problems P and Q, assume that P is defined
using a number of parameters r and Q with r ′ such that
r > r ′. Let’s also assume that |Em(P)| < |Em(Q)| . Is it
possible to reparameterized P with a lower number of
parameters?
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Functions as permutations

Example: Linear ordering problem

Definition
Given a matrix B = [bij ]n×n of numbers, find a simultaneous
permutation σ of the rows and columns of B, such that the sum
of the elements above the main diagonal is maximized:

σ∗ = arg máx
σ

f (σ) =
n−1∑
i=1

n∑
j=i+1

bσiσj

Equivalently, the sum of the elements below the main diagonal
is minimized
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Functions as permutations

Example: Linear ordering problem

σ = (1,2,3,4,5)
f (σ) = 138

σ′ = (2,3,1,4,5)
f (σ′) = 158

σ∗ = (5,3,4,2,1)
f (σ∗) = 247
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Functions as permutations

Example: Linear ordering problem

σ∗ = (5,3,4,2,1)
f (σ∗) = 247

If σ∗ = (5,3,4,2,1) is
the optimum then
Reverse(σ∗) =
(1,2,4,3,5) is the worst
If σ is the k -th best, then
Reverse(σ) si the k -th
worst
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Functions as permutations

Example: Linear ordering problem

σ∗ = (5,3,4,2,1)
f (σ∗) = 247

If σ∗ = (5,3,4,2,1) is
the optimum then
Reverse(σ∗) =
(1,2,4,3,5) is the worst
If σ is the k -th best, then
Reverse(σ) si the k -th
worst

(1 2 3)

(2 1 3)

(2 3 1)

(1 3 2)

(3 1 2)

(3 2 1)
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Functions as permutations

Example: Linear ordering problem

Conclusions
The linear ordering problem can only create functions that
are symmetric with respect to the operation Reverse
It is possible to bound the number of possible functions
(permutations) it can generate:

|En!(LOP)| ≤ 2n/2 n
2

!

When n increases:

ĺım
n→∞

|En!(LOP)|
|Σn!|

≤ ĺım
n→∞

2n/2 n
2 !

(n!)!
= 0



Taxonomization of combinatorial optimization problems

Functions as permutations

Example: Asymmetric TSP

Non-reverse cyclic ranking

The ATSP generates a partial ranking of solutions
Each solution has at least n − 1 solutions with the same
objective function value
Example (n=4):

(1 2 3 4) (4 1 2 3) (3 4 1 2) (2 3 4 1)
(4 1 3 2) (2 4 1 3) (3 2 4 1) (1 3 2 4)

... ... ... ...
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Functions as permutations

LOP ∩ ASTP

LOP

A =


0 4 1,5 0,5
1 0 9,5 0
2 4 0 8,5
3 2,5 3,5 0


ATSP

D =


0 1,7 7,1 8,5
8 0 1,6 7
6 9 0 1,5
1 2 8 0



|En!(LOP) ∩ En!(ATSP)| ≤ 2(n−1)!/2 ·
(

(n − 1)!

2

)
!

L. Hernando, A. Mediburu and J.A. Lozano. Characterising the Rankings Produced by Combinatorial Optimisation

Problems and Finding their Intersections. GECCO 2019.
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Functions as permutations

Example: quadratic assignment problem

Quadratic Assignment Problem

Given two matrices of distances and flows D = [dij ] and
F = [fkl ] respectively calculate the permutation that maximises:

f (σ) =
n∑

i=1

n∑
j=1

fijdσ(i)σ(j)

Problems
We could not find any regularity in the functions ranking
For n = 3 all the permutations are obtained
For n = 4, the space of functions (4!)! is too big

Solution: Fourier Transform of the Symmetric Group???
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Outline of the presentation

1 Functions as permutations

2 The Fourier transform on the symmetric group: where
combinatorial optimization problems meet
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Representation of a group

They are the equivalent to the sin/cos in the real line

A representation of a group Σn is a map ρ : Σn −→ Rdρ×dρ such
that ∀σ1, σ2 ∈ Σn, ρ(σ1σ2) = ρ(σ1) · ρ(σ2)
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Examples of representations

Trivial representation

ρ(n) : Σn −→ R1×1 such that ρ(n)(σ) = 1

First-order permutation representation

map σ to its permutation matrix: [τ(n−1,1)(σ)]ij = 1{σ(j) = i}
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

New representations

Equivalence
Given an invertible matrix C we can define a new
representation departing from ρ1:

ρ2(σ) = C−1 · ρ1(σ) · C

Direct Sum

Irreducible Representations
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

The Fourier Transform

Given a function f : Σn −→ IR and ρ a representation. The
Fourier transform of f at ρ is:

The collection of Fourier Transforms at all irreducible
representations of Σn form the Fourier Transform of f

Fourier Inversion Theorem

where λ indexes over the collection of irreducibles of Σn
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Irreducible representations

Partitions of n
Tuples of numbers that sum to n:

Ferrers diagrams:

Irreducible representations are indexed by the partitions of n.
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Fourier transform of LOP

Theorem
If f : Σn −→ R is the objective function of a Linear Ordering
Problem and λ ` n is a partition, then the Fourier coefficients of
f have the following properties:

1 f̂λ = 0 if λ 6= (n), (n − 1,1), (n − 2,1,1)

2 f̂λ has at most rank one for λ = (n − 1,1), (n − 2,1,1).
Having rank one is equivalent to the fact that the matrix
columns are proportional. For the mentioned partitions and
a fixed dimension n, the proportions among the columns of
f̂λ are the same for all the instances.

Conjecture
The opposite is also true
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Fourier transform of the asymetric TSP

Theorem
If f : Σn −→ R is the objective function of a Traveling Salesman
Problem and λ ` n is a partition, then the Fourier coefficients of
f have the following properties:

1 f̂λ = 0 if λ 6= (n), (n − 2,2), (n − 2,1,1)

2 f̂λ has at most rank one for λ = (n − 2,2), (n − 2,1,1). In
addition, for the mentioned partitions and a fixed
dimension n, the proportions among the columns of f̂λ are
the same for all the instances.

Conjecture
The opposite is also true
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The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Consequences

Reparameterization

LOP: n(n − 1)→ 1 + (n − 1) + (n−1)(n−2)
2

ATSP: n(n − 1)→ 1 + n(n−3)
2 + (n−1)(n−2)

2
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Final remarks

Many open questions, low number of answers
Which rankings/functions can be generated with some
non-zero Fourier coefficients?
QAP: for n = 4 not all rankings can be generated

We have settle up the first step in the process of
taxonomization of combinatorial optimization problems



Taxonomization of combinatorial optimization problems

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Collaboration

Anne Elorza (UPV/EHU), Leticia Hernando (UPV/EHU)
Josu Ceberio (UPV/EHU), Alex Mediburu (UPV/EHU)
Roberto Santana (UPV/EHU)



Taxonomization of combinatorial optimization problems

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Taxonomization of combinatorial optimization
problems

Jose A. Lozano

Basque Center for Applied Mathematics (BCAM)
University of the Basque Country UPV/EHU

ECPERM, Prague, July 13, 2019


	Functions as permutations
	The Fourier transform on the symmetric group: where combinatorial optimization problems meet

