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Motivation: Stringology Meets Bioinformatics
Goal
Investigate structures in strings and permutations of the string alphabet
with application to factoring genomes for sequence alignment.

Notation and Terminology
Σ: an ordered alphabet
word: finite sequence of symbols over Σ

π: permutation defining the ordering of the alphabet

Typical Alphabets
Standard English alphabet (26 letters)
DNA alphabet (4 letters)
Protein alphabet (20 letters)
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Lyndon Words

Given Ordered alphabet Σ

Lyndon Word

A finite word x ∈ Σ+ is a Lyndon word if it is least alphabetically amongst all cyclic
rotations of the letters.

Example English alphabet with standard lexicographical ordering

ATOM is a Lyndon word since ATOM < OMAT < MATO < TOMA

A

T

O

M

Other examples: Evolution, Christine, Aberystwyth, Abstract, Amazing, Chicken, Moon
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Lyndon Factorisation

Lyndon Factorisation

A factorisation of x ∈ Σ+ into x = `1`2 . . . `n where
`i are Lyndon words and
`1 ≥ `2 ≥ . . . ≥ `n

Example English alphabet with standard lexicographical ordering

w = UNIVERSITY → U ≥ N ≥ IV ≥ ERSITY

Fact Any word x ∈ Σ+ can be uniquely factored into a Lyndon factorisation.

Research Questions
What impact does the manipulation of the alphabet ordering have on the resulting
Lyndon Factorisation, specifically the number of factors?
Determine an optimal ordering for a number of different objectives.
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Applications

Sequence factorisation facilitates useful approaches such as parallelism and block
compression to deal with the huge volumes of data.

Bioinformatics: STAR, an algorithm to search for tandem repeats (approximate
and adjacent repetitions of a DNA motif)
Musicology: Enumerating periodic musical sequences
Digital geometry
Two-way string-matching
Compression: In Suffix arrays + Burrows-Wheeler transform
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On the Number of Factors

Example w = 01j021j−1 . . . 0j1 for j > 1

0 < 1: j factors
(01j) (021j−1) (. . .) (0j1)

1 < 0: 3 factors
(0) (1j021j−1 . . . 0j) (1)

How can we minimise the number of factors?
Existing approach Greedy Algorithm by Clare & Daykin

How can we maximise the number or balance the length of factors?

Observation Different alphabet sizes and usually no general pattern of characters.
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Objectives

Example: bacdbdabbcdbbddbdbdabbacbabacbc

Minimise the number of factors (a < c < d < b)
(b) (acdbdabbcdbbddbdbdabbacbabacbc)

Maximise the number of factors (a < b < c < d)
(b) (acdbd) (abbcdbbddbdbd) (abbacb) (abacbc)

Balance the length of the factors (b < a < c < d)
(bacdbda) (bbcdbbddbdbda) (bbacbabacbc)

– Standard deviation of the factor length
– Difference between maximum and minimum length

Find a specific number of factors (if possible)

Duval’s linear time and constant space algorithm to compute the number of factors.
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Evolutionary Algorithm

1 Initialisation: Random + based on order of first appearance

2 While Exit Criteria Not Met Do

Evaluate alphabet orderings

Parent Selection: Select uniformly at random from top half of the population

Create offspring using crossover and mutation

Replacement: Offspring replace lower half of the population

C. Zarges GECCO 2019 July 13, 2019 9/18



The Problem The Algorithm Results Conclusions

Mutation

Swap Mutation and Insert Mutation

Introduction Mutation in Rn EAs in Rn Variation in Sn Recombination in Sn Summary

Mutation in Sn: Swap Mutation

Swap Mutation (a. k. a. Exchange Mutation)

Select p1 6= p2 2 {0, 1, . . . , n � 1} uniformly at random.
Set y := x and exchange y[p1] and y[p2].

Example

0 1 2 3 4 5 6 7 8 9

p1 p2

0 1 3 4 6 7 8 95 2

x :

y :

10

Introduction Mutation in Rn EAs in Rn Variation in Sn Recombination in Sn Summary

Mutation in Sn: Insert Mutation
Insert Mutation (a. k. a. Jump Mutation)

Select p1 6= p2 2 {0, 1, . . . , n � 1} uniformly at random.
Set y := x.
Move y[p1] to p2 and shift other elements accordingly.

Example 1

0 1 2 3 4 5 6 7 8 9

p2 p1

0 1 6 7 8 95 2 3 4

x :

y :

Generalisation Select a contiguous interval instead of a single element.
11Observation Changes to low ordered characters have higher impact

→ Bias the selection of elements towards low ordered characters

Observation Changing the order of two elements has higher impact
→ Select Swap Mutation with higher probability
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Crossover

Observation Need operator that preserves large parts of the ordering

Partially Mapped Crossover

Introduction Mutation in Rn EAs in Rn Variation in Sn Recombination in Sn Summary

Recombination in Sn: Partially Mapped Crossover
Idea Designed for adjacency-type problems.

Partially Mapped Crossover
1 Select p1 6= p2 2 {0, 1, . . . , n � 1} uniformly at random.
2 Copy the segment between p1 and p2 from x1.
3 Perform position-wise exchanges for the unused elements in

the corresponding segment from x2.
4 Copy the remaining elements from x2.

Example

1 2 3 4 5 6 7 8 9

p1 p2

9 3 7 8 2 6 5 1 4

4 5 6 7

2 4 5 6 7 8

9 3 2 4 5 6 7 1 8

x1:

x2:

y:
18
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Experimental Setup

Parameters
Generations: 1000
Population size: 16
Mutation bias:

– Select one of the 3 lowest ordered elements with probability at least 0.3.
– Select Insert Mutation with probability 0.9

Experiments
Random Sequences:
10 random sequences of length 300 over an alphabet of size 20
Biosequences:
573 protein sequences from a bacterial genome (Buchnera aphidicola)
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Random Sequences: Minimisation
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Best individual in initial population has already good fitness
→ heuristic provides good results

Fitness converges to 2 for all random sequences considered.
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Random Sequences: Maximisation
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Maximisation problem appears to be more difficult

Maximal fitness reached across different sequences very similar

C. Zarges GECCO 2019 July 13, 2019 14/18



The Problem The Algorithm Results Conclusions

Random Sequences: Balanced
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Balance problem also appears to be more difficult
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Random Sequences: Specific
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Target 12 seems to be relatively easy to reach

More investigations needed to understand how the target influences the difficulty.
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Biosequences

Lexicographic: 4053 factors in total (mean 7, standard deviation 2.25).
Minimisation: most cases just 1 factor, at most 2 factors
Maximisation: Appears to follow a normal distribution, with mean of 22.7
Balanced: Range of factors from 2 to 31
Specific: Achieved for all sequences
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Conclusions and Future Work

Evolutionary algorithm for finding an optimal alphabet ordering for the Lyndon
factorisation problem

Future Work
Consider different ways to initialise the population
More detailed analysis of different operators for permutation problems and the
underlying fitness landscape
Investigate the solutions for the minimisation problem as they capture information
about the protein sequences
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