

ECPERM, Prague, July 13, 2019

Basque Center for Applied Mathematics (BCAM) University of the Basque Country UPV/EHU

Jose A. Lozano

Taxonomization of combinatorial optimization

problems

Taxonomization of combinatorial optimization problems

Dream: Optimal Optimization

Given a problem, tell me the best algorithm for it!!!

э

Dream: Optimal Optimization

Given a problem, tell me the best algorithm for it!!!

Given an instance of a problem, tell me the best algorithm for it

Dream: Optimal Optimization

Given a problem, tell me the best algorithm for it!!!

Given an instance of a problem, tell me the best algorithm for it

Taxonomize problems and instances

Taxonomize algorithms

Functions as permutations

Outline of the presentation

2 The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Taxonomization of combinatorial optimization problems Functions as permutations

Taxonomization

- The most common taxonomy: P vs NP-complete
- More advanced: parameterized complexity

Challenges

- Problems have disparate definitions: distances, flows, etc..
- There are infinite number of functions

Functions as permutations

Infinite number of functions

The space of permutations

- Most heuristic algorithms do not use f(x) but its ranking
- These algorithms behave the same in two functions f and g such that for all x and y if f(x) > (<)f(y) then g(x) > (<)g(y)

Taxonomization of combinatorial optimization problems Functions as permutations

Taxonomization

Any function can be seen as a permutation of the solutions

$f(\mathbf{x})$	x	$g(\mathbf{x})$	x
0	(1,0,1)	15	(1,0,1)
1	(1,0,0)	25	(1,0,0)
2	(0, 1, 1)	53	(0,1,1)
7	(1,1,0)	69	(1, 1, 0)
13	(0, 0, 1)	93	(0, 0, 1)
22	(1,1,1)	122	(1, 1, 1)
40	(0, 1, 0)	140	(0, 1, 0)
100	(0, 0, 0)	200	(0, 0, 0)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Taxonomization of combinatorial optimization problems Functions as permutations

Taxonomization

Any function can be seen as a permutation of the solutions

$f(\mathbf{x})$	x	ranking	$g(\mathbf{x})$	x	ranking
0	(1,0,1)	1	15	(1,0,1)	1
1	(1,0,0)	2	25	(1,0,0)	2
2	(0,1,1)	3	53	(0, 1, 1)	3
7	(1,1,0)	4	69	(1,1,0)	4
13	(0,0,1)	5	93	(0,0,1)	5
22	(1,1,1)	6	122	(1,1,1)	6
40	(0,1,0)	7	140	(0, 1, 0)	7
100	(0, 0, 0)	8	200	(0, 0, 0)	6 8 J
100	(0,0,0)		200	(0,0,0)	bcam

・ロト ・回ト ・ヨト ・ヨ

The space of permutations

Any injective function *f* : Ω → R can be considered as a permutation of the numbers {1, 2, ..., *m*} with |Ω| = *m*

• Expansion of a combinatorial optimization problem \mathcal{P} :

 $E_m(\mathcal{P}) \subset \Sigma_m$

Functions as permutations

Interesting questions

Given a problem *P*, what is the set of rankings that it can generate, *E_m(P)*?

・ロト ・ 四ト ・ ヨト ・ ヨト

Functions as permutations

Interesting questions

- Given a problem *P*, what is the set of rankings that it can generate, *E_m(P)*?
- Given two problems *P* and *Q*, which is set of permutations that can be generated by both problems? i.e.
 E_m(*P*) ∩ *E_m*(*Q*)

Interesting questions

- Given a problem *P*, what is the set of rankings that it can generate, *E_m(P)*?
- Given two problems *P* and *Q*, which is set of permutations that can be generated by both problems? i.e.
 E_m(*P*) ∩ *E_m*(*Q*)
- Some rankings could be efficiently solved for some algorithms. Therefore knowing the rankings that can be produced by a problem could give us an idea of the goodness of an algorithm for that particular problem

Functions as permutations

Even more interesting questions?

 Is there a problem (with a closed form expression for the objective function) able to generate all the possible permutations depending on a polynomial number of parameters?

Even more interesting questions?

- Is there a problem (with a closed form expression for the objective function) able to generate all the possible permutations depending on a polynomial number of parameters?
- Given two problems *P* and *Q*, assume that *P* is defined using a number of parameters *r* and *Q* with *r'* such that *r > r'*. Let's also assume that |*E_m*(*P*)| < |*E_m*(*Q*)|. Is it possible to reparameterized *P* with a lower number of parameters?

Example: Linear ordering problem

Definition

Given a matrix $B = [b_{ij}]_{n \times n}$ of numbers, find a simultaneous permutation σ of the rows and columns of B, such that the sum of the elements above the main diagonal is maximized:

$$\sigma^* = rg\max_\sigma f(\sigma) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n b_{\sigma_i \sigma_j}$$

Equivalently, the sum of the elements below the main diagonal is minimized

Example: Linear ordering problem

	1	2	3	4	5
1	0	16	11	15	7
2	21	0	14	15	9
3	26	23	0	26	12
4	22	22	11	0	13
5	30	28	25	24	0

	2	3	1	4	5
2	0	14	21	15	9
3	23	0	26	26	12
1	16	11	0	15	7
4	22	11	22	0	13
5	28	25	30	24	0

	5	3	4	2	1
5	0	25	24	28	30
3	12	0	26	23	26
4	13	11	0	22	22
2	9	14	15	0	21
1	7	11	15	16	0
	_	_	-	-	_

$$\sigma = (1, 2, 3, 4, 5)$$

 $f(\sigma) = 138$

$$\sigma' = (2, 3, 1, 4, 5)$$

 $f(\sigma') = 158$

 $\sigma^* = (5, 3, 4, 2, 1)$ $f(\sigma^*) = 247$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Example: Linear ordering problem

	5	3	4	2	1
5	0	25	24	28	30
3	12	0	26	23	26
4	13	11	0	22	22
2	9	14	15	0	21
1	7	11	15	16	0
	-	-		-	

$$\sigma^* = (5, 3, 4, 2, 1) \ f(\sigma^*) = 247$$

• If $\sigma^* = (5, 3, 4, 2, 1)$ is the optimum then Reverse $(\sigma^*) =$ (1, 2, 4, 3, 5) is the worst

 If σ is the k-th best, then Reverse(σ) si the k-th worst

Example: Linear ordering problem

5	3	4	2	1	
0	25	24	28	30	
12	0	26	23	26	
13	11	0	22	22	
9	14	15	0	21	
7	11	15	16	0	
	0 12 13 9	0 25 12 0 13 11 9 14	0 25 24 12 0 26 13 11 0 9 14 15	0 25 24 28 12 0 26 23 13 11 0 22 9 14 15 0	0 25 24 28 30 12 0 26 23 26 13 11 0 22 22 9 14 15 0 21

• If $\sigma^* = (5, 3, 4, 2, 1)$ is the optimum then Reverse(σ^*) = (1, 2, 4, 3, 5) is the worst

• If σ is the *k*-th best, then Reverse(σ) si the *k*-th worst (1 2 3)

(231)

(3 1 2)

(321)

 $\sigma^* = (5, 3, 4, 2, 1)$ $f(\sigma^*) = 247$

Example: Linear ordering problem

Conclusions

- The linear ordering problem can only create functions that are symmetric with respect to the operation *Reverse*
- It is possible to bound the number of possible functions (permutations) it can generate:

$$|E_{n!}(LOP)| \leq 2^{n/2}\frac{n}{2}!$$

When n increases:

$$\lim_{n\to\infty}\frac{|E_{n!}(LOP)|}{|\Sigma_{n!}|} \leq \lim_{n\to\infty}\frac{2^{n/2}\frac{n}{2}!}{(n!)!} = 0$$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Functions as permutations

Example: Asymmetric TSP

Non-reverse cyclic ranking

- The ATSP generates a partial ranking of solutions
- Each solution has at least n 1 solutions with the same objective function value

. . .

. . .

Example (n=4):

. . .

. . .

Functions as permutations

$\mathsf{LOP} \cap \mathsf{ASTP}$

$$A = \begin{pmatrix} 0 & 4 & 1,5 & 0,5 \\ 1 & 0 & 9,5 & 0 \\ 2 & 4 & 0 & 8,5 \\ 3 & 2,5 & 3,5 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 1,7 & 7,1 & 8,5 \\ 8 & 0 & 1,6 & 7 \\ 6 & 9 & 0 & 1,5 \\ 1 & 2 & 8 & 0 \end{pmatrix}$$
$$|E_{n!}(LOP) \cap E_{n!}(ATSP)| \le 2^{(n-1)!/2} \cdot \left(\frac{(n-1)!}{2}\right)!$$

L. Hernando, A. Mediburu and J.A. Lozano. Characterising the Rankings Produced by Combinatorial Optimisation Problems and Finding their Intersections. GECCO 2019.

・ロン ・聞 と ・ ヨ と ・ ヨ と

ж

Example: quadratic assignment problem

Quadratic Assignment Problem

Given two matrices of distances and flows $D = [d_{ij}]$ and $F = [f_{kl}]$ respectively calculate the permutation that maximises:

$$f(\sigma) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij} d_{\sigma(i)\sigma(j)}$$

Problems

- We could not find any regularity in the functions ranking
- For *n* = 3 all the permutations are obtained
- For n = 4, the space of functions (4!)! is too big

Solution: Fourier Transform of the Symmetric Group???

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Outline of the presentation

2 The Fourier transform on the symmetric group: where combinatorial optimization problems meet

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Representation of a group

They are the equivalent to the sin/cos in the real line

A representation of a group Σ_n is a map $\rho : \Sigma_n \longrightarrow R^{d_\rho \times d_\rho}$ such that $\forall \sigma_1, \sigma_2 \in \Sigma_n, \rho(\sigma_1 \sigma_2) = \rho(\sigma_1) \cdot \rho(\sigma_2)$

$$\rho(\sigma) = \begin{bmatrix} \rho_{11}(\sigma) & \rho_{12}(\sigma) & \cdots & \rho_{1d_{\rho}}(\sigma) \\ \rho_{21}(\sigma) & \rho_{22}(\sigma) & \cdots & \rho_{2d_{\rho}}(\sigma) \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{d_{\rho}1}(\sigma) & \rho_{d_{\rho}2}(\sigma) & \cdots & \rho_{d_{\rho}d_{\rho}}(\sigma) \end{bmatrix}$$

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Examples of representations

Trivial representation

$$\rho_{(n)}: \Sigma_n \longrightarrow \mathbb{R}^{1 \times 1}$$
 such that $\rho_{(n)}(\sigma) = 1$

First-order permutation representation

map σ to its permutation matrix: $[\tau_{(n-1,1)}(\sigma)]_{ij} = 1\{\sigma(j) = i\}$

$$\tau_{(2,1)}(\epsilon) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad \tau_{(2,1)}(1,2) = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad \tau_{(2,1)}(2,3) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

・ ロ ト ・ 一 マ ト ・ 日 ト

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

New representations

Equivalence

Given an invertible matrix *C* we can define a new representation departing from ρ_1 :

$$\rho_2(\sigma) = C^{-1} \cdot \rho_1(\sigma) \cdot C$$

Direct Sum

$$\rho_1 \oplus \rho_2(\sigma) \triangleq \left[\begin{array}{c|c} \rho_1(\sigma) & 0 \\ \hline 0 & \rho_2(\sigma) \end{array} \right]$$

Irreducible Representations

5.3

soue center for applied mathematics

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

The Fourier Transform

Given a function $f : \Sigma_n \longrightarrow \mathbb{R}$ and ρ a representation. The Fourier transform of *f* at ρ is:

$$\hat{f}_{\rho} = \sum_{\sigma} f(\sigma) \rho(\sigma)$$

The collection of Fourier Transforms at all irreducible representations of Σ_n form the Fourier Transform of *f*

Fourier Inversion Theorem

$$f(\sigma) = rac{1}{|G|} \sum_{\lambda} d_{
ho_{\lambda}} Tr\left[\hat{f}_{
ho_{\lambda}}^T \cdot
ho_{\lambda}(\sigma)
ight]$$

where λ indexes over the collection of irreducibles of Σ_n

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

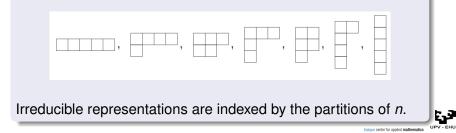
Irreducible representations

Partitions of n

Tuples of numbers that sum to *n*:

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1)

Ferrers diagrams:



・ロット (雪) (日) (日)

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Fourier transform of LOP

Theorem

If $f : \Sigma_n \longrightarrow \mathbb{R}$ is the objective function of a Linear Ordering Problem and $\lambda \vdash n$ is a partition, then the Fourier coefficients of f have the following properties:

)
$$\hat{f}_{\lambda} = 0$$
 if $\lambda \neq (n), (n-1,1), (n-2,1,1)$

2 \hat{f}_{λ} has at most rank one for $\lambda = (n - 1, 1), (n - 2, 1, 1)$. Having rank one is equivalent to the fact that the matrix columns are proportional. For the mentioned partitions and a fixed dimension *n*, the proportions among the columns of \hat{f}_{λ} are the same for all the instances.

Conjecture

The opposite is also true

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Fourier transform of the asymetric TSP

Theorem

If $f : \Sigma_n \longrightarrow \mathbb{R}$ is the objective function of a Traveling Salesman Problem and $\lambda \vdash n$ is a partition, then the Fourier coefficients of f have the following properties:

$$\hat{f}_{\lambda} = 0 \text{ if } \lambda \neq (n), (n-2,2), (n-2,1,1)$$

2) \hat{f}_{λ} has at most rank one for $\lambda = (n - 2, 2), (n - 2, 1, 1)$. In addition, for the mentioned partitions and a fixed dimension *n*, the proportions among the columns of \hat{f}_{λ} are the same for all the instances.

(日)

Conjecture

The opposite is also true

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Consequences

Reparameterization

• LOP:
$$n(n-1) \to 1 + (n-1) + \frac{(n-1)(n-2)}{2}$$

• ATSP:
$$n(n-1) \to 1 + \frac{n(n-3)}{2} + \frac{(n-1)(n-2)}{2}$$

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Final remarks

Many open questions, low number of answers

- Which rankings/functions can be generated with some non-zero Fourier coefficients?
- QAP: for *n* = 4 not all rankings can be generated
- We have settle up the first step in the process of taxonomization of combinatorial optimization problems

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

- Anne Elorza (UPV/EHU), Leticia Hernando (UPV/EHU)
- Josu Ceberio (UPV/EHU), Alex Mediburu (UPV/EHU)

• Roberto Santana (UPV/EHU)

The Fourier transform on the symmetric group: where combinatorial optimization problems meet

Taxonomization of combinatorial optimization problems

Jose A. Lozano

Basque Center for Applied Mathematics (BCAM) University of the Basque Country UPV/EHU

ECPERM, Prague, July 13, 2019

(日)