## Dream: Optimal Optimization

## Given a problem, tell me the best algorithm for it!!!

## Dream: Optimal Optimization

## Given a problem, tell me the best algorithm for it!!!

## Given an instance of a problem, tell me the best algorithm for it

## Dream: Optimal Optimization

## Given a problem, tell me the best algorithm for it!!!

## Given an instance of a problem, tell me the best algorithm for it

## Taxonomize problems and instances

Taxonomize algorithms

## Outline of the presentation

## (2) The Fourier transform on the symmetric group: where combinatorial optimization problems meet

## Taxonomization

- The most common taxonomy: P vs NP-complete
- More advanced: parameterized complexity


## Challenges

- Problems have disparate definitions: distances, flows, etc..
- There are infinite number of functions


## Infinite number of functions

## The space of permutations

- Most heuristic algorithms do not use $f(x)$ but its ranking
- These algorithms behave the same in two functions $f$ and $g$ such that for all $x$ and $y$ if $f(x)>(<) f(y)$ then $g(x)>(<) g(y)$


## Taxonomization

## Any function can be seen as a permutation of the solutions

| $f(\mathbf{x})$ | $\mathbf{x}$ |
| ---: | :---: |
| 0 | $(1,0,1)$ |
| 1 | $(1,0,0)$ |
| 2 | $(0,1,1)$ |
| 7 | $(1,1,0)$ |
| 13 | $(0,0,1)$ |
| 22 | $(1,1,1)$ |
| 40 | $(0,1,0)$ |
| 100 | $(0,0,0)$ |


| $g(\mathbf{x})$ | $\mathbf{x}$ |
| ---: | :---: |
| 15 | $(1,0,1)$ |
| 25 | $(1,0,0)$ |
| 53 | $(0,1,1)$ |
| 69 | $(1,1,0)$ |
| 93 | $(0,0,1)$ |
| 122 | $(1,1,1)$ |
| 140 | $(0,1,0)$ |
| 200 | $(0,0,0)$ |

## Taxonomization

## Any function can be seen as a permutation of the solutions

| $f(\mathbf{x})$ | $\mathbf{x}$ | ranking |
| ---: | :---: | :---: |
| 0 | $(1,0,1)$ | 1 |
| 1 | $(1,0,0)$ | 2 |
| 2 | $(0,1,1)$ | 3 |
| 7 | $(1,1,0)$ | 4 |
| 13 | $(0,0,1)$ | 5 |
| 22 | $(1,1,1)$ | 6 |
| 40 | $(0,1,0)$ | 7 |
| 100 | $(0,0,0)$ | 8 |


| $g(\mathbf{x})$ | $\mathbf{x}$ | ranking |
| ---: | :---: | :---: |
| 15 | $(1,0,1)$ | 1 |
| 25 | $(1,0,0)$ | 2 |
| 53 | $(0,1,1)$ | 3 |
| 69 | $(1,1,0)$ | 4 |
| 93 | $(0,0,1)$ | 5 |
| 122 | $(1,1,1)$ | 6 |
| 140 | $(0,1,0)$ | 7 |
| 200 | $(0,0,0)$ | $($ bCam) |

## The space of permutations

- Any injective function $f: \Omega \rightarrow \mathcal{R}$ can be considered as a permutation of the numbers $\{1,2, \ldots, m\}$ with $|\Omega|=m$
- Expansion of a combinatorial optimization problem $\mathcal{P}$ :

$$
E_{m}(\mathcal{P}) \subset \Sigma_{m}
$$

## Interesting questions

- Given a problem $\mathcal{P}$, what is the set of rankings that it can generate, $E_{m}(\mathcal{P})$ ?


## Interesting questions

- Given a problem $\mathcal{P}$, what is the set of rankings that it can generate, $E_{m}(\mathcal{P})$ ?
- Given two problems $\mathcal{P}$ and $\mathcal{Q}$, which is set of permutations that can be generated by both problems? i.e. $E_{m}(\mathcal{P}) \cap E_{m}(\mathcal{Q})$


## Interesting questions

- Given a problem $\mathcal{P}$, what is the set of rankings that it can generate, $E_{m}(\mathcal{P})$ ?
- Given two problems $\mathcal{P}$ and $\mathcal{Q}$, which is set of permutations that can be generated by both problems? i.e.
$E_{m}(\mathcal{P}) \cap E_{m}(\mathcal{Q})$
- Some rankings could be efficiently solved for some algorithms. Therefore knowing the rankings that can be produced by a problem could give us an idea of the goodness of an algorithm for that particular problem


## Even more interesting questions?

- Is there a problem (with a closed form expression for the objective function) able to generate all the possible permutations depending on a polynomial number of parameters?


## Even more interesting questions?

- Is there a problem (with a closed form expression for the objective function) able to generate all the possible permutations depending on a polynomial number of parameters?
- Given two problems $\mathcal{P}$ and $\mathcal{Q}$, assume that $\mathcal{P}$ is defined using a number of parameters $r$ and $\mathcal{Q}$ with $r^{\prime}$ such that $r>r^{\prime}$. Let's also assume that $\left|E_{m}(\mathcal{P})\right|<\left|E_{m}(\mathcal{Q})\right|$. Is it possible to reparameterized $\mathcal{P}$ with a lower number of parameters?


## Example: Linear ordering problem

## Definition

Given a matrix $B=\left[b_{i j}\right]_{n \times n}$ of numbers, find a simultaneous permutation $\sigma$ of the rows and columns of $B$, such that the sum of the elements above the main diagonal is maximized:

$$
\sigma^{*}=\arg \operatorname{máx}_{\sigma} f(\sigma)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{\sigma_{i} \sigma_{j}}
$$

Equivalently, the sum of the elements below the main diagonal is minimized

## Example: Linear ordering problem

|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 16 | 11 | 15 | 7 |
| 2 | 21 | 0 | 14 | 15 | 9 |
| 4 | 26 | 23 | 0 | 26 | 12 |
| 4 | 22 | 22 | 11 | 0 | 13 |
| 5 | 30 | 28 | 25 | 24 | 0 |

$$
\begin{gathered}
\sigma=(1,2,3,4,5) \\
f(\sigma)=138
\end{gathered}
$$

|  | 2 | 3 | 1 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 14 | 21 | 15 | 9 |
| 3 | 23 | 0 | 26 | 26 | 12 |
| 1 | 16 | 11 | 0 | 15 | 7 |
| 4 | 22 | 11 | 22 | 0 | 13 |
| 5 | 28 | 25 | 30 | 24 | 0 |


|  | 5 | 3 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $c$ <br> 5 | 0 | 25 | 24 | 28 |
| 4 | 12 | 0 | 26 | 23 | 26 |
| 4 | 13 | 11 | 0 | 22 | 22 |
| 2 | 9 | 14 | 15 | 0 | 21 |
| 1 | 7 | 11 | 15 | 16 | 0 |

$$
\begin{gathered}
\sigma^{\prime}=(2,3,1,4,5) \\
f\left(\sigma^{\prime}\right)=158
\end{gathered}
$$

$$
\begin{gathered}
\sigma^{*}=(5,3,4,2,1) \\
f\left(\sigma^{*}\right)=247
\end{gathered}
$$

## Example: Linear ordering problem

| 5 | 3 | 4 | 2 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0 | 25 | 24 | 28 | 30 |
| 4 | 12 | 0 | 26 | 23 | 26 |
| 4 | 13 | 11 | 0 | 22 | 22 |
| 2 | 9 | 14 | 15 | 0 | 21 |
| 1 | 7 | 11 | 15 | 16 | 0 |

$$
\begin{gathered}
\sigma^{*}=(5,3,4,2,1) \\
f\left(\sigma^{*}\right)=247
\end{gathered}
$$

- If $\sigma^{*}=(5,3,4,2,1)$ is the optimum then Reverse( $\sigma^{*}$ ) $=$ $(1,2,4,3,5)$ is the worst
- If $\sigma$ is the $k$-th best, then Reverse $(\sigma)$ si the $k$-th worst


## Example: Linear ordering problem

| 5 | 3 | 4 | 2 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 0 | 25 | 24 | 28 |
|  | 30 |  |  |  |  |
| 4 | 12 | 0 | 26 | 23 | 26 |
| 2 | 13 | 11 | 0 | 22 | 22 |
|  | 9 | 14 | 15 | 0 | 21 |
| 1 | 7 | 11 | 15 | 16 | 0 |

$$
\begin{gathered}
\sigma^{*}=(5,3,4,2,1) \\
f\left(\sigma^{*}\right)=247
\end{gathered}
$$

- If $\sigma^{*}=(5,3,4,2,1)$ is the optimum then Reverse $\left(\sigma^{*}\right)=$ $(1,2,4,3,5)$ is the worst
- If $\sigma$ is the $k$-th best, then Reverse $(\sigma)$ si the $k$-th worst
(123)
(213)
(2 3 1)
(132)
(3 12 )
(3 2 1)


## Example: Linear ordering problem

## Conclusions

- The linear ordering problem can only create functions that are symmetric with respect to the operation Reverse
- It is possible to bound the number of possible functions (permutations) it can generate:

$$
\left|E_{n!}(L O P)\right| \leq 2^{n / 2} \frac{n}{2}!
$$

- When $n$ increases:

$$
\lim _{n \rightarrow \infty} \frac{\left|E_{n!}(L O P)\right|}{\left|\Sigma_{n!}\right|} \leq \lim _{n \rightarrow \infty} \frac{2^{n / 2} \frac{n}{2}!}{(n!)!}=0
$$

## Example: Asymmetric TSP

Non-reverse cyclic ranking

- The ATSP generates a partial ranking of solutions
- Each solution has at least $n-1$ solutions with the same objective function value
- Example ( $n=4$ ):
$\left.\begin{array}{l}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \\ (41\end{array}\right)$
(4 12 3)
(3 41 2)
(2 34 1)
(2 413 )
(3 24 1)
(1324)


## LOP $\cap$ ASTP

$$
\begin{gathered}
\text { LOP } \\
A=\begin{array}{c}
\text { ATSP } \\
\left(\begin{array}{cccc}
0 & 4 & 1,5 & 0,5 \\
1 & 0 & 9,5 & 0 \\
2 & 4 & 0 & 8,5 \\
3 & 2,5 & 3,5 & 0
\end{array}\right) \quad D=\left(\begin{array}{cccc}
0 & 1,7 & 7,1 & 8,5 \\
8 & 0 & 1,6 & 7 \\
6 & 9 & 0 & 1,5 \\
1 & 2 & 8 & 0
\end{array}\right) \\
\left|E_{n!}(L O P) \cap E_{n!}(A T S P)\right| \leq 2^{(n-1)!/ 2} \cdot\left(\frac{(n-1)!}{2}\right)!
\end{array}
\end{gathered}
$$

L. Hernando, A. Mediburu and J.A. Lozano. Characterising the Rankings Produced by Combinatorial Optimisation

Problems and Finding their Intersections. GECCO 2019.

## Example: quadratic assignment problem

Quadratic Assignment Problem
Given two matrices of distances and flows $D=\left[d_{i j}\right]$ and $F=\left[f_{k l}\right]$ respectively calculate the permutation that maximises:

$$
f(\sigma)=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j} d_{\sigma(i) \sigma(j)}
$$

## Problems

- We could not find any regularity in the functions ranking
- For $n=3$ all the permutations are obtained
- For $n=4$, the space of functions (4!)! is too big

Solution: Fourier Transform of the Symmetric Group???

## Outline of the presentation

Functions as permutations(2) The Fourier transform on the symmetric group: where combinatorial optimization problems meet

## Representation of a group

## They are the equivalent to the sin/cos in the real line

A representation of a group $\Sigma_{n}$ is a map $\rho: \Sigma_{n} \longrightarrow R^{d_{\rho} \times d_{\rho}}$ such that $\forall \sigma_{1}, \sigma_{2} \in \Sigma_{n}, \rho\left(\sigma_{1} \sigma_{2}\right)=\rho\left(\sigma_{1}\right) \cdot \rho\left(\sigma_{2}\right)$

$$
\rho(\sigma)=\left[\begin{array}{cccc}
\rho_{11}(\sigma) & \rho_{12}(\sigma) & \cdots & \rho_{1 d_{\rho}}(\sigma) \\
\rho_{21}(\sigma) & \rho_{22}(\sigma) & \cdots & \rho_{2 d_{\rho}}(\sigma) \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{d_{\rho} 1}(\sigma) & \rho_{d_{\rho} 2}(\sigma) & \cdots & \rho_{d_{\rho} d_{\rho}}(\sigma)
\end{array}\right]
$$

## Examples of representations

## Trivial representation

$$
\rho_{(n)}: \Sigma_{n} \longrightarrow R^{1 \times 1} \text { such that } \rho_{(n)}(\sigma)=1
$$

## First-order permutation representation

map $\sigma$ to its permutation matrix: $\left[\tau_{(n-1,1)}(\sigma)\right]_{i j}=1\{\sigma(j)=i\}$

$$
\boldsymbol{\tau}_{(2,1)}(\varepsilon)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \tau_{(2,1)}(1,2)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{\tau}_{(2,1)}(2,3)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

## New representations

## Equivalence

Given an invertible matrix $C$ we can define a new representation departing from $\rho_{1}$ :

$$
\rho_{2}(\sigma)=C^{-1} \cdot \rho_{1}(\sigma) \cdot C
$$

## Direct Sum

$$
\rho_{1} \oplus \rho_{2}(\sigma) \triangleq\left[\begin{array}{c|c}
\rho_{1}(\sigma) & 0 \\
\hline 0 & \rho_{2}(\sigma)
\end{array}\right]
$$

## Irreducible Representations

## The Fourier Transform

Given a function $f: \Sigma_{n} \longrightarrow \boldsymbol{R}$ and $\rho$ a representation. The Fourier transform of $f$ at $\rho$ is:

$$
\hat{f}_{\rho}=\sum_{\sigma} f(\sigma) \rho(\sigma)
$$

The collection of Fourier Transforms at all irreducible representations of $\Sigma_{n}$ form the Fourier Transform of $f$

Fourier Inversion Theorem

$$
f(\sigma)=\frac{1}{|G|} \sum_{\lambda} d_{\rho_{\lambda}} \operatorname{Tr}\left[\hat{f}_{\rho_{\lambda}}^{T} \cdot \rho_{\lambda}(\sigma)\right]
$$

where $\lambda$ indexes over the collection of irreducibles of $\Sigma_{n}$

## Irreducible representations

## Partitions of $n$

Tuples of numbers that sum to $n$ :

$$
(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)
$$

Ferrers diagrams:


Irreducible representations are indexed by the partitions of $n$.

## Fourier transform of LOP

## Theorem

If $f: \Sigma_{n} \longrightarrow \mathbb{R}$ is the objective function of a Linear Ordering Problem and $\lambda \vdash n$ is a partition, then the Fourier coefficients of $f$ have the following properties:
(1) $\hat{f}_{\lambda}=0$ if $\lambda \neq(n),(n-1,1),(n-2,1,1)$
(2) $\hat{f}_{\lambda}$ has at most rank one for $\lambda=(n-1,1),(n-2,1,1)$. Having rank one is equivalent to the fact that the matrix columns are proportional. For the mentioned partitions and a fixed dimension $n$, the proportions among the columns of $\hat{f}_{\lambda}$ are the same for all the instances.

## Conjecture

The opposite is also true

## Fourier transform of the asymetric TSP

## Theorem

If $f: \Sigma_{n} \longrightarrow \mathbb{R}$ is the objective function of a Traveling Salesman Problem and $\lambda \vdash n$ is a partition, then the Fourier coefficients of $f$ have the following properties:
(1) $\hat{f}_{\lambda}=0$ if $\lambda \neq(n),(n-2,2),(n-2,1,1)$
(2) $\hat{f}_{\lambda}$ has at most rank one for $\lambda=(n-2,2),(n-2,1,1)$. In addition, for the mentioned partitions and a fixed dimension $n$, the proportions among the columns of $\hat{f}_{\lambda}$ are the same for all the instances.

## Conjecture

The opposite is also true

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

## Consequences

## Reparameterization

- LOP: $n(n-1) \rightarrow 1+(n-1)+\frac{(n-1)(n-2)}{2}$
- ATSP: $n(n-1) \rightarrow 1+\frac{n(n-3)}{2}+\frac{(n-1)(n-2)}{2}$


## Final remarks

- Many open questions, low number of answers
- Which rankings/functions can be generated with some non-zero Fourier coefficients?
- QAP: for $n=4$ not all rankings can be generated
- We have settle up the first step in the process of taxonomization of combinatorial optimization problems


## Collaboration

- Anne Elorza (UPV/EHU), Leticia Hernando (UPV/EHU)
- Josu Ceberio (UPV/EHU), Alex Mediburu (UPV/EHU)
- Roberto Santana (UPV/EHU)


# Taxonomization of combinatorial optimization problems 

Jose A. Lozano

Basque Center for Applied Mathematics (BCAM)
University of the Basque Country UPV/EHU

