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1 Abstract
This work shows, using continuous real-world data [4] and artificial bi-
variate domains, the relation that seems to exist between the mutual in-
formation I(X ; C) [1] and the expected classification error εM . Besides,
it shows that maximizing I(X ; C) is equivalent to maximize the condi-
tional log likelihood CLL(M |D) [3].

2 Introduction
• Classification expected error

εM =
r∑

c=1

∫
p(c)f (x|c)(1− pM(c|x))dx

• Multivariate and univariate models and errors
–pmul(c|x) = p(c|x) ∝ p(c)

∏n
i=1 p(xi|πi, c) → εmul

–puni(c|x) ∝ p(c)
∏n

i=1 p(xi|c) → εuni

– εdif = εuni − εmul

• Information theory (IT) based measures [1].

Relation between different IT based measures. Each region specifies a
part of the uncertainty that surrounds the variables. Information theory

measures are estimated using kernel based densities [6].

•Questions/motivations:
– What kind of relation exists between the uncertainty that surrounds

the class variable H(C|X) and the classification errors εuni and εmul?
– When is more advisable to use pmul(c|(x, y)) instead of puni(c|(x, y))

for classification?
– How are related the information theory based measures and the
CLL(M |D) [3]?

3 Artificial data
10000 artificial 2D-domains with arbitrary density shapes modelled

using kernels [6]. H(C) is kept constant.
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εmul, εuni and εdif versus IT based measures.

4 Real-world data

εmul versus I((Xi, Xj); C) in four data sets of the UCI repository
[4].The variables have been normalized (same variance).

5 CLL(M |D) and IT
•CLL(M |D) [3] is a more relevant score than LL(M |D) for classifica-

tion purposes [2, 3].
•Conditional log likelihood CLL(M |D) for pM(c|x) can be written as:

CLL(M |D) =
∑
x,c

pM(c|x) = −N−1Hp̂(x,c)(C|X)

∝ −H(C) + I(X ; C)

= −H(C) +
n∑

1=1

I(Xi; C)−
n∑

1=1

I(Xi; Πi; C)

•Maximize the CLL(M |D) is equivalent to maximize I(X ; C). Be-
sides, when all predictors are included in the model, maximize I(X ; C)

is equivalent to minimize ∑n
1=1 I(Xi; Πi; C).

• Imul((X, Y ); C) = I(X ; C)+ I(Y ; C)− I(X ; Y ; C); Iuni((X,Y ); C) =

I(X ; C) + I(Y ; C).

6 Conclusions
•Bivariate models:

– IM((X,Y ); C) is directly proportional to the CLL(M |D) and it seems
to be inversely proportional to the error εmul.

– I(X ; Y ; C) seems to be inversely proportional to the error εdif . There-
fore I(X ; Y ; C) can be used in order to decide when is advisable to
model the correlation between two variables.

•n-variate models:
CLL(M |D) is directly proportional to I(X ; C). Maximizing
CLL(M |D) is equivalent to minimize ∑n

1=1 I(Xi; Πi; C)). I(Xi; Xj; C)

is known as explaining away residual (EAR) and is used in order to
learn Bayesian network structures in a discriminative way [5].
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