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Abstract

Most of the Bayesian network-based classifiers are usually only able to handle dis-
crete variables. However, most real-world domains involve continuous variables. A
common practice to deal with continuous variables is to discretize them, with a
subsequent loss of information. This work shows how discrete classifier induction
algorithms can be adapted to the conditional Gaussian network paradigm to deal
with continuous variables without discretizing them. In addition, three novel clas-
sifier induction algorithms and two new propositions about mutual information are
introduced. The classifier induction algorithms presented are ordered and grouped
according to their structural complexity: naive Bayes, tree augmented naive Bayes,
k-dependence Bayesian classifiers and semi naive Bayes. All the classifier induc-
tion algorithms are empirically evaluated using predictive accuracy, and they are
compared to linear discriminant analysis, as a continuous classic statistical bench-
mark classifier. Besides, the accuracies for a set of state-of-the-art classifiers are
included in order to justify the use of linear discriminant analysis as the bench-
mark algorithm. In order to understand the behavior of the conditional Gaussian
network-based classifiers better, the results include bias-variance decomposition of
the expected misclassification rate. The study suggests that semi naive Bayes struc-
ture based classifiers and, especially, the novel wrapper condensed semi naive Bayes
backward, outperform the behavior of the rest of the presented classifiers. They
also obtain quite competitive results compared to the state-of-the-art algorithms
included.
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1 Introduction

Supervised classification is a basic task in data analysis and pattern recogni-
tion. It requires the construction of a classifier, that is, a function that assigns
a class label to instances described by a set of variables. There are numerous
classifier paradigms, among which Bayesian networks (BN)[48,50], based on
probabilistic graphical models (PGMs) [3,42], are very effective and well-known
in domains with uncertainty. A Bayesian network is a directed acyclic graph of
nodes representing variables and arcs representing conditional (in)dependence
relations between the variables. This kind of PGM assumes that each random
variable follows a conditional probability function given a specific value of its
parents.

Usually the conditional probability function is assumed to be multinomial
[3,48,50]. This kind of BN is known as a Bayesian multinomial network (BMN )
[3]. It handles discrete variables only and, thus, if a continuous variable is
present, it must be discretized, with a subsequent loss of information [63]. A
battery of BMN-based classifier induction algorithms has been proposed in
the literature: naive Bayes [11,39,46], tree augmented Bayesian network [17],
k-dependence Bayesian classifier [57] and semi naive Bayes [37,49].

In the presence of continuous variables, another alternative is to assume that
continuous variables are sampled from a Gaussian distribution. This kind
of Bayesian network is known as a conditional Gaussian network (CGN )
[2,19,42–44]. It can deal with discrete and continuous variables and, there-
fore, it is an alternative to work with mixed variables without the need to
discretize the continuous ones. A structural constraint of the CGN is that
a discrete variable cannot have continuous parents. Although the Gaussian
assumption for continuous variables is very strong, it usually provides a rea-
sonable approximation to many real-world distributions [30]. The classifiers,
inducted by the algorithms presented in this paper, are restricted to CGN
models with continuous predictor variables and discrete class variable, which
is the parent of all predictors included in the model. The structures of these
classifiers range the simplest naive Bayes structure to the complete graphs.

A classifier based on BNs can be constructed from a Bayesian approach
[2,19,22,27]. It takes into account all possible models and all possible param-
eters, restricted to a special kind of structure and a family of probability
functions. However, the classifiers included in this paper are induced from a
non-Bayesian point of view, which fixes a unique structure and its param-
eters. The structure is learned guided by a score function (likelihood [24],
accuracy [33,40,49] or mutual information [17,57]). There are a lot of works
in which the non-Bayesian approach for discrete variables is performed with
different structure complexities [11,17,33,37,39,40,46,49,57]. The non-Bayesian
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approach, to learn classifiers based on conditional Gaussian networks, is per-
formed for mixed variables in the work of Friedman et al. [18].

BN-based classifiers can be inducted in two ways depending on the distribu-
tion to be learned: generative or discriminative learning [29,52]. Generative
classifiers learn a model of the joint probability function of the predictor vari-
ables and the class. They classify a new instance by using the Bayes rule to
compute the posterior probability of the class variable given the values for the
predictors. On the other hand, discriminative classifiers [24,58] directly model
the posterior probability of the class conditioned to the predictor variables.
The learning can also be done in a mixed way, as shown in [55]. The present
work is performed from the point of view of generative learning.

This paper presents the CGN paradigm and a battery of classifier induction
algorithms supported by it, much of them adapted from the previous enumer-
ated algorithms supported by the Bayesian multinomial network paradigm.
Besides, two new propositions about mutual information, necessary to design
filter approaches, are introduced. The classifier induction algorithms presented
are experimentally compared by means of estimated predictive accuracy. The
bias-variance decomposition [36] of the expected misclassification cost is per-
formed in order to analyze the behavior of the CGN-based classifiers presented
in more detail.

The paper is organized as follows. In Section 2, four kinds of well-known
classifier structures are introduced: naive Bayes, tree augmented naive Bayes,
k-dependence Bayesian classifier, and semi naive Bayes. Based on each kind of
structure, different classifier induction algorithms to handle continuous vari-
ables are presented. Three of the presented algorithms are novel algorithms:
the filter selective ranking naive Bayes, the wrapper k-dependence Bayesian
classifier, and the wrapper condensed semi naive Bayes. Moreover, seven al-
gorithms are adapted from the Bayesian network paradigm to the CGN one.
In the same section, a classifier induction algorithm taxonomy is proposed,
based on wrapper and filter concepts. In Section 3, experimental results in
classification tasks and their bias-variance decompositions in each data set
are shown for CGN-based and benchmark classifiers. Finally, in Section 4, our
conclusions and future work are presented.

2 Adapting Bayesian multinomial network-based classifier induc-
tion algorithms to continuous domains

PGMs are used to encode the joint distribution among the domain variables,
based on the conditional independencies represented by the graph structure.
This fact, combined with the Bayes rule, can be used for classification. In order
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to induce a classifier from data, we consider two types of variables: the class
variable or class C, and the rest of variables or predictors, X = (X1, . . . , Xn).
This paper only considers PGMs whose class variable C is the root of the
graph. In other words, {C} ⊆ Pai (i = 1, ..., n) where Pai is the set of
variables that are parents of Xi in the graph. The process of classifying an
instance x = (x1, . . . , xn) consists of selecting the class with the highest a
posteriori probability, P (c | x). This entails the use of the winner-takes-all
rule [11]. This rule is used when the loss function value, which gives a measure
of the cost of misclassification, is symmetric. The classification process can be
done in the following way with CGN:

P (c | x) ∝ p(c, x) = P (c)p(x|c) = P (c)
n∏

i=1

p(xi | pai) (1)

where pai denotes a value of Pai. Moreover, [3,8,19]

p(xi | pai) ∼ N (mi|c, vi|c) (2)

where mi|c and vi|c are defined as follows [19]:

mi|c = µi|c +
ni∑

j=1

βij|c(xj − µj|c) (3)

vi|c =
| ΣXi,PXi|c |
| ΣPXi|c |

(4)

PXi is the set of continuous predictors that are parents of Xi, so PX i =
Pai \ {C}, and ni is its cardinality. ΣS|c is the covariance matrix of the set
of variables S conditioned to the class value C = c. σij|c is the covariance
between the variables Xi and Xj conditioned to c, and σ2

i|c is the variance of
Xi conditioned to c. βij|c is the regression coefficient of Xi on Xj conditioned
to the class value C = c, and is defined as [8]

βij|c =
σij|c
σ2

j|c
(5)

The process of induction for a classifier supported by the PGMs can be di-
vided into three main parts: preprocessing, structural learning and parametric
learning.

An important issue of the preprocessing task consists in transforming the
variable space or selecting the relevant variables which will take part in the
classifier induction process. Variable selection and transformation (reducing
the number of features) gives some advantages in a classifier induction process:
reduction of the search space, easy explanation capacity, improvement of the
classification accuracy, and enhancement of the reliability of its estimation.
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The transformation of the space of variables tries to construct a set of new
artificial variables which usually are mutually independent and capture much
of the information of the original space. Standard transformation of the space
of variables includes principal component analysis [32].

The variable selection techniques (see [25]) can be divided into two groups
depending on the nature of the search score used by the selection process:
filter [45] and wrapper approaches [35]. The scores used in the filter approaches
are based on intrinsic characteristics of the data [45]. The advantages of filter
approaches are related to the time complexity needed to make the selection.
For example, a score based on information theory [6] used to select variables
in a filter manner (entropy and mutual information measures), is correlation
based feature selection (CFS ) [26,64]. More examples based on information
theory are the approaches based on relevance concepts [60,61]. On the other
hand, wrapper approaches use an estimated classification goodness measure
as a score [35]. Thus, they depend on the specific classifier used to estimate
the classification goodness.

Variable selection is usually considered a preprocessing step, but it can also be
considered a part of the structural learning process because the use of different
feature subsets inevitably imposes different models [13]. Besides, sometimes
the selection could be performed parallelly to the structural learning process
(especially in the wrapper approaches). The search process depends on the
score and search strategy used. For a review of different search strategies, see
[38]. Although some of the methods proposed in this work perform an implicit
selection of variables, it is not our purpose to treat this process of selection
explicitly.

Structural learning usually involves a search process led by a score value in
the space of possible graph structures. The search process tries to optimize the
score. It generally finishes when a local optimum is found. We consider that,
structural learning can be carried out in a filter or a wrapper way, depending
on the score which guides the search process. These filter and wrapper concepts
are adapted from the feature subset selection literature. In our work, the filter
approaches use the mutual information as a score and the wrapper approaches
use the estimated predictive accuracy.

The structural learning is constrained by a search space usually defined by
means of the kind of (in)dependency and dependencies allowed among the
variables or structure complexities. Depending on the search space, the algo-
rithms explore, for example, naive Bayes like structures [11,39,46], tree aug-
mented networks [17,33], k-dependence networks [57], semi naive Bayes [37,49],
unrestricted networks [4,51], or Bayesian multinets [20].

Parametric learning consists in estimating parameters from the data. These
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parameters model the dependence relations between variables, represented by
the classifier structure. One of the main advantages of CGNs with respect
to BMNs is related to the number of parameters needed to model a contin-
uous domain. In contrast to the exponential number of parameters necessary
to learn a complete graph in BMNs (O(r

∏n
i=1 ri)

1 , where ri and r are the
cardinality of the variables Xi and C respectively), the number of parame-
ters necessary to model a complete graph based on CGNs with continuous
variables has a low polinomial rate [19], O(n2r). Due to the fewer number
of parameters, the CGN-based classifiers tend to has less sensitivity to the
changes in the training set. They also adjust the training data sets less than
BMN-based classifiers. Therefore, in general, they should have a lower variance
and higher bias components in their associated decomposition of the expected
misclassification rate [16,36]. Besides, a lower number of parameters allows a
more reliable and robust computation of the necessary statistics

Moreover, the parameters can be computed a priori, without taking into ac-
count the structure to be considered. More specifically, the necessary param-
eters are an array of class conditional covariance matrixes, Σ = (Σ1, . . . , Σr),
and another array of class conditional mean vectors µ = (µ1, . . . , µr). The
possibility of computing the parameters a priori allows a more efficient back-
ward structure search compared to BMN-based algorithms.

BMNs only handle discrete variables. The continuous variables must be dis-
cretized in order to handle them. There is a loss of information in this dis-
cretization process [63]. The same classifier induction algorithm obtains dif-
ferent classifiers and different classification scores depending on the criteria
used to discretize the data. It can be concluded that the lost information de-
pends on the discretization criteria used. On the other hand, CGNs are only
able to handle continuous variables assuming that they follow a Gaussian dis-
tribution. Therefore, information is used erroneously if the real distribution
of the variables defers much from the Gaussian distribution and, thus, the
estimation of p(c,x) tends to have higher bias term in the estimated error
decomposition. However, if the real distribution does not defer much from the
Gaussian distribution, the estimated scores of classifiers based on BMNs and
CGNs obtain comparable results (see Section 3). In addition, the assumption
of normally distributed data can avoid the overfit problem when the structure
of the graph is too complex, and also tends to obtain an estimation of the joint
distribution with less variance due to the low polinomial rate of parameter.

The following subsections present classifier induction algorithms supported by
different CGN paradigms ordered by their structural complexity. The struc-
tural complexity is related to the type and number of dependencies allowed

1 In this work, O(·) expressions denote complexity orders, sometimes in terms of
time (or operations) and sometimes in terms of number of parameters.
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between variables. Four types of structures are presented: naive Bayes, tree
augmented Bayesian network, k-dependence Bayesian classifier and semi naive
Bayes.

The least complex structure is the naive Bayes structure (NB structure), which
assumes that predictor variables are conditionally independent given the class.
It is not mandatory to include the entire set of predictor variables. The space
of possible NB structure is O(2n).

The tree augmented Bayesian network structures (TAN structures) break with
the strong independence assumption made by NB structures, allowing proba-
bilistic dependencies among predictors. The TAN structures consist of graphs
with arcs from the class variable only to a subset of selected predictors, and
with arcs between predictors taking into account that the maximum number
of parents of a variable is one plus class.

The k-dependence Bayesian classifier structure (kDB structure) extends TAN
structures allowing a maximum of k predictor parents plus the class for each
predictor variable (TAN structures are equivalent to kDB structures with k =
1).

Finally, the semi naive Bayes structure (Semi structure) introduces joint
nodes, which are the Cartesian product of a subset of original variables. There-
fore, every component variable of the joint nodes are mutually statistically
dependent.

Fig. 1. Examples of different complexity classifier structures.

C


X1
 X3
X2
 X4


(a) NB.
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(b) TAN.
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(c) kDB, k=2.
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(d) Semi.

Fig. 2. Complete and incomplete kDB structures with k = 2.
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(a) Complete structure.

C


X1
 X3
 X4


(b) Incomplete structure.

We say that a structure is complete when all variables are included and no
more dependencies can be allowed. If not, the structure is incomplete. A com-
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plete kDB structure and an incomplete one with k = 2 are shown in Figure
2.

The structures themselves represent domain knowledge and can be interpreted
in terms of conditional (in)dependencies, constructing the associated indepen-
dence graph. In addition, they can be understood, from the point of view of
the classification task, as simplifications of the real joint distribution p(c, x).
These simplifications are again based on the relations of conditional depen-
dency that are inferred from the structure, and they can be represented by
means of factorization. This factorization requires fewer parameters than the
joint distribution over all the variables.

In the next subsections, for each kind of structure previously introduced, a set
of wrapper and filter classifier induction algorithms are presented.

2.1 Naive Bayes

The naive Bayes classifier (NB) [11,39,46] is characterized by the conditional
independence assumption between variables given the class. Moreover, all vari-
ables are included in the model, so the classifier structure is given a priori :
complete NB structure. The accuracy obtained with this classifier in its dis-
crete version is surprisingly high in some domains, even in data sets that do
not obey the strong conditional independence assumption [10].

Thanks to the conditional independence assumption, the factorization of the
joint probability is greatly simplified. A NB classifier structure example is
shown in Figure 1(a), where each variable is a class-conditioned independent
variable. After adapting Equation 1 to NB structure particularities, the fol-
lowing factorization is obtained:

P (c | x) ∝ P (c)
n∏

i=1

p(xi | c) (6)

with p(xi | c) ∼ N (µc
i , σ

c
i ) to model continuous variables conditioned to the

class. For example, the factorization of Figure 1(a) results in P (c | x) ∝
P (c)p(x1|c)p(x2|c)p(x3|c) p(x4|c).

This algorithm, which we call wrapper selective naive Bayes (wSelectiveNB)[40],
is a modification of NB, which maintains its strong conditional independence
assumption. The structure of the classifier obtained with a wSelectiveNB can
be an incomplete NB structure. The wSelectiveNB algorithm performs a vari-
able selection process in a wrapper way, searching in the space of possible
structures guided by estimated accuracy. wSelectiveNB is notably more ac-
curate than NB, especially in domains with redundant variables. It is well
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known that the redundancy among the predictive variables included in the
model could hurt the accuracy of the NB model [40].

As the search space has 2n structures, an exhaustive search of the space is
not practical. Hence, an alternative is to perform the search in a forward
greedy way. In other words, the algorithm starts from a structure with only
the class variable. At each point in the search process, the algorithm considers
the addition of each variable not included in the current naive Bayes model,
selecting the best choice by estimated accuracy. The search continues adding
non-included variables until no option improves the accuracy of the last classi-
fier induced. In the worst case, the algorithm constructs and evaluates O(n2)
classifiers.

The filter version that we propose can obtain incomplete NB structures based
on the mutual information [6] between the predictor variables and the class.
For this purpose, a novel result about mutual information between Gaussian
and multinomial variables is presented.

Proposition 1. Let C be a multinomial random variable with r possible values
and a probability distribution given by P (C = c) = P (c). Let X be a random
variable with a normal density function of parameters µ and σ2. We assume
that random variable X conditioned to C = c follows a normal density with
parameters µc and σ2

c . The mutual information between the variables X and
C is given by:

I(X; C) =
1

2
[log(σ2)−

r∑

c=1

P (c) log((σc))
2)]

Proof. The definition of mutual information verifies that:

I(X;C) =
r∑

c=1

∫

x
p(c, x) log

p(c, x)
P (c)p(x)

dx =
r∑

c=1

∫

x
P (c)p(x | c) log

p(x|c)
p(x)

dx

=
r∑

c=1

P (c)
∫

x
p(x | c) log p(x|c)dx−

r∑

c=1

∫

x
P (c)p(x | c) log p(x)dx

where the integral of the first term agrees with the entropy of a normal
distributed variable 2 with mean µc and variance σ2

c . The second term can be
expressed as follows:

2 The entropy of a normal distributed variable with mean µ and variance σ2 is
given by [6]: −1

2 log(2πeσ2)
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r∑

c=1

∫

x
P (c)p(x | c) log p(x)dx =

∫

x

r∑

c=1

p(x, c) log p(x)dx

=
∫

x
p(x) log p(x)dx = −1

2
log(2πeσ2)

and then

I(X;C) =
r∑

c=1

P (c)(−1
2

log(2πeσ2
c ) +

1
2

log(2πeσ2)

=−1
2

log(2πe)− 1
2

r∑

c=1

P (c) log(σ2
c ) +

1
2

log(2πe) +
1
2

log(σ2)

=
1
2
[log(σ2)−

r∑

c=1

P (c) log(σ2
c )]

We have made use of this proposition to design an algorithm which is a hybrid
between the filter and wrapper approaches. In order to construct a pure filter
algorithm, we must know the distribution of I(Xi; C) to fix a threshold value,
τ , and select the variables that verify that I(Xi; C) ≥ τ . As far as we know,
this distribution is unknown when Xi follows a Gaussian distribution and C,
a multinomial one.

Based on the results of Proposition 1, we propose an algorithm called the filter
selective ranking naive Bayes (fRankingNB), shown in Algorithm 1. fRank-
ingNB ranks the predictor variables in order of I(Xi; C). Afterwards, n naive
Bayes classifiers are induced with the m first variables in the ranking, from
m = 1 to n. Finally, among the n classifiers, the best naive Bayes constructed
model is selected as the final model. fRankingNB, compared with the wrapper
version, has less time complexity: in the worst case, only O(n) classifiers are
constructed compared with O(n2) of the wrapper approach.

fRankingNB has problems with redundant variables. It ranks variables in
terms of I(Xi; C), with I(Xi; C) ≥ I(Xi+1; C), without considering the re-
dundant information that Xi shares with the variables Xj(j = 1, ..., i − 1).
Therefore, any variable Xi with redundant information (with the variables
already included in the model) and a great I(Xi; C) value, could be added in
the first steps of the forward greedy structural search process. This fact could
hurt the accuracy of the NB model [40]

Due to the independence assumption, the factorization represented by the
structure is as simple as the NB factorization shown in Equation 6, but only
with the factors of the selected variables.
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Algorithm 1: fRankingNB algorithm

1 Compute the mutual information I(Xi; C) for i = 1, . . . , n, and use
I(Xi; C) to sort the variables from the one with the highest mutual
information, X1:n, to the one with the lowest mutual information, Xn:n.

2 Initialize predictor set ℵ to empty. Classify all cases as the most
frequent class.

3 for i = 1 to n
4 Add the Xi:n variable to ℵ. Construct the naive Bayes classifier with

ℵ as predictor variables and obtain its estimated accuracy.

5 Return the classifier associated with the variable set {X1:n, . . . , Xm:n},
where m = |ℵ|, which has achieved the best estimated accuracy in the
search process.

2.2 Tree augmented naive Bayes

This subsection introduces the adaptations of two well-known BMN supported
algorithms, to the CGN paradigm. First, we introduce the filter tree augmented
naive Bayes (fTAN ), which is our adaptation of Friedman et al.’s algorithm,
proposed in [17], to the conditional Gaussian distribution. Then, we present
the wrapper tree augmented naive Bayes (wTAN ), which is our adaptation
of Keogh and Pazzani’s algorithm, proposed in [33]. Both algorithms induce
classifiers with a TAN structure.

As in the original algorithm [17], fTAN finds the tree structure that maxi-
mizes the likelihood given the data. Hence, fTAN is considered a pure filter
algorithm. Friedman et al.s algorithm [17] follows the general outline of Chow
and Liu’s procedure [5], but instead of using the mutual information between
two variables, it uses class conditional mutual information between predictors
given the class variable to construct the maximal weighted spanning tree. In
order to adapt this algorithm to continuous variables, we need to calculate
the mutual information between every pair of continuous predictor variables
conditioned by the class variable. The following proposition shows how this
computation can be done.

Proposition 2. Let C be a multinomial random variable. If the joint density
function of variables Xi and Xj conditioned to C = c follows a bivariate
normal distribution with a vector of means µij|c and a covariance matrix Σij|c,
then the mutual information between variables Xi and Xj conditioned to C
verifies:

I(Xi; Xj | C) = −1

2

r∑

c=1

P (c) log(1− ρ2
c(Xi, Xj))

where ρc(Xi, Xj) =
σij|c√
σ2

i|cσ2
j|c

is the correlation coefficient between Xi and Xj

conditioned to the class value C = c.
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Proof. From [6] we know that:

I(Xi; Xj) = −1
2

log(1− ρ2(Xi, Xj))

Using this result in conjunction with the definition of mutual information
between Xi and Xj conditioned to C, we obtain:

I(Xi; Xj | C) =
r∑

c=1

P (c)I(Xi; Xj | C = c) = −1
2

r∑

c=1

P (c) log(1− ρ2
c(Xi, Xj))

The classifiers constructed by the fTAN algorithm have a complete TAN struc-
ture. The fTAN starts from a complete NB structure and continues adding al-
lowed arcs between predictors until the complete TAN structure is formed. The
arcs are included in order of their conditional mutual information. The fTAN
preserves the Chow-Liu algorithm computational cost, requiring a polinomial
time in the number of variables [5], and thus maintaining NB’s computational
simplicity. Two aspects must be taken into account. First, the structural likeli-
hood maximization does not necessarily imply a predictive error minimization.
Second, the fTAN constructs a complete TAN structure. Thus, some redun-
dant variables and irrelevant arcs could be added.

Keogh and Pazzani’s algorithm [33] implies a different approach to construct
incomplete or complete TAN structures (incomplete or complete). More than
a direct attempt to approximate the underlying probability distribution, they
solely concentrate on using the same representation to improve the estimated
classification accuracy. As the space of possible structures is exponential with
the number of variables, authors use a forward greedy search algorithm in
the space of allowed structures guided by the estimated accuracy. For each arc
added to the network, O(n2) classifier structures are considered and evaluated,
where n is the number of predicted variables. In each considered structure,
O(n) arcs may be added. Hence, the time complexity of Keogh and Pazzani’s
algorithm is O(n3). Thus, the adaptation of this algorithm to continuous do-
mains, which we call wTAN, has the same complexity. The wTAN algorithm
should avoid the disadvantages of fTAN, mentioned at the end of the previous
paragraph.

The factorization of the implied TAN structures inducted by the presented
wrapper and filter algorithms is more complex than in the case of NB struc-
tures. This is due to the class conditional independence property of groups
of variables. The factorization is obtained from equations 1 and 2 taking into
account the particularity that Pai = {Xj, C} or Pai = {C}. For example, the
factorization of Figure 1(b) is: P (c|x) ∝ P (c)p(x1|x2, c)p(x2|x3, c)p(x3|c)p(x4|x3, c).
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2.3 k-dependence Bayesian classifier

The kDB structures can be regarded as a spectrum of allowable dependence
in a given probabilistic graphical model with the NB structure at the most
restrictive extreme and the full BMN at the most general one.

This subsection introduces the adaptation of a well-known BMN supported
algorithm, as well as a novel algorithm. First, we present the proposed adapta-
tion to the Gaussian distribution of Sahami’s algorithm called the k-dependence
Bayesian classifier [57]. We call this adaptation the filter k-dependence Bayesian
classifier (fkDB), because it leads the structural learning by mutual informa-
tion, and it obtains a complete kDB structure at different k values, as the
original BMN-based algorithm. Second, we present a novel wrapper algorithm
called the wrapper k-dependence Bayesian classifier (wkDB), which can in-
duce incomplete or complete kDB structures.

The kDB structure allows each predictor Xi to have not more than k pre-
dictor variables as parents. There are two reasons to restrict the number of
parents of a variable with algorithms based on BMNs. Firstly, the reduction of
the search space. Secondly, the probability estimated for a multinomial vari-
able becomes more unreliable as additional multinomial parents are added,
because the size of the conditional probability tables increases exponentially
with the number of parents [57], and fewer cases are used to compute the nec-
essary statistics. The use of a CGN instead of a BMN avoids the problem of
modelling a structure without the restriction in the number of parents as the
number of required parameters grows quadratically. In addition, to estimate
the parameters, the entire data set is used instead of learning from a data set
partition. CGNs allow the construction of classifiers with a high number of
dependencies between variables.

The algorithm proposed by Sahami [57] is a filter greedy algorithm which
uses the class conditional mutual information between variables I(Xi; Xj | C)
and the mutual information I(Xi; C) between class and variables to lead the
structure search process. The results obtained, shown in Propositions 1 and 2,
are used again in the adapted fkDB. First, I(Xi; C)(i = 1, ..., n) and I(Xi; Xj |
C)(i = 1, ..., n)(j = i, ..., n) are computed. The fkDB algorithm starts from a
structure with only the class variable. At each step, from the subset of non-
included predictor variables, the variable Xmax with the highest I(Xi; C) is
added. Next, arcs from the variables included in the structure to variable Xmax

are added while it is possible, as long as the maximum number of parents k
is not surpassed. The arcs are added following the order of I(Xmax; Xj|C)
from the greatest value to the smallest one. The algorithm continues until a
complete kDB structure is obtained. Thus, the redundant variables and several
irrelevant relations between variables are also inevitably added and, therefore,
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the fkDB could perform worse in data sets with redundant variables.

We present the wkDB, a novel forward greedy wrapper classifier induction al-
gorithm. The wkDB algorithm has the same motivation as wTAN with respect
to fTAN and it follows a similar procedure. The algorithm starts from a struc-
ture with only the class variable. At each step, the arc which most improves
the estimated accuracy of the current classifier is added. The greedy search
continues until no option makes any improvement. Our novel wkDB algorithm
is shown in Algorithm 2. For each arc added to the network, O(n2) classifier
structures are considered and evaluated, where n is the number of predicted
variables. In each considered structure, O(kn) arcs may be added. Hence, the
time complexity in the worst case for wkDB is O(kn3), and when k ' n the
time complexity is O(n4). It is clear that the computational complexity of the
wkDB is the worst taking into account the algorithms included, especially in
the data sets with the highest number of variables.

Algorithm 2: wkDB algorithm

1 Initialize predictor set to empty. Classify all the cases as the most
frequent class.

2 do {
3 Select the best option, evaluating each possible option through the

correct classified percentage:

4 (a) Each variable not included in the model is considered a new
predictor. This new predictor must be conditionally independent
of the others given the class.

5 (b) Include an arc between predictors already included in the
model, as long as its inclusion fulfills the k-dependent Bayesian
classifier structure.

6 } until No option improves the inducted classifier.

The classification process with kDB structures and TAN structures is done in
a similar way. For example, the factorization of Figure 1(c) is:
P (c|x) ∝ P (c)p(x1|x2, x3, c)p(x2|x3, c)p(x3|c)p(x4|x2, x3, c).

2.4 Semi naive Bayes

The semi structure [37,49] also breaks with the strong independence assump-
tion of NB structures. With this purpose, a new kind of variable, joint variable
Y k, is considered. This kind of variable consists of the joint of a subset of the
original variables, where each of the original variables can be in no more than
one joint variable. Joint nodes represent a new kind of dependency between
the predictor variables. The fact that two variables, Xi and Xj, compose a
joint variable, Y k, implies that these two variables are correlated, assuming
that they are statistically dependents.
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If a joint variable consist of multinomial random variables, the states of the
joint variable consist of the Cartesian product of the states of the multino-
mial random variables [49]. The main problem of joint variables consisting of
multinomial variables Xi is the estimation of their class conditional proba-
bility tables. They have a number of exponential states in mk, where mk is
the number of original variables which constitute the joint variable Y k. This
fact could tend to compute unreliable or unstable parameters, which lead to
decrease the predictive accuracy.

On the other hand, if a joint variable Y k consist of a set of Gaussian vari-
ables, we propose that it follows a multidimensional normal distribution [1]
conditioned to the class variable. The joint density is given by:

p(yk | c) = (2π)−
1
2
mk | Σc

k |−
1
2 e−

1
2
(yk−µc

k)t(Σc
k)−1(yk−µc

k) (7)

where Σc
k is the covariance matrix conditioned to a class value, and µc

k is the
mean vector of Y k conditioned to a class value. In order to model this density
function, O(m2

k) parameters are needed. This fact avoids the problem of the
probability table size needed to model the joint variable relation with the class
variable when the component variables are multinomial. Therefore, it is not
mandatory to establish any limitation to the maximum number of predictor
variables at each joint node.

Depending on the direction of the greedy search process (forward and back-
ward), Pazzani [49] presents two wrapper ways to detect dependencies among
variables called forward sequential selection and joining and backward sequen-
tial elimination and joining [49]. As these algorithms are meant in order to
handle discrete variables, we have adapted them to the CGN paradigm, calling
them wrapper semi naive Bayes forward (wSemiF ) and wrapper semi naive
Bayes backward (wSemiB). Our adaptation is based on Equation 7, which is
used to model the class dependence relation of joint variables.

The wSemiF algorithm initializes the set of variables to be used to the empty
set. It considers two operators to carry out the search in the space of possible
structures:

(1) Add a variable not used by the current classifier as a new variable. The
added variable is class conditioned and conditionally independent given
the class with respect to the other variables used in the current classifier.

(2) Join a variable not used by the current classifier to a variable currently
used by it.

At each step in the structural learning process, a set of candidate structures is
considered. The set consist of all structures that can be inferred from the actual
one, applying one of the operators previously introduced once. Each structure
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contemplated is evaluated by means of estimated accuracy. Afterwards, the
best candidate is chosen. If the best option does not improve the accuracy,
the current classifier structure is returned.

The wSemiB is similar to wSemiF except in that wSemiB starts from a com-
plete NB structure, and, at each step, it considers two different operators:

(1) Remove a variable used by the current classifier.
(2) Join a variable used by the current classifier to another variable currently

used by it.

This algorithm also considers the best option. According to Pazzani [49], the
backward search performs better than the forward search with multinomial
variables.

In both algorithms, for each change in the network using the mentioned op-
erators, O(n2) classifier structures are considered and evaluated. Besides, in
the worst case, O(n) changes could be done. Thus, in the worst case, the time
complexity for both algorithms is O(n3).

As a semi structure considers independent joint variables, the factorization
of a semi structure is very similar to NB structure factorization. It is ob-
tained from Equation 6 using Equation 7 to factorize terms like p(yk | c).
For example, the factorization of the structure shown in Figure 1(d), assum-
ing that Y 1 = (X1), Y 2 = (X2, X3) and Y 3 = (X4), results in P (c|x) ∝
P (c)p(x1|c)p(x2, x3|c)p(x4|c).

2.4.1 Condensed semi naive Bayes

As we say above, the structures of the CGN-based classifiers presented can be
seen as simplifications of the factorization P (c, x) = P (c)p(x | c). Therefore, a
complete graph can be seen as the exact factorization of P (c, x). Wrapper con-
densed semi naive Bayes backward (wCSemiB) structure is shown in Figure
3. Quadratic discriminant analysis [31] taking into account the class distri-
bution P (C), and a CSemi structure represent an equivalent discrimination
rule, given the set of predictor variables included. The number of parameters
necessary to model a joint variable relation with the class is only quadratic
to the number of its components. Thus, in a joint variable Y , an arbitrarily
large number of variables can be included.

When designing the wCSemiB algorithm, we have taken into account that the
use of a backward structure search process costs the same as a forward process
because the parameters needed can be computed a priori.

The novel wCSemiB is a wrapper greedy backward algorithm which, at each
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Fig. 3. Condensed semi naive Bayes (CSemi structures) initial and final structures
with Y ⊆ X.

C


X


C


Y


step, uses a selection of the predictor variables as a multidimensional joint
variable. It starts with all variables but, at each step of the algorithm, one
of the selected variables is excluded. The algorithm is shown in Algorithm
3. In the worst case, the time complexity of the algorithm is the same as in
wSelectiveNB (O(n2)).

Algorithm 3: wCSemiB algorithm

1 Initialize structure S to a semi naive Bayes structure with a unique
joint node which contains all the original predictor variables.

2 do {
3 Evaluate each possible classifier through the estimated classified per-

centage, considering all the structures with a unique joint node equal
to the joint node of S without a unique included variable.

4 Select as S the best option between S and the evaluated classifiers.

5 } until No option improves the inducted classifier.

3 Experimental results

In this section, we present the estimated predictive accuracies obtained with
the CGN-based classifier induction algorithms proposed. We compare the pre-
sented algorithms by means of the estimated accuracies obtained. In addition,
in order to study the nature of the error of the CGN-based classifiers, Kohavi
and Wolpert’s bias-variance decomposition [36] is performed.

The results have been obtained in eleven UCI repository data sets [47], which
only contain continuous predictor variables. In order to interpret the results,
we must take into account that most parts of the UCI repository data sets are
already preprocessed [34]: in the data sets included, there are few irrelevant or
redundant variables, and little noise [59]. Thus, it is more difficult to obtain
statistically significant differences between the results of the algorithms in
this type of data sets [59]. The main characteristics of the data sets included
are summarized in Table 1. It must be noted that none of the included data
sets, except WAVEFORM and a subset of variables of WINE, clearly obey
the assumption that class-conditioned variables follow a conditional Gaussian
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Table 1
Basic characteristics of the data sets: the number of different values of the class
variable, the number of predictor variables, and the number of instances.

] Data Set num. class values num. variables num. instances

1 BALANCE 3 4 625

2 BLOCK 5 10 5474

3 BUPA 2 6 246

4 HABERMAN 2 3 307

5 HAYES 3 4 160

6 IRIS 3 4 150

7 LIVER 2 6 345

8 PIMA 2 8 768

9 VEHICLE 4 19 846

10 WAVEFORM 3 21 5000

11 WINE 3 13 179

Table 2
The estimated predictive accuracy averages obtained with a set of well known state-
of-the-art algorithms. The best results, in each data set, are marked in grey.

k-NN Bayesian Trees

Data Set 1-NN 3-NN NB TAN ID3 C4.5 MP LDA

1 84.8±3.5 84.8±3.5 70.7±4.1 71.4±3.7 69.6±3.8 76.6±3.8 90.7±3.8 87.7±6.1

2 96.0±0.6 95.9±0.6 93.6±0.6 96.1±0.9 95.5±0.7 96.9±0.4 96.1±1.5 90.0±0.6

3 62.9±6.3 61.7±5.9 63.2±10.5 63.2±10.5 63.2±10.5 68.7±8.7 71.6±7.4 69.3±7.2

4 67.6±7.0 70.3±4.9 72.9±3.2 72.9±3.2 72.9±3.2 71.9±4.1 72.9±6.1 73.5±6.3

5 71.3±8.2 46.9±10.3 60.0±3.2 60.0±3.2 60.0±3.2 81.9±11.2 73.8±12.4 53.8±8.5

6 95.3±5.5 95.3±5.5 94.0±5.8 94.7±5.3 94.0±6.6 96.0±5.6 97.3±3.4 98.7±2.7

7 62.9±6.3 61.7±5.9 63.2±10.5 63.2±10.5 63.2±10.5 68.7±8.7 71.6±7.4 69.3±6.1

8 70.2±4.7 72.7±5.1 77.9±3.5 78.9±3.8 74.9±3.8 73.8±5.7 75.1±5.5 76.9±4.2

9 69.9±4.5 71.5±5.3 62.6±4.2 74.2±4.8 70.4±4.4 72.6±6.0 82.5±3.1 79.8±4.2

10 76.9±2.0 80.3±1.9 81.8±1.5 83.2±1.5 67.5±1.2 76.0±1.4 84.5±0.9 86.3±1.3

11 94.9±4.1 94.9±4.1 98.9±2.3 98.3±2.7 96.6±2.9 93.8±5.5 97.2±4.0 100.0±0.0

Average 79.1 77.6 76.1 78.5 75.6 80.4 83.0 80.5

distribution.

Linear discriminant analysis (LDA) [15] is included in the study as a classic
statistical benchmark to compare it with the CGN-based classifiers presented.
LDA also assumes that the continuous data is sampled from a multivariate
Gaussian density function. Table 2 shows that LDA obtains competitive results
compared with the following set of well known state-of-the-art-algorithms: k-
NN [7] with different k, discrete versions of NB [11] and TAN [17], ID3 [53]
and C4.5 [54], and Multilayer Perceptron (MP) [56] (all of them implemented
in Weka 3.4.3 statistical package [62]). The estimated predictive accuracies
summarized in Table 2 have been obtained, for each classifier at each data set,
by a 10-fold cross-validation process. In order to learn the discrete classifiers
presented in Table 2 (NB, TAN and ID3), data sets have been discretized with
the Fayyad and Irani method [14].

The parameters for the fkDB, wkDB, wSemiF and wSemiB algorithms are the
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following:

(1) fkDB with k = 1. We have checked that fkDB obtains the best scores at
k = 1.

(2) wkDB with k = n − 1. Bear in mind that the number of parameters
to model a complete graph is only (O(n2)). With k = n − 1, there are
no limitations for the wkDB algorithm. It is not mandatory to limit the
structural complexity with the wkDB algorithm. With k = n−1, there are
no limitations for the wkDB algorithm: We allow each predictor variable
to have the maximum number of parents, n− 1.

(3) wSemiF and wSemiB with r = n, where r is the maximum number of
predictor variables allowed at each joint node. With r = n, there are no
limitations for the wSemiF and wSemiB algorithms: We allow joint nodes
with n predictor variables (the maximum) to be constructed.

The experimental results are divided into four subsections. In Section 3.1, the
estimated predictive accuracies of the algorithms are presented in a summary
table. Section 3.2 summarizes a comparison of the experimental results in a
comparative table. In order to compare and evaluate the algorithms, Section
3.3 synthesizes the results of the previously performed analysis. Finally, fol-
lowing the experimental setup of Kohavi and Wolpert [36], the bias-variance
decomposition of the obtained estimated errors is performed in Section 3.4 in
order to study the nature of the error of the presented CGN-based classifiers.

3.1 Summary table of the predictive accuracy

The results, for each classifier in each data set, have been obtained by a 10-fold
cross-validation process in order to estimate the predictive accuracies. The es-
timated predictive accuracy, for each classifier in each data set, is summarized
in Table 3.

Table 3 also summarizes three different analyses of the estimated accuracies
obtained. The first analysis calculates for each classifier, the average estimated
predictive accuracy across all data sets. The Average row contains the results
of the analysis. For example, LDA has obtained an average predictive accuracy
of 80.5 across all domains (see Table 3).

The second analysis is a hypothesis test in order to study whether the best
classifier induction algorithm, at each data set, has obtained statistically sig-
nificant better score values with respect to the rest of the algorithms. For each
data set, the algorithm with the best average score is marked as the best: In
case of a tie, the algorithm with the smallest standard deviation is marked.
Then, based on the estimated predictive accuracies (obtained with each fold
of the 10-fold cross-validation process), we establish whether the previously
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selected algorithm has obtained statistically significantly better results with
respect to the rest of algorithms using a non-paired Mann-Whitney test [12].
The study has been performed at α = 10% and α = 5% significance levels,
represented in Table 3 by “◦” and “•” symbols, respectively. For example, in
the HAYES data set, fTAN has obtained a predictive accuracy significantly
worse at α = 10% than wSemiF, which has obtained the best score.

The third analysis summarized in Table 3 ranks all the classifiers at each data
set by means of their mean scores. The Rank row shows, for each classifier,
the rank average across all the data sets. For example, the average rank of
wSemiF is 2.73 across all domains.

3.2 Comparative tables

The comparative tables compare each of classifier induction algorithms. The
same statistical tests included in the summary tables at α = 10% are used
to compare the results of the inducted classifiers at each data set. Table 4
contains the summary of the analysis.

We say that an algorithm has won if it obtains better results in a data set
than another algorithm at α = 5% significance level in the non-paired Mann-
Whitney test. On the other hand, an algorithm has lost when it obtains a worse
result under the same conditions. Table 4 shows the number of times that each
algorithm has won and lost against each other algorithm. The lost row and the
won column show the total number of times that each algorithm has lost or
won against the others. The won/lost rows show, for each algorithm, the ratio
between the total of times it won and the total of times it lost. For example,
wkDB has won twice and has lost once against fkDB. The total number of
times that fTAN has won and lost are seven and sixteen respectively, and the
won/lost ratio is 0.44 (see Table 4).

3.3 Synthesis of the analysis

The synthesis of the analysis of the results is performed bearing in mind the
Tables 2, 3 and 4. Although most of the data sets do not obey the Gaussian
assumption, and taking into account the results of the state-of-the-art algo-
rithms set presented in Table 2, the competitive results of the CGN-based
algorithms presented (see Table 3) must be highlighted.

NB structure-based classifiers (NB, fRankingNB and wSelectiveNB) seem to
perform worse than the rest of the structures. They obtain (see Table 3) the
worst predictive accuracy average. Besides, NB and fRankingNB obtains the
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worst ranking averages and won/lost ratios (see Table 3 and Table 4), across
all data sets.

The comparison between the NB structure-based classifier induction algo-
rithms clearly shows that wSelectiveNB performs better than NB and fRank-
ingNB. wSelectiveNB obtains statistically significantly better results than NB
and fRankingNB in two data sets. Besides, wSelectiveNB never obtains signifi-
cantly worse results than NB and fRankingNB. wSelectiveNB also has the best
won/lost ratio. It also obtains the best ranking average across all the data sets.
On the other hand, NB classifier seems to induce the worst classifiers taking
into account all the presented classifiers. It shows the worse predictive accu-
racy average and ranking average. Besides, NB has lost more often and won
less often than the rest of the CGN-based classifiers and LDA.

TAN structure-based algorithms induce classifiers which seem to perform
better than NB structure-based algorithms, specially wTAN (fTAN obtains
slightly worst rank average and won/lost ratio than wSelectiveNB). They also
perform similarly to kDB structure-based ones. wTAN seems to behave a lit-
tle better than fTAN. They obtain similar predictive accuracy averages, but
wTAN obtains better ranking average and won/lost ratio, and it never lost
against fTAN.

wkDB shows competitive results in the data sets presented, especially with
predictive accuracy. It obtains the best results without taking into account the
semi structure-based algorithms. wkDB also shows a competitive won/lost
ratio. fkDB (with k = 1) performs similar to fTAN algorithm. In overall,
kDB structure-based algorithms seem to perform slightly better than TAN
structure-based algorithms. As in the TAN structure-based algorithms, in the
kDB structure-based algorithms, wkDB seems to perform better than fkDB.

Semi structure-based algorithms obtain the best average predictive accuracy
across all data sets taking into account all classifiers presented and the LDA.
They show quite similar behavior among all the data sets. Moreover, they
have the best ranking average. Semi structure-based algorithms also have won
more times and lost fewer times than the other structure-based algorithms.

wCSemiB is the algorithm that seems to induce better classifiers. It obtains the
best average values across all data sets. It also obtains the third best ranking
average (see Table 3). The wCSemiB algorithm shows the highest number of
significantly best results and the lowest number of worse results with both
scores (see Table 4). wCSemiB has never lost against any other algorithm.
Moreover, wCSemiB obtains a better estimated predictive accuracy average
than the classifiers included in Table 2.
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3.4 Bias-variance decomposition of CGN-based classifiers

In this section, we perform the bias-variance decomposition in order to study,
in each data set, the behavior of the expected misclassification error rate E of
the CGN-based classifiers presented. The bias-variance decomposition can be
useful to explain the behaviors of the different algorithms [59]. The concept
of bias-variance decomposition was introduced to machine learning for mean
squared error by German et al. [21]. Later versions for zero-one-loss functions
were given by Friedman [16], Kohavi and Wolpert [36], Domingos [9] and
James [28].

The decompositions have been performed following Kohavi and Wolpert’s pro-
posal [36] with parameters N = 20 and m = 1/3|BD|, where N is the number
of training sets, m is its size and |BD| is the size of the data set. We have
set N = 20 because the bias estimation is precise enough for this value (see
Figure 1 of [36]), and m = 1/3|BD| to ensure a minimum training set size
which could avoid overfitting problems. Kohavi and Wolpert choose a set of
databases with at least 500 instances in order to ensure accurate estimates of
the error. In order to interpret the results, we must take into account that only
the BALANCE, BLOCK, PIMA, VEHICLE and WAVEFORM data sets ful-
fill this condition (see Table 1). Thus, the conclusions obtained with the data
sets mentioned are the most important ones.

The bias-variance decomposition proposed in [36] is as follows:

E =
∑
x

P (x)(σ2
x + bias2

x + varx) (8)

where x is an instance of the test set, σ2
x is the “intrinsic” target noise,

bias2
x is the square bias and varx is the variance associated with instance

x. bias2 =
∑

x P (x)bias2
x and var =

∑
x P (x)varx are the averaged squared

bias and variance (or bias and variance terms of the decomposition). The tar-
get noise is the expected cost of the Bayes-optimal classifier. Therefore, it is
independent of the learning algorithm. In practice, if there are two instances
in the test set with the same configuration for the predictors and a different
value for the class, the estimated “intrinsic” noise is positive, otherwise is zero
[36]. Thus, it is considered zero given the data sets selected. The bias com-
ponent can be seen as the error due to the incorrect fitness of the hypothesis
density function (modeled by the classifier) to the target density function (the
real density of the data). On the other hand, the variance component mea-
sures the variability of the hypothesis function, which is independent of the
target density function. It can be seen as a measure of the learning algorithm’s
sensitivity to changes in the training set. From these concepts, we can hypoth-
esize that bias and variance terms become lower and higher, respectively, as
the number of parameters needed to model the classifier grows (as classifier
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complexity increases).

Table 5 shows the results of the decomposition obtained for each classifier in
each data set. It also includes an additional row which contains the averages
for each classifier across all data sets. For example fTAN obtains a bias2 = 7.0
and var = 4.0 decomposition for BALANCE, and an average decomposition
across all the data sets of bias2 = 17.1 and var = 6.5.

From Table 5, one can conclude, in general, that the bias terms of the CGN-
based classifiers presented are higher than the variance term. This can be due
to the low number of parameters needed to model even the most complex
classifiers, which can be interpreted as low sensitivity. Besides, it can be seen
that, on average (see row Average of the Table 5 and Figure 4(c)), the bias
term decreases with an increase of model complexity, whereas the variance
remains almost constant.

Fig. 4. Bias-variance decomposition examples.
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(a) VEHICLE data set.
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(b) WINE data set.
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(c) Average across all data sets.

In order to illustrate the behavior of the classifiers taking into account the
different complexities, two different behaviors must be underlined. They are
illustrated in Figure 4(a) and Figure 4(b) respectively, (which correspond to
the rows labeled with VEHICLE and WINE of Table 5). Figure 4(a) shows
that the bias term decreases if the complexity increases. This could be due to
the great adjustment of the more complex models, which can approximate the
target densities better. The variance term is always lower than the bias. Fi-
nally, the variance of the filter algorithms seems to be slightly lower compared
to the wrapper algorithms.

Figure 4(b) shows the opposite behavior for the bias term: it grows if com-
plexity grows. On the other hand, the variance shows an erratic behavior. This
could be due to the overfit of the train set (WINE has only 179 cases and,
besides, it can be considered an easy data set). It must also be highlighted
that only in WINE is the variance of most of the algorithms higher than the
bias term. As we explained before, the behavior of the average across all the
data sets at each algorithm, shown in Figure 4(c), is consistent with the be-
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havior in Figure 4(a): the bias term decreases with the complexity whereas
the variance remains almost constant.

4 Conclusions and future work

In this work, a battery of filter and wrapper classifiers, based on CGNs, is
proposed to deal with continuous variables. We have adapted, from the BMN
to the CGN paradigm, the following algorithms: naive Bayes, selective naive
Bayes, filter tree augmented network, wrapper tree augmented network, fil-
ter k-dependencies Bayesian classifier, wrapper semi naive Bayes forward, and
wrapper semi naive Bayes backward. Three novel algorithms have also been
proposed: filter ranking naive Bayes, wrapper k-dependence Bayesian classi-
fier and wrapper condensed semi naive Bayes backward. Besides, in order to
make the filter algorithms possible, two new results for mutual information
are introduced for Gaussian distributed variables.

The classifiers have been compared in twelve data sets by means of the esti-
mated predictive accuracy. In short, taking into account the data sets included,
the family of semi structure-based algorithms obtains the best results with
both scores. They also obtain quite competitive results compared to the state-
of-the-art classifiers included. The novel condensed semi naive Bayes backward
seems to be the best algorithm for classification, taking into account the anal-
ysis of Section 3. wSemiF and wSemiB behave like wCSemiB. The competitive
results of the novel wrapper k-dependence Bayesian classifier should also be
highlighted.

The behavior of the bias and variance terms in the expected error rate de-
composition [36] shows that, if the model complexity increases, the bias term
decreases and the variance remains constant.

A future work line, related to the wrapper approach, consists in adapting more
classifiers supported by BMN to directly operate with continuous variables.
Randomized heuristics (such as genetic algorithms [23] or estimation distri-
bution algorithms [41]) could be used as the search engine in the space of
classifier structures.
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