Information Theory and
Classification Error in

Probabilistic Classifiers

Department of Computer Science and Artificial Intelligence
University of the Basque Country - P.O. Box 649
20018 Donostia - San Sebastian, Spain

Aritz Pérez, Inaki Inza, Pedro Larranaga

ISG - Intelligent Systems Group
http://www.sc.ehu.es/isg
{aritz,inza,ccplamup } @si.ehu.es

1 Abstract

This work shows, using continuous real-world data [4] and artificial bi-
variate domains, the relation that seems to exist between the mutual in-
formation /(X ; C') [1] and the expected classification error €,,. Besides,
it shows that maximizing /(X ; (') is equivalent to maximize the condi-

tional log likelihood C'LL(M|D) [3].

2 Introduction

e Classification expected error
v =X [ p(O)f(@le)(1 = pule|z))da

e Multivariate and univariate models and errors
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e Information theory (/7T) based measures [1].
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Relation between different IT based measures. Each region specifies a
part of the uncertainty that surrounds the variables. Information theory
measures are estimated using kernel based densities [6].

e Questions/motivations:

— What kind of relation exists between the uncertainty that surrounds
the class variable H(C'|X ) and the classification errors €,,,; and €,,;?

— When is more advisable to use p,,,;(c|(x,y)) instead of p,.;(c|(z,y))
for classification?

—How are related the information theory based measures and the
CLL(M|D) [3]?

4 Real-world data
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€mu Versus I((Xi, X 4); C') in four data sets of the UCI repository
[4].The variables have been normalized (same variance).

5 CLL(M|D)and IT

e C'LL(M|D) [3] is a more relevant score than LL(M|D) for classifica-
tion purposes [2, 3].

e Conditional log likelihood C'LL(M|D) for py;(c|x) can be written as:
CLL(M|D) = X pul(cle) = =N~ Hyg o (C|X)
x —H(C)+ [(X;C)
= —H(C)+ > I(X;C) — > I(X;11;; C)
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e Maximize the C'LL(M|D) is equivalent to maximize /(X ;C'). Be-
sides, when all predictors are included in the model, maximize (X ; C)
is equivalent to minimize >-7_, I(X;; I1;; C).

 [u((X,Y):C) = I(X;C)+ I(Y: C) = I(X; Y O); Lini((X,Y): C) =
[(X;C)+ 1(Y;C).

3 Artificial data

10000 artificial 2D-domains with arbitrary density shapes modelled
using kernels [6]. H(C) 1s kept constant.
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6 Conclusions

e Bivariate models:

— 1 ((X,Y); C) is directly proportional to the C' L L(M | D) and it seems
to be inversely proportional to the error €,,,;.

—-I(X;Y; C) seems to be inversely proportional to the error €4 r. There-
fore I(X;Y;C') can be used in order to decide when is advisable to
model the correlation between two variables.

e nn-variate models:
CLL(M|D) is directly proportional to [(X;C'). Maximizing
C'LL(M|D) is equivalent to minimize >°7_, [(X;; 11;; C')). I[(X;; X;; C)
1s known as explaining away residual (EAR) and is used in order to
learn Bayesian network structures in a discriminative way [J].
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