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1

Preliminaries

1.1 Introduction

Looking for the best solutions to problems is not only a fundamental task
for the development of mankind but also seems to be inherent to natural pro-
cesses, and researchers have been able to see this. Proof of this is the emergence
of evolutionary algorithms (EAs) to solve optimization problems regardless of
the domain of application. This type of algorithms is mainly inspired by the
way in which, according to Darwin (1859), the adaptation of species to the
environment is accomplished by nature. Nonetheless, other sources of inspi-
ration from nature, such as the behaviors of ant colonies (Dorigo and Stützle
(2004)) or swarms (Kennedy and Eberhart (1995)), have also motivated the
development of different EAs. Reciprocally, besides the inspiration of algo-
rithms through the observation of nature, the study of such algorithms could
provide us with a better understanding of nature.

EAs commonly search for the best solutions by maintaining a population
of individuals (solutions) that evolves from one generation to the next. The
evolution consists of selecting a set of individuals from the population and
applying, to some subsets of it, recombination operators that create new so-
lutions. A huge number of methods conforming to this framework have been
developed. Therefore, the choice of the appropriate alternative for a particular
application results in an important matter, as it may determine whether the
problem is solved efficiently or, even, if the best solution is found at all.

Mathematically, optimization is the minimization or maximization of a
given function. Hence, optimization problems can be formulated as,

x∗ = arg max
x

f(x) (1.1)

where f : S → R is called the objective function or fitness function, x =
(x1, . . . , xn) ∈ S represents a possible solution of the problem and S is called
the search space. The optimum x∗ is not necessarily unique. We will assume
that S is an n-dimensional discrete search space.



2 1 Preliminaries

This dissertation is devoted to study a relatively new class of EAs: Estima-
tion of distribution algorithms (EDAs) (Mühlenbein and Paaß (1996)). Based
on the same principles of natural selection and evolution of populations, EDAs
use explicit probability distributions to lead the search to promising areas of
the search space instead of applying genetic operators of crossover and mu-
tation used in genetic algorithms (Goldberg (1989)). Throughout the thesis,
we will try to shed light on different open issues regarding EDAs. The final
motivation is essentially to achieve a deeper understanding of this type of al-
gorithms and their relationship with the optimization problems. To this end,
novel methodological approaches and analyses have been conducted. The ba-
sic questions that have guided the elaboration of this work can be summarized
as follows.

Firstly, the learning of probabilistic models to extract the relevant in-
formation that the selected individuals can contain about the problem is a
fundamental step of the algorithm. Regarding this issue, we wonder how the
search and the behavior of the EDA is influenced by the accuracy of the
learning method.

Secondly, one of the most interesting properties of EDAs is their ability
to capture and explicitly represent interactions among the variables of the
problems by means of the probabilistic models. Thus, investigating the rela-
tionship between the interactions of the problem variables and the structure of
the probabilistic model is a question that arises naturally. Following this idea,
we also wonder how the topology that these interactions provide determines
the difficulty of the problem. More generally, the question of what makes a
problem difficult for EDAs is an open question of undoubted interest.

Thirdly, a utopian goal is to know the limits of effectiveness of any search
algorithm. Among other things, this type of knowledge would allow us to select
the most adequate algorithm depending on the problem at hand. Coming back
to more affordable issues, we wonder where the learning limits of EDAs are.
We want to better understand when and why the learning step is not able to
extract from the population the needed information to reach the optimum.

Fourthly, another fundamental issue regarding EDAs that we consider of
special interest is to better understand how the probability of the optimum
evolves during the generations. This is an essential characteristic of the al-
gorithm which reflects how the problem is being solved. And finally, a more
general issue that we keep in mind is the relationship that emerges between
an EDA and the space of optimization problems. Regarding this issue, we
consider the possibility of creating taxonomies of problems according to the
different behaviors that an EDA can exhibit.

This introductory part will treat, as directly and briefly as possible, the
theoretical background related with the dissertation. Thus, only Bayesian net-
works and EDAs are formally presented. Further details of any topic or sci-
entific discipline related with the aforementioned elements, but not directly
used throughout the thesis, can be consulted in different works that will be
cited in the appropriate places. In turn, the specific theoretical background
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that the different chapters could need, will be introduced in the correspond-
ing points. The rest of the current chapter is organized as follows. Section 1.2
presents both Bayesian networks and the methods used to conduct learn-
ing and sampling operations. Section 1.3 introduces EDAs and some specific
implementations used throughout the thesis. This section concludes with a
review of different EDA implementations that have been developed in the
literature. Finally, Section 1.4 presents the contents of the different chapters
constituting the current dissertation.

1.2 Bayesian networks

All the algorithms considered throughout the thesis use factorizations that
can be encoded by means of Bayesian networks (Pearl (1988)). Bayesian net-
works, also called belief networks, are a class of probabilistic graphical model
(Lauritzen (1996)). This type of models have become a very popular paradigm
to efficiently deal with probability distributions in modeling uncertain knowl-
edge. One of the most important sources of the development of Bayesian net-
works was the field of expert systems (Neapolitan (1990); Castillo et al. (1997);
Cowell et al. (1999)). In addition, over the last few years, Bayesian networks
have received considerable attention from the machine learning community. As
a result of this interest, many publications and tutorials have appeared (Meek
(1995); Neapolitan (2003); Jensen and Nielsen (2007); Koller and Friedman
(2009)). Thus, besides expert systems, the applications of Bayesian networks
include classification problems (Friedman et al. (1997); Ortigosa-Hernandez
et al. (2012)), optimization (Etxeberria and Larrañaga (1999); Hauschild et al.
(2012)) or bioinformatics (Friedman et al. (2000); Armañanzas (2009)).

As any other probabilistic graphical model, Bayesian networks are the re-
sult of combining probability and graph theory. The graphical component of
the model encodes a list of conditional independences (Dawid (1979, 1980,
1997)) associated to the probability distribution. Let X = (X1, . . . , Xn) be
an n-dimensional discrete random variable. A Bayesian network is a graph-
ical representation of the factorization of the joint probability distribution
for X, p(X = x), where x = (x1, . . . , xn) denotes an assignment of the
variable X. More specifically, a Bayesian network can be defined as a pair
(s, θs) (Larrañaga and Lozano (2002)) where s is a directed acyclic graph
(model structure) and θs is the set of parameters associated to the struc-
ture (model parameters). The structure s determines the set of conditional
(in)dependences among the random variables of X. According to the struc-
ture s, the joint probability distribution p(x) can be factorized by means of
marginal and conditional probability functions. Specifically, the probability
distribution factorizes according to the graph as,

p(x) =

n∏

i=1

p(xi|pai) (1.2)
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where pai denotes a value of the variables Pai, the parent set of Xi in the
graph s.

The local probability distributions of the factorization are those induced by
the terms of the product that appears in Equation 1.2. We assume that these
local distributions depend on the parameters θs = (θ1, . . . , θn). Equation 1.2
can be rewritten specifying the parameters:

p(x|θs) =
n∏

i=1

p(xi|pai, θi). (1.3)

Assuming that the variable Xi has ri possible values, the local distribution
p(xi|pa

j
i , θi) is an unrestricted discrete distribution:

p(xk
i |pa

j
i , θi) ≡ θijk (1.4)

where pa1
i , . . . ,pa

qi
i denote the qi possible values of the parent set Pai. The

parameter θijk represents the probability of variableXi being in its k-th value,
knowing that the set of its parents’ variables is in its j-th value. Therefore,
the local parameters are given by θi = ((θijk)

ri
k=1)

qi
j=1.

1.2.1 Bayesian network learning

In order to obtain a Bayesian network which allows us to represent and man-
age the uncertain knowledge of a specific domain, it is necessary to set both
the structure and the parameters. The structure and conditional probabilities
necessary for characterizing the Bayesian network can be provided either ex-
ternally by experts, by automatic learning from datasets or by mixing both of
these. We focus on the second approach. Moreover, when the model is auto-
matically learned, it can provide us with insights into the interactions between
the variables of the domain.

The learning task can be separated into two subtasks: structural learn-
ing and parameter learning. Although there are different strategies to learn
the structure of a Bayesian network, we focus on the so-called score+search
approach. This type of techniques deals with the structure learning as an opti-
mization problem. Therefore, learning a Bayesian network can be enunciated
as follows. Given a data set D with N cases, D = {x1, . . . ,xN}, searching the
structure s∗ such that,

s∗ = arg max
s∈Sn

g(s, D) (1.5)

where g(s, D) is the score or metric which measures the goodness of any
given structure s with respect to the data set D, and Sn is the set of all
possible directed acyclic graphs with n nodes. Some of the most relevant and
used heuristic techniques such as greedy search (Buntine (1991)), simulated
annealing (Chickering et al. (1995)), genetic algorithms (Etxeberria et al.
(1997)), estimation of distribution algorithms (Blanco et al. (2003); Peña et al.
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(2004)) or ant colony optimization (de Campos et al. (2002)) have been applied
to this task.

One of the desirable properties of a metric or score is the decomposabil-
ity in presence of complete data sets. These metrics can be decomposed in
sub-metrics associated to each node Xi and its parents Pai in the graph s.
Formally, any decomposable metric can be expressed as:

g(s, D) =

n∑

i=1

gD(Xi,Pai) (1.6)

where the function gD is the sub-metric. Due to the decomposability, the
local search methods are computationally more efficient because after adding
an arc, we only need to evaluate the family of nodes affected by this change.

Although different learning methods are considered throughout the dis-
sertation, a specific search algorithm will be generally used. It is Algorithm
B (Buntine (1991)). This is a greedy search algorithm and the pseudocode is
presented in Alg. 1.1, where A is a data structure that stores the information
needed to manage the addition of the candidate arcs. Basically, Algorithm B
starts with an arcless structure and, at each step, adds the arc which improves
the score the most. The algorithm finishes when there is no arc whose addition
improves the score.

1 Start with an arcless structure
2 Compute A[Xj → Xi] = gD(Xi, Xj)− gD(Xi) for all distinct Xi, Xj

3 do

4 Look for the largest A[Xj → Xi] and add that arc Xj → Xi to s

5 A[Xj → Xi] = gD(Xi,Pai

⋃
Xj)− gD(Xi,Pai) for all distinct Xi, Xj

not belonging to Pai

6 A[Xj → Xi] = −∞

7 until Every A[Xj → Xi] < 0

Alg. 1.1: Pseudocode of Algorithm B.

Regarding the implementation of the score g(s, D), different alternatives
can be considered. Among the most used families of scores we can find
marginal likelihood (Cooper and Herskovits (1992); Heckerman et al. (1995)),
penalized log-likelihood (Schwarz (1978); Akaike (1974)) or information the-
ory based scores (Herskovits and Cooper (1990); Lam and Bacchus (1994)). In
the current dissertation we will use the Bayesian Information Criterion score
(BIC) (Schwarz (1978)) based on penalized maximum likelihood. This metric
is obtained as follows. Given a dataset D = {x1, . . . ,xN}, we might calculate
for any Bayesian network structure s the maximum likelihood estimate θ̂s for
the parameters θs and the associated maximized log likelihood:
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log p(D | s, θs) = log
N∏

w=1

p(xw | s, θs) = log
N∏

w=1

n∏

i=1

p(xw,i | pai, θi) =

n∑

i=1

qi∑

j=1

ri∑

k=1

log(θijk)
Nijk (1.7)

where Nijk denotes the number of cases in D in which the variable Xi has the
value xk

i and Pai has its j-th value. Since the maximum likelihood estimate

for θijk is given by θ̂ijk =
Nijk

Nij
where Nij =

∑ri
k=1 Nijk, we obtain:

log p(D | s, θ̂) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
. (1.8)

The log-likelihood function is not used to guide the search process due
to two main problems. Firstly, the log-likelihood is a monotonous increasing
function with respect to the complexity of the model structure. Therefore, the
use of this score to evaluate the quality of the structures during the search
could lead us towards complete Bayesian networks. Secondly, as the number
of parameters for each node increases, the error in the parameter estimation
also increases. In order to overcome these difficulties, a penalty term is added
to the log-likelihood. A general formula of the penalized log-likelihood is given
by:

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− h(N)dim(S) (1.9)

where dim(S) is the dimension (number of parameters needed to spec-
ify the model) of the Bayesian network with a structure s, i.e. dim(S) =
∑n

i=1 qi(ri − 1). h(N) is a non-negative penalization function. The Jeffreys-
Schwarz criterion, which is usually called BIC (Schwarz (1978)), takes into
account h(N) = 1

2 logN . Thus, the BIC score can be written as follows:

BIC(s, D) = log

N∏

w=1

n∏

i=1

p(xw,i|pai, θ̂i)−
1

2
logN

n∑

i=1

qi(ri − 1). (1.10)

On the other hand, parameter learning is the numerical assessment of the
parameters θs that specify the conditional and marginal probability distri-
butions of the factorization given by s. Although this task can be done by
means of different approaches such as the Bayesian model averaging (Santafe
et al. (2006)) or the maximum a posteriori criterion (Heckerman (1995)), we
use the maximum likelihood estimation. Specifically, once the structure has
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been learned, the parameters of the Bayesian network are calculated by using
the Laplace correction as follows:

θ̂ijk =
Nijk + 1

Nij + ri
. (1.11)

1.2.2 Simulation

Once a Bayesian network is obtained, this model is able to provide us with
specific probabilistic information of interest. Usually, the information that the
practitioner wants to know is the probability of a certain event in the light
of particular observations or evidence. The probabilities of interest are not
usually stored in the Bayesian network at hand, they need to be computed.
This process is known as probabilistic inference (Pearl (1988); Huang and
Darwich (1996); Dechter (1999)) and, in the general case, it is an NP-complete
problem (Cooper (1990)).

Simulation (also called stochastic sampling) of Bayesian networks can be
considered as an alternative to the exact inference. The simulation of any prob-
abilistic graphical model consists of obtaining a sample from the probability
distribution for X that the model encodes. Then, the marginal or conditional
probabilities of interest can be estimated from the sample.

For our purposes regarding EDAs, the objective of the simulation of
Bayesian networks is to obtain a dataset (new population) in which the prob-
abilistic relationships between the random variables of the model are under-
lying. Particularly, in order to sample the Bayesian network, we consider a
forward sampling method. A variable is sampled once all its parents have
been sampled. This method is known as probabilistic logic sampling (PLS)
(Henrion (1988)). Alg. 1.2 shows a pseudocode of this method.

1 π ← Ancestral ordering of the nodes in the Bayesian network

2 for j = 1 to N

3 for i = 1 to n
4 xj,π(i) ← Randomly generate a value from p(xπ(i)|paπ(i))

5 done

6 done

Alg. 1.2: Pseudocode of the probabilistic logic sampling method.
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1.3 Estimation of distribution algorithms

Estimation of distribution algorithms (Mühlenbein and Paaß (1996); Larrañaga
and Lozano (2002); Pelikan (2005)) are a population-based optimization
paradigm in the field of evolutionary computation (Eiben and Smith (2003)).
Initially, a random sample of solutions is generated. These solutions are eval-
uated using the objective function, and a subset of candidate solutions is
selected based on this evaluation. Hence, solutions with better function val-
ues have a higher chance of being selected. Then, a probabilistic model from
the selected set is built and a new population is sampled from that model. The
process is iterated until the optimum has been found or another termination
criterion is fulfilled. The general scheme of the EDA approach is shown in
Alg. 1.3.

1 Dt=0 ← Generate N individuals randomly

2 do

3 Dt ← Evaluate individuals

4 DSe
t ← Select M ≤ N individuals from Dt according to a selection

method

5 pt(x) = p(x|DSe
t ) ← Estimate the joint probability distribution by

means of a probabilistic model

6 Dt+1 ← Sample M individuals from pt(x) and create the new popula-
tion

7 t ← t+ 1

8 until Stopping criterion is met

Alg. 1.3: Estimation of distribution algorithm.

EDAs arise, in part, as an alternative to genetic algorithms (GAs) (Gold-
berg (1989)). Instead of exchanging information between individuals through
genetic operators, EDAs use machine learning methods to extract relevant
features of the search space through the selected individuals of the popula-
tion. The replacement of crossover and mutation operators by probabilistic
models can bring some benefits. For example, EDAs reduce the number of pa-
rameters involved and hence, the tune of the algorithm could become simpler
depending on the scenario of application. Nevertheless, the most important
benefit could be that the structural component of the probabilistic model can
provide explicit information about the interactions among the variables used
to codify the problem solutions.

With the aim of finding the optimal solution x∗ and solving Problem 1.1,
EDAs use explicit probability distributions. At each iteration, the algorithm
manages a probability distribution p(X = x) of the random variableX taking
values from the search space S. Thus, each of the possible problem solutions
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has an associated probability of being sampled which varies during the op-
timization process. The probability values assigned to the solutions are the
main source in determining which one will be returned by the algorithm. Con-
sequently, given a problem, the main goal is to get higher probability values
for the highest quality solutions throughout an iterative process.

In the last decade, EDAs have acquired special relevance. Proof of this
popularity is the development of new and more complex EDAs (Gámez et al.
(2007); Bosman (2010); Hauschild et al. (2012)), the applications for these
EDAs in different domains such as engineering (Simionescu et al. (2007)),
biomedical informatics (Armañanzas et al. (2008); Santana et al. (2008a)) or
robotics (Yuan et al. (2007)) and the works which study fundamental issues
in order to better understand how these algorithms perform (González et al.
(2002); Zhang (2004); Shapiro (2005); Hauschild et al. (2009); Echegoyen et al.
(2011b)).

Although there is a wide variety of EDA implementations, as an example,
we present below the pseudocode of the univariate marginal distribution al-
gorithm (UMDA), the tree based estimation of distribution algorithm (Tree-
EDA) and the estimation of Bayesian networks algorithm (EBNA). These
algorithms will be considered in subsequent chapters of the thesis.

1.3.1 Univariate marginal distribution algorithm

The univariate marginal distribution algorithm was introduced in Mühlenbein
(1998). This algorithm assumes that all the variables are independent. That
is, the value of variable Xi does not depend on the state of any other variable.
Then, p(x) can be factorized as follows:

p(x) =

n∏

i=1

p(xi). (1.12)

Alg. 1.4 shows the steps of the UMDA. This algorithm has been success-
fully applied to different problems such as feature subset selection (Blanco
et al. (2001); Saeys et al. (2004)), learning of Bayesian networks from data
(Blanco et al. (2003); Romero et al. (2004)), optimization of a composite
video processing system (Ali and Topchy (2004)), or to solve some linear and
combinatorial problems using Laplace correction (Paul and Iba (2003)).

Theoretical results derived from the UMDA (Mühlenbein and Paaß (1996))
expose its relationship with GAs, particularly with GAs that use uniform
crossover. Mühlenbein and Mahnig (2001) have investigated some of the issues
that explain the success of UMDA in the optimization of a wide class of
functions. Other theoretical results have been obtained for UMDA in González
et al. (2002) and Zhang (2004).
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1 Dt=0 ← Generate N individuals randomly

2 do

3 Dt ← Evaluate individuals

4 DSe
t ← Select M ≤ N individuals from Dt according to a selection

method
5 Calculate the univariate marginal frequencies pst (xi)

6 Dt+1 ← Sample N individuals from pt(x) =
∏n

i=1 p
s
t (xi)

7 t ← t+ 1

8 until Stopping criterion is met

Alg. 1.4: Pseudocode for UMDA.

1.3.2 Tree-based EDA

Tree-based estimation of distribution algorithms (Baluja and Davies (1997);
Santana et al. (1999); Pelikan and Mühlenbein (1999)) use factorizations that
can be expressed by means of trees or forests. In particular, we will focus on
the implementation presented in Santana et al. (1999). The pseudocode of
this algorithm is shown in Alg. 1.5 and will be called Tree-EDA. Although
other methods can also be employed, the factorization is constructed using the
algorithm introduced in Chow and Liu (1968) that calculates the maximum
weight spanning tree from the matrix of mutual information between pairs
of variables. Additionally, a threshold for the mutual information values is
used when calculating the maximum weight spanning tree in order to allow
disconnected components in the structural model.

1 Dt=0 ← Generate N individuals randomly

2 do

3 Dt ← Evaluate individuals

4 DSe
t ← Select M ≤ N individuals from Dt according to a selection

method
5 Calculate the univariate and bivariate marginal frequencies pst (xi) and

pst(xi, xj) from DSe
t

6 Calculate the mutual information and learn the tree structure
7 Dt+1 ← Sample N individuals from the tree

8 t ← t+ 1
9 until Stopping criterion is met

Alg. 1.5: Pseudocode for Tree-EDA.
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1.3.3 EDAs based on Bayesian networks

Throughout the dissertation, we pay special attention to EDAs that learn
Bayesian networks. There are different implementations of this type of EDAs.
The best known algorithms could be the following: learning factorized distri-
bution algorithm (LFDA) (Mühlenbein and Mahnig (1999b)), Bayesian opti-
mization algorithm (BOA) (Pelikan et al. (1999)) or estimation of Bayesian
networks algorithm (EBNA) (Etxeberria and Larrañaga (1999)). We mainly
focus on the EBNA implementation whose pseudocode is presented in Alg. 1.6.

1 BNt=0 ← (s0,θ
0
s0
) where s0 is an arc-less structure and θ0

s0
is uniform

2 Dt=0 ← Generate N individuals from BN0

3 do

4 Dt ← Evaluate individuals

5 DSe
t ← Select M ≤ N individuals from Dt according to a selection

method
6 st ← Obtain a network structure

7 θt ← Calculate θtijk using DSe
t as the data set

8 BNt ← (st, θ
t
st
)

9 Dt+1← Sample N individuals from BNt and create the new population

10 t ← t+ 1
11 until Stop criterion is met

Alg. 1.6: Pseudocode for EBNA.

In order to better understand how EDAs based on Bayesian networks per-
form, the characteristics of the learned probabilistic models are a rich source
of information which has been studied in several works (Hauschild and Pelikan
(2008); Bengoetxea (2003); Brownlee et al. (2008); Echegoyen et al. (2008);
Hauschild et al. (2009); Lima et al. (2007); Mühlenbein and Höns (2006)). A
straightforward form of analysis is through the explicit dependences between
the variables they capture. Thus, it has been shown how different parame-
ters of the algorithm influence the accuracy of the structural models (Lima
et al. (2007)), how the dependencies of the probabilistic models change during
the search (Hauschild et al. (2009)) and, how the networks learned can pro-
vide information about the problem structure (Echegoyen et al. (2007, 2008);
Hauschild et al. (2009); Santana et al. (2009a)). Moreover, the structural
component of the model can be used to introduce available information of the
structural characteristics of the problem (Santana et al. (2008a); Echegoyen
et al. (2009); Hauschild et al. (2012)).
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1.3.4 Parameters of the EDAs

We have set a configuration of the EDA parameters which is often used
throughout the thesis. Therefore, this standard configuration is introduced
here to avoid unnecessary repetitions.

According to the main scheme of the EDA, it works with populations of
N individuals. The initial population is generated according to a uniform
distribution, and hence, all the solutions have the same probability of being
sampled. Each iteration starts by selecting a subset of promising individuals
from the population. In this step we use truncation selection with a threshold
of 50%. Thus, the N/2 individuals with the best fitness value are selected.
The next step is to learn a probabilistic model from the subset of selected
individuals. This is the only step where the algorithms that we will consider
differ. Once the model is built, the new population can be generated. In order
to do that, N new solutions are sampled from the probabilistic model and
then they are added to the N individuals of the current population. The N
best individuals, among the 2N available, constitute the new population.

As previously commented, every EDA considered in the thesis uses factor-
izations that can be encoded by means of Bayesian networks. Therefore, the
same approaches can be used both to obtain the corresponding parameters
and to sample the new solutions. As explained in Section 1.2, the parameters
are estimated by maximum likelihood and the new population is generated
by PLS (see Alg. 1.2).

1.3.5 Related work

Besides the specific algorithms that we have introduced, a wide variety of
EDAs have been presented in the literature. Although there are different ways
of classifying EDAs, a brief overview of the different algorithms could be pre-
sented as follows. On the one hand, we can distinguish the implementations
of EDAs according to the problem domain. Specific algorithms have been
developed both in continuous (Larrañaga et al. (2000b); Bengoetxea et al.
(2002); Bosman (2003); Bosman and Grahl (2007); Dong and Yao (2008))
and discrete domains (Larrañaga et al. (2000a); Handa (2005)). We can also
distinguish particular EDA implementations for permutation based domains
(Ceberio et al. (2011)). Similarly, we can find different implementations to
face multi-objective problems (Okabe et al. (2004); Zhang et al. (2008)). On
the other hand, EDAs can be classified according to the class or complex-
ity of the probabilistic model they rely on. We can find EDAs that use dif-
ferent classes of probabilistic graphical models such as Bayesian networks
(Etxeberria and Larrañaga (1999); Mühlenbein and Mahnig (1999b); Pelikan
(2005)), Markov networks (Santana (2005); Shakya (2006)), Dependency net-
works (Gámez et al. (2007)) or Vines (Soto et al. (2012)). The introduction
of factor graphs (Kschischang et al. (2001)) in EDAs has also been suggested
(Mühlenbein (2012)). In turn, the researchers have developed EDAs that can
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be classified according to the complexity of the dependences that they are
able to manage. We can distinguish EDAs that allow univariate dependences
(Baluja (1994); Mühlenbein and Paaß (1996); Harik et al. (1999)), bivariate
dependencies (De Bonet et al. (1997); Cuesta-Infante et al. (2010)), multivari-
ate dependencies (Etxeberria and Larrañaga (1999); Mühlenbein and Mahnig
(1999b); Pelikan (2005)), mixture of models (Santana et al. (2001); Thierens
and Bosman (2001); Peña et al. (2002)) or even combination with other strate-
gies (Zhang et al. (2003, 2007); Bengoetxea and Larrañaga (2010)).

Regarding the theoretical aspects of EDAs, we find a narrower range of
topics and contributions compared with the variety of works discussed in the
previous paragraph. We point out the following major contributions with-
out distinguishing among different domains. Firstly, the behavior of EDAs
has been modeled by means of Markov Chains (Höhfeld and Rudolph (1997);
González et al. (1999); Shapiro (2005)) and dynamical systems (González
et al. (2001); Zhang (2004)), obtaining conclusions about the dynamics of
the algorithm or about local and global convergence. Secondly, there are
works that have been devoted to study the convergence to the global opti-
mum (Mühlenbein et al. (1999); Mühlenbein and Mahnig (1999a); Zhang and
Mühlenbein (2004)). And finally, the time complexity of EDAs has also been
studied in Chen et al. (2010).

The previous review is not an exhaustive enumeration, it only tries to
provide a general perspective. We regret any significant omission.

1.4 Outlook of the dissertation

This thesis is divided into seven chapters. After this introductory part, we
start with the first contribution in Chapter 2. This chapter studies the im-
pact that introducing an exact method to learn Bayesian networks has in
the behavior of EDAs. By applying a method to learn a Bayesian network
that maximizes the BIC score at each step of the algorithm, two important
issues in EDAs are investigated. First, we analyze the question of whether
learning more accurate (exact) models of the dependencies implies a better
performance of EDAs. Secondly, we are able to study the way in which the
problem structure is translated into the probabilistic model when exact learn-
ing is accomplished. In summary, the results obtained reveal that the quality
of the problem information captured by the probability model can improve
when the accuracy of the learning algorithm employed is increased. However,
improvements in model accuracy do not always imply a more efficient search.

Chapter 3 analyzes the impact that the topology of the problem struc-
ture has in the behavior of the algorithm. In many optimization problems,
regardless of the domain to which it belongs, the structural component that
the interactions among variables provide can be seen as a network. Analyzing
the impact that the topological characteristics of these networks can have,
both in the hardness of the problem and in the structural models learned
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by the EDA, provides valuable information to better understand this type
of algorithms. More in particular, the chapter studies the behavior that the
EDA exhibits in those problems whose structure is defined by using differ-
ent network topologies which include grids, small-world networks and random
graphs. In order to do that, we use several descriptors of the algorithm such
as the population size, the number of evaluations or the structures learned
during the search. Furthermore, we take measures from the field of complex
networks such as clustering coefficient or characteristic path length in order
to quantify the topological properties of the function structure and analyze
their relation with the behavior of EDAs. The results show the sensitivity
that the algorithm has to the topological characteristics of the problem struc-
ture. In addition, this chapter creates a link between EDAs based on Bayesian
networks and the emergent field of complex networks.

In Chapter 4 the limits that the learning of Bayesian networks can have
in solving optimization problems are investigated. A fundamental issue that
plays a key role in understanding and developing algorithms is to be aware
of which problems those search algorithms can effectively solve. In order to
study the ability limit of EDAs, this chapter experimentally tests three differ-
ent EDA implementations on a sequence of additively decomposable functions
(ADFs) with an increasing number of interactions among binary variables.
The results show that the ability of EDAs to solve problems could be lost
immediately when the degree of variable interaction is larger than a thresh-
old. We argue that this phase-transition phenomenon is closely related with
the computational restrictions imposed in the learning step of this type of
algorithms. Moreover, we demonstrate how the use of unrestricted Bayesian
networks rapidly becomes inefficient as the number of sub-functions in an
ADF increases.

In Chapter 5 we carry out an in-depth analysis of the probability distri-
butions that the EDA generates during the search and the impact that the
structure of the Bayesian network has in the behavior of the algorithm. We
particularly focus on calculating the probabilities of the optimal solutions, the
most probable solution given by the model and the best individual of the pop-
ulation at each step of the algorithm. We carry out the analysis by optimizing
functions of a different nature such as Trap5, two variants of Ising spin glass
and Max-SAT. The impact of the accuracy of the structural model is carried
out by introducing different structures in the probabilistic models. In addition,
the objective function values of the analyzed key solutions are contrasted with
their probability values in order to study the connection between function and
probabilistic model. The results not only show information about the internal
behavior of EDAs, but also about the quality of the optimization process and
setup of the parameters, the relationship between the probabilistic model and
the fitness function, and even about the problem itself. Furthermore, the re-
sults allow us to discover common patterns of behavior in EDAs and propose
new ideas in the development of this type of algorithms.
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In Chapter 6 a theoretical study of the relationship between EDAs and
the space of optimization problems is conducted. More particularly, we lay the
foundations to elaborate taxonomies of problems under EDAs. By using an
infinite population model and assuming that the selection operator is based
on the rank of the solutions, we group optimization problems according to the
behavior of the EDA. Through the definition of an equivalence relation be-
tween functions, it is possible to partition the space of problems in equivalence
classes in which the algorithm has the same behavior. We show that only the
probabilistic model is able to generate different partitions of the set of pos-
sible problems and hence, it predetermines the number of different behaviors
that the algorithm can exhibit. As a natural consequence of our definitions,
all the objective functions are in the same equivalence class when the algo-
rithm does not impose restrictions to the probabilistic model. The taxonomy
of problems is studied in depth for a simple EDA that considers independence
among the variables of the problem. We provide the sufficient and necessary
condition to decide the equivalence between functions and then the operators
to describe and count the members of a class are developed. In addition, it is
shown the intrinsic relation between univariate EDAs and the neighborhood
system induced by the Hamming distance by proving that all the functions
in the same class have the same number of local optima and that they are in
the same ranking positions. Finally, numerical simulations are carried out in
order to analyze the different behaviors that the algorithm can exhibit for the
functions defined over the search space {0, 1}3.

Finally, Chapter 7 draws the general conclusions obtained during the dis-
sertation and points out possible future works.





2

On the Impact of Learning Optimal Bayesian

Networks

2.1 Introduction

In EDAs, linkage learning, understood as the ability to capture the relation-
ships between the variables of the optimization problem, is accomplished by
detecting and representing probabilistic dependencies using probability mod-
els. The ability of EDAs to learn an accurate representation of the relation-
ships between the variables is related to the class of probabilistic models used
and the methods employed to learn them. Thus, an ongoing research trend is
to analyze the influence that the dependences considered by the models have
in the success of the search, and their relationship with the interdependences
among the variables of the problem.

In EDAs based on Bayesian networks, different works have been conducted
concerning this type of issues. For instance, some papers (Santana (2002);
Mühlenbein and Höns (2005)) report on the way in which the performance of
EDAs can change according to the parameters that determine the learning of
the probabilistic models, while other works pay attention to the question of
how the features of the search space are reflected in the learned models (Ben-
goetxea (2003); Mühlenbein and Höns (2005); Hauschild et al. (2007); Lima
et al. (2007)) or how the dependences of the model relate with interactions
among problem variables (Santana et al. (2005)). The aforementioned works
were published before developing the contents of this chapter (Echegoyen et al.
(2007, 2008)) and it is worth noting that the EDA community maintain the
interest in this research line. For instance, Hauschild et al. (2009) analyze the
way in which the different components of the EDA influence the arousal of
dependencies, Hauschild et al. (2012) use the probabilistic models obtained by
EDAs to improve the search in similar problems in the future and Lima et al.
(2011) investigate the accuracy of the models learned by the Bayesian opti-
mization algorithm in relation to the problem structure. However, the question
of analyzing the relationship between the search space and the structure of the
learned probabilistic models becomes difficult due to three main reasons: i)
the correct interpretation and understanding of the interdependences among
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the problem variables, ii) the stochastic nature of the search and iii) the fact
that methods used for learning the models are, in general, able to find only
approximate, suboptimal, structures.

This chapter, which is based on the works Echegoyen et al. (2007) and
Echegoyen et al. (2008), presents an alternative to study the effect that learn-
ing optimal models from the population produces in the behavior of EDAs
based on Bayesian networks. Additionally, this contribution serves as a solu-
tion to extract more accurate information about the relationship between the
problem structure, the search distributions and the probabilistic dependencies
learned during the search. More specifically, in this chapter we implement in
the EBNA algorithm (see Alg. 1.6) both an exact learning method (Silander
and Myllymaki (2006)) and the approximate technique introduced in Alg. 1.1
(Algorithm B). Then, by comparing both, two important issues in EDAs are
investigated. First, we analyze the question of whether learning more accurate
(exact) models of the dependencies implies a better performance of EDAs. Sec-
ondly, we study the way in which the problem structure is translated into the
probabilistic model when exact learning is accomplished. In addition, using
exact learning allows us to investigate to what extent approximate learning
algorithms are responsible for the loss in accuracy in the mapping between
the problem structure and the model structure.

The chapter is organized as follows. In Section 2.2, the exact learning
method is presented. Section 2.3 introduces the experimental framework and
functions used to evaluate the exact and local learning methods used by the
EDA. Sections 2.4 and 2.5 respectively present experimental results on the
time complexity analysis and convergence reliability of the two EDA variants.
Section 2.6 analyzes ways for using the Bayesian networks learned by the EDA
as a source of problem knowledge and presents experimental results for several
functions. The conclusions are presented in Section 2.7.

2.2 Exact Bayesian network learning

Since finding an unrestricted Bayesian network that maximizes a given score
is an NP-hard problem, for a long time the goal of learning exact Bayesian
networks was constrained to problems with a very reduced number of vari-
ables. The first algorithm that performed this type of learning in less than
super-exponential complexity with respect to n was introduced in Koivisto
and Sood (2004). For the study conducted in this chapter, we use the algo-
rithm presented in Silander and Myllymaki (2006) to learn Bayesian networks
in the EDA framework. This algorithm is feasible for n < 33 and it was shown
to learn an optimal network for a data set of 29 variables. This was the most ef-
ficient algorithm when the contents of this chapter were developed. Currently,
more efficient and scalable algorithms exist (Parviainen and Koivisto (2009);
Malone et al. (2012)). By using these novel techniques, the same methodology
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introduced in this chapter could be extended to other problems with higher
dimensionality.

In the following, we try to summarize the basics of the exact learning
algorithm used in this chapter (see Silander and Myllymaki (2006) for details).
In that work, the Bayesian network structure s is defined as a vector s =
(s1, .., sn) of parent sets, where si is the subset of X from which there are
arcs to Xi. The algorithm also considers an ordering of the variables X. In
this order, the i-th element is denoted by ordi. The structure s = (s1, .., sn)
is said to be consistent with an ordering ord when all the parents of the node
precede the node in the ordering.

Another important concept in the algorithm is the sink node. Every di-
rected acyclic graph has at least one node with no outgoing arcs, so at least
one node is not a parent of any other node. These nodes are called sinks of
the network.

In this algorithm, the data set D is processed in a particular way and it
uses two kinds of data tables. GivenW ⊆ X, first it is defined the contingency
table CT (W) to be a list of the frequencies of different data-vectors in DW,
where DW is the data set for W variables. However, the main task is to
calculate conditional frequency tables CFT (Xi,W) that record how many
times different values of the variable Xi occur together with different vectors

x
W−{Xi}
j in the data.
As discussed in Chapter 1, many popular scores used to learn Bayesian

networks can be decomposed to local scores. According to the definitions used
in the algorithm, the score g(s, D) can be expressed as:

g(s, D) =

n∑

i=1

score(CFT (Xi, si))

where the function score is applied to conditional frequency tables. Alg. 2.1
presents the main steps of the method:

1 Calculate the local scores for all n2n−1 different (variable, variable set)-
pairs

2 Using the local scores, find the best parents for all n2n−1 (variable, variable
set)-pairs

3 Find the best sink for all 2n variable sets
4 Using the results from Step 3, find a best ordering of the variables

5 Find a best network using results computed in Steps 2 and 4

Alg. 2.1: Exact Bayesian network learning.

The first step is the main procedure and the only one for which data is
needed. It starts by calculating the contingency table for all the variables X
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and continues calculating contingency tables for all smaller variable subsets,
marginalizing variables out of the contingency table. After that, for each con-
tingency table, the conditional frequency table is calculated for each variable
appearing in the contingency table. These conditional frequency tables can
then be used to calculate the local scores for any parent set given a variable.
All the n2n−1 local scores are stored in a table which will be the basis of the
algorithm.

Having calculated the local scores, the best parents for Xi given a candi-
date set C are either the whole candidate set C itself or one of the smaller
candidate sets {C\{c}|c ∈ C}. This search must be computed for all 2n−1

variable sets (parent candidate sets) related to Xi.
Step 3 of the algorithm is based on the following observation: The best

network G∗ for a variable set W must have a sink s. As G∗ is a network
with the highest score, sink s must have incoming arcs from its best possible
set of parents. In this way, the rest of the nodes and the arcs must form the
best possible network for variables W\{s}. Therefore, the best sink for W,
sink∗(W), is the node that maximizes the sum between the local score for s
and the score for the network S without node s.

When we have the best sinks for all 2n variable sets, it is possible to yield
the best ordering ord∗ in reverse order. Then, for each position from n to 1,
in ord∗i we have to store the best sink for the set

⋃n
j=i+1{ord

∗
j (X)}.

Having a best ordering and a table with the best parents for any candidate
set, it is possible to obtain a best network consistent with the given order-
ing. For the i-th variable in the optimal ordering, the best parents from its
predecessors are picked.

The implementation of the algorithm presented in Alg. 2.1 is provided by
the authors1. The computational complexity of the algorithm is o(n22n−2).
The memory requirement of the method is 2n+2 bytes and the disk-space
requirement is 12n2n−1 bytes. The computational cost of this learning method
strongly conditions the experiments conducted in this chapter.

2.3 Experimental framework and function benchmark

To investigate the impact of exact learning in the behavior of Bayesian net-
work based EDAs, we compare two EBNA versions. The two versions of the
algorithm only differ in the method used to learn the Bayesian network at
each step. The rest of parameters are set as explained in Section 1.3.4. The
first EBNA version, called EBNA-Local, implements Algorithm B. The second
version, called EBNA-Exact, implements the exact learning method explained
in the previous section.

1 The C++ code of this implementation is available from
http://www.cs.helsinki.fi/u/tsilande/sw/bene/download/
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We used three different criteria to compare the algorithms. The time com-
plexity, the convergence reliability and the way in which probabilistic de-
pendencies are represented in the structure of the Bayesian network. In this
section, we introduce a set of functions that represent different classes of
problems and which are used in the following sections to test the behavior of
EDAs.

2.3.1 Function benchmark

Let u(x) =
∑n

i=1 xi, f(x) be a unitation function such that, ∀x,y ∈
{0, 1}n, f(x) = f(y) if u(x) = u(y). A unitation function is defined in terms
of its unitation value u(x), or in a simpler way u.

• Function OneMax:

OneMax(x) =

n∑

i=1

xi = u(x). (2.1)

• Unitation functions are also useful for the definition of a class of functions
where the difficulty is given by the interactions that arise among subsets
of variables. One example of this class of functions are deceptive functions
(Goldberg (1989)):

Deceptive3(x) =

n
3∑

i=1

f3dec(x3i−2, x3i−1, x3i) (2.2)

where f3dec can be defined in terms of the function u as:

f3dec(u) =







0.9 for u = 0
0.8 for u = 1
0.0 for u = 2
1.0 for u = 3

• Function SixPeaks is a modification of the FourPeaks problem (Baluja
and Davies (1997)) and it can be defined mathematically as:

SixPeaks(x, t) = max{tail(0,x), head(1,x), tail(1,x), head(0,x)}+R(x, t)
(2.3)

where
tail(b,x) = number of contiguous trailing b’s in x

head(b,x) = number of contiguous leading b’s in x

R(x, t) =







n if (tail(0,x) > t and head(1,x) > t) or
(tail(1,x) > t and head(0,x) > t)

0 otherwise
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The goal is to maximize the function. For an even number of variables this
function has 4 global optima, located at the points:

(

t+1
︷ ︸︸ ︷

0, . . . , 0, 1, . . . , 1) (0, . . . , 0,

t+1
︷ ︸︸ ︷

1, . . . , 1) (

t+1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) (1, . . . , 1,

t+1
︷ ︸︸ ︷

0, . . . , 0)

These points are very difficult to reach because they are isolated. On the
other hand, two local optima (0, 0, . . . , 0), (1, 1, . . . , 1) are very easily reach-
able. The value of t was set to n

2 − 1.
• The Parity function is a simple k-bounded additively separable function

that has been used to investigate the limitations of linkage learning by
probabilistic modeling. It can be seen as a generalization of the XOR
function. In this case we will work with the concatenated parity function
(CPF). It is said that this problem is hard for EDAs based on Bayesian
networks (Coffin and Smith (2007)). The Parity function can be defined
as:

Parity(x) =

{
Ceven if u is even
Codd otherwise

where Ceven and Codd are parameters of the function. The CPF is defined
as m concatenated parity sub-functions of size k = 5,

CPF (x) =

m∑

i=1

parity(x5i−4, x5i−3, . . . , x5i). (2.4)

As in Coffin and Smith (2007), we use Codd = 5 and Ceven = 0. Notice that
there are 2n−m solutions where the function reaches the global optima.

• Function Cuban5 (Mühlenbein et al. (1999)) is a non-separable additive
function. The second best value of this function is very close to the global
optimum.

Cuban5(x) =

F 5
cuban1(s0) +

m∑

j=0

(F 5
cuban2(s2j+1) + F 5

cuban1(s2j+2)) (2.5)

where the si are substrings of x containing 5 consecutive variables and
n = 4(2m+1)+1. The sub-functions that constitute this function Cuban5
can be defined as follows.
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F 3
cuban1(x, y, z) =







0.595 for 000
0.200 for 001
0.595 for 010
0.100 for 011
1.000 for 100
0.050 for 101
0.090 for 110
0.150 for 111

F 5
cuban1(x, y, z, v, w) =

{
4F 3

cuban1(x, y, z) if y = v and z = w
0 otherwise

F 5
cuban2(x, y, z, v, w) =







u for w = 0
0 for x = 0, w = 1
u− 2 for x = 1, w = 1

where x, y, z, v, w are the variables belonging to any substring si.

2.3.1.1 The HP protein model

In our experiments we also use a class of coarse-grained protein folding model
called the hydrophobic-polar (HP) model (Dill (1985)).

Under specific conditions, a protein sequence folds into a native 3-dimensional
structure. The problem of determining the protein native structure from its
sequence is known as the protein structure prediction problem. To solve this
problem, a protein model is chosen and an energy is associated to each possi-
ble protein fold. The search for the protein structure is transformed into the
search for the optimal protein configuration given the energy function.

b

bbb
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b

b

b
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bcbcbcbc
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bc bc

Fig. 2.1. An optimal solution of the HP model for sequence
HPHPPHHPHPPHPHHPPHPH . The optimal energy corresponding to
this sequence is −9.

The HP model considers two types of residues: hydrophobic (H) residues
and hydrophilic or polar (P) residues. In this model, a protein is considered as
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a sequence of these two types of residues, which are located in regular lattice
models forming self-avoided paths. Given a pair of residues, they are consid-
ered neighbors if they are adjacent either in the chain (connected neighbors)
or in the lattice, but not connected in the chain (topological neighbors). The
total number of topological neighboring positions in the lattice (z) is called
the lattice coordination number. Fig. 2.1 shows one possible configuration of
sequence HPHPPHHPHPPHPHHPPHPH in the HP model.

A solution x can be interpreted as a walk in the lattice, representing
one possible folding of the protein. We use a discrete representation of the
solutions. For a given sequence and lattice, Xi will represent the relative move
of residue i in relation to the previous two residues. Taking as a reference
the location of the previous two residues in the lattice, Xi takes values in
{0, 1, . . . , z− 2}, where z− 1 is the number of movements allowed in the given
lattice. These values respectively mean that the new residue will be located
in one of the z− 1 numbers of possible directions with respect to the previous
two locations. If the encoded solution is self-intersecting, it can be repaired
or penalized during the evaluation step using a recursive repairing procedure
introduced in Cotta (2003). Therefore, values for X1 and X2 are meaningless.
The locations of these two residues are fixed.

For the HP model, an energy function that measures the interaction be-
tween topological neighbor residues is defined as ǫHH = −1 and ǫHP = ǫPP =
0. The function that returns the total energy of a solution will be called
Protein function. The HP problem consists of finding the solution that min-
imizes the total energy. More details about the representation and function
can be found in Santana et al. (2008a).

2.4 Time complexity analysis

In this section, the time complexity analysis will refer to the study of the
average number of generations needed by EBNA-Local and EBNA-Exact to
find the optimum.

Experiments were conducted for three functions, OneMax, Deceptive3
and SixPeaks. In the first function, there are no interactions between the
variables. In the rest, interactions arise between variables that belong to the
same definition set of the function.

In order to analyze the average number of generations to find the optimum
needed by EBNA-Local and EBNA-Exact, we start with a population of 10
individuals. The population size is increased by 10 until a maximum popula-
tion size of 150 is reached. For each possible combination of function, number
of variables n, and population size N , 50 successful runs are recorded. For
each execution of the algorithm, a maximum of 105 evaluations are allowed.

For the OneMax function, we conducted experiments for n ∈ {15, 20}. In
order to increase the accuracy of the curves shown Fig. 2.2, for n = 15 we
exceptionally conducted 100 experiments. In general, this number of runs is
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not feasible due to the computational cost of the exact learning. The results
of the experiments for n = 15 are shown in Fig. 2.2 (a) and the results for
n = 20 are shown in Fig. 2.2 (b).
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Fig. 2.2. Time complexity analysis for function OneMax, (a) n = 15 and (b)
n = 20.

The analysis of Fig. 2.2 reveals that both algorithms exhibit the same time
complexity pattern. However, EBNA-Exact needs, in general, a higher number
of evaluations than EBNA-Local to find the optimal solution for the first time.
The difference in the number of generations is less evident when the population
size approaches to 150. For this simple function, it seems that the error in
the learning of the model introduced by the approximate learning algorithm
is beneficial for the search. It could be possible that the structures learned
by the exact method are overfitted to the specific set of selected individuals
and then, the algorithm loses some desirable properties such as generalization
ability or diversity. Although this point deserves an specific study, it will be
discussed later when the structures learned by the algorithm are analyzed.

The results for the function Deceptive3 are shown in Fig. 2.3. In this
figure we can observe that both algorithms practically have identical curves.
For this function, and for the values of n investigated, the influence of the
exact learning is not relevant. We can anticipate that the structures that
the algorithms learn during the search are similar. For this function, both
algorithms need a high number of generations to reach the optimum when
the smallest population sizes are used. However, after N = 50 approximately,
the time complexity of the algorithm stabilizes. These results suggest that the
algorithm is needing a population size larger than certain threshold in order
to be effective.

The results for the SixPeaks function are presented in Fig. 2.4. It can
be observed that EBNA-Local is able to constantly reach the optimum ear-
lier than EBNA-Exact. From this analysis, we can say that the accuracy of
the exact learning does not seem beneficial to solve SixPeaks function. As
previously commented, we argue that the main reason for this behavior of
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Fig. 2.3. Time complexity analysis for the function Deceptive3, (a) n = 15 and (b)
n = 18.
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Fig. 2.4. Time complexity analysis for function SixPeaks, (a) n = 14 and (b)
n = 16.

the EBNA-Exact is related to the overfitting phenomenon. The exact algo-
rithm seems to be highly sensitive to the specific solutions in each population
and therefore, it is describing the random errors of the samples. Neverthe-
less, this fact seems to have different consequences depending on the problem.
The different behaviors that the algorithms have exhibited here will be fur-
ther analyzed when discussing the structures of the models learned during the
search.

2.5 Convergence reliability

In the analysis of the convergence reliability, we focus on the critical popu-
lation size needed by the EDAs to achieve a predefined convergence rate. In
the experiments conducted, the goal was to determine the minimum popula-
tion size needed by the two different variants of EBNA to find the optimum
in 20 consecutive runs. We investigated the behavior of the algorithms for
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functions Cuban5 (n = 13), SixPeaks (n ∈ {10, 12, 14}) and Deceptive3
(n ∈ {9, 12, 15}).

The algorithm begins with a population size N = 16 which is doubled until
the optimal solution has been found in 20 consecutive runs. The maximum
number of evaluations allowed is 104. For each objective function and value
of n, the final results are the average of 25 experiments. Table 2.1 shows the
mean and standard deviation of the critical population size found.

Table 2.1. Mean, standard deviation and p-value of the critical population size for
different functions and number of variables.

Function n EBNA-Exact EBNA-Local T-Test
mean std mean std p-value

Cuban5 13 118.40 53.07 109.44 57.26 0.57

SixPeaks 10 153.60 52.26 215.04 109.11 0.014
SixPeaks 12 209.92 110.11 389.12 249.19 0.019
SixPeaks 14 312.32 133.64 604.16 318.97 0.001

Deceptive3 9 135.68 38.40 168.96 60.94 0.025
Deceptive3 12 168.96 60.94 261.12 86.50 0.001
Deceptive3 15 220.16 58.66 296.96 95.79 0.001

Table 2.1 shows that, for function Cuban5, EBNA-Exact requires a slightly
higher population size than EBNA-Local. The picture drastically changes for
functions SixPeaks and Deceptive3, for which EBNA-Exact needs a notably
smaller population size. This difference is particularly evident for function
SixPeaks. Another observation is that the standard deviation of EBNA-Local
is always higher than that of EBNA-Exact. Since the only difference between
EBNA-Exact and EBNA-Local is the learning method, the difference of behav-
iors seems to be due to the ability of EBNA-Exact to learn a more accurate
model of the dependencies. Therefore, at least for functions SixPeaks and
Deceptive3, learning a more accurate model determines a better performance
of EBNA in terms of convergence reliability.

To determine if the population sizes obtained for each algorithm are sig-
nificantly different, we have carried out a Student’s t-test over the two sets
of 25 population sizes for each function and value of n. In the last column of
Table 2.1, the probability values of the test are reported.

If we consider a significance level of 0.05, we would have to reject the
null hypothesis for all cases except for Cuban5, where there are not signifi-
cant differences. A possible explanation of the similar behavior achieved by
both algorithms for Cuban5 will be presented in the next section, where the
structures of the probabilistic models learned by the algorithms are studied.
Moreover, for SixPeaks, using the highest value of n, and for Deceptive3,
using the two highest problem sizes, the difference between the algorithms is
statistically significant at the 0.01 level.
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2.6 Problem-knowledge extraction from Bayesian

networks

The objective of this section is to investigate the difference between the struc-
tures learned using exact and approximate learning algorithms and the re-
lationship of that structures with the interdependences among the variables
that the function defines. Throughout the dissertation, when dealing with
additively decomposable functions (ADFs), we assume that the variables be-
longing to the same sub-functions interact i.e. there is an interaction between
any pair of variables of the same sub-function. We also analyze the changes in
the pattern (number and type) of the dependencies captured by the algorithms
during their evolution.

2.6.1 Probabilistic models as a source of knowledge about the

problem

Although the main objective in EDAs is to obtain a set of optimal solutions,
the analysis of the models learned by the algorithms during the evolution can
reveal previously unknown characteristics of the problem. There is a variety
of information that can be obtained from the analysis of the models. Just to
cite a few examples, it could be possible to extract:

• A description of sets of dependent or interacting variables.
• Probabilistic information about most likely configurations for subsets of

the variables of the problem which can be translated into most-probable
partial solutions of the problem.

• Evidence on the existence of different types of problem symmetry.
• Identification of conflicting partial solutions in problems with frustration.
• In addition, by considering the change of the models during the evolution

(a dynamical perspective), it is also possible to identify patterns in the
formation of optimal structures.

In this regard, a central problem is the design of methods for extracting
and interpreting this information from the models. There are a number of
approaches that have been proposed to deal with this issue. We identify three
main sources of information:

1. The structure of the Bayesian network: By inspecting the topological char-
acteristics of the graphs (e.g. most frequent arcs or conditional indepen-
dences), we identify structural relationships between the variables.

2. The probabilistic tables of the Bayesian networks: By analyzing the proba-
bility associated to variables linked in the network, it is possible to identify
both promising and poor configurations of the partial solutions.

3. Most probable configurations given the network: These are the solutions
with the highest probability given the model. Thus, they condense the
structural and parametrical information stored by the Bayesian network
and have not necessarily been generated during the evolution of the EDA.
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In this chapter we focus on the analysis of network structures.

2.6.2 Analysis of the structures learned by EBNA

In order to investigate the type of dependencies learned by EBNA-Exact and
EBNA-Local, we saved the structures of the Bayesian networks learned during
the evolutionary process for functions Deceptive3, SixPeaks, Cuban5, CPF
and Protein.

In the following experiments, we start by running EBNA-Local and EBNA-
Exact until obtaining 30 executions in which the optimum was found. The
stopping criterion is a maximum number of 105 evaluations. In each of these
experiments, the structures of the Bayesian networks learned in each gen-
eration are stored. From these structures, the frequency in which each arc
appeared in the Bayesian network was calculated. Since we are not interested
in the direction of the dependencies, we consider the two arcs that involve
the same pair of variables. The matrices that store this information are called
frequency matrices.

Two different ways of showing the information contained in the frequency
matrices are used. The first way to represent the frequencies is using images
where lighter color indicate a higher frequency. As another means to visualize
the patterns of interactions, we use contour maps in which dependencies with
a similar frequency are joined with lines. In this way, it is possible to identify
areas of similar strength of dependency. In addition, the number of contours
is a parameter that can be tuned to focus the attention on the set of the
strongest dependencies.

In the following, for each function and variant of EBNA employed, two
figures are shown. The first figure shows the image graph of the dependencies
learned by the model in the last generation and contained in the corresponding
frequency matrix. The second figure shows the contour graph corresponding
to a matrix that stores all the arcs learned by all the models during the evolu-
tion. We call this second matrix the cumulative frequency matrix. In order to
fairly compare both algorithms using the contour figures, we normalized the
frequencies of the arcs by the highest value among the two cumulative matri-
ces learned by each algorithm. The normalized values are later discretized in
ten levels. Thus, the contour lines refer to the same levels of frequencies.

2.6.2.1 Results for Deceptive3 and SixPeaks functions

In this section, the results for Deceptive3 with n = 15 and SixPeaks with
n = 16 are presented. We discuss the behavior exhibited by these functions
and analyze some patterns identified in the structures of the models learned.
We also try to link this behavior with previous results shown in this chapter.

We start by using a population size of 150, which was the highest pop-
ulation size used on the complexity experiments shown in previous sections.
Fig. 2.5 and 2.6 respectively show the frequency matrices corresponding to
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EBNA-Local and EBNA-Exact for function Deceptive3. Both algorithms are
able to capture the dependencies corresponding to the problem interactions.
This fact may explain the similar behavior exhibited in the time complexity
experiments.
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Fig. 2.5. Frequency matrices calculated from the models learned by EBNA-Local
for function Deceptive3 with N = 150 (a) Last generation (b) All generations.
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Fig. 2.6. Frequency matrices calculated from the models learned by EBNA-Exact
for function Deceptive3 with N = 150 (a) Last generation (b) All generations.

It can be noticed that the models include a number of dependences which
are not explicitly determined by the function structure. This is particularly
evident for the EBNA-Exact algorithm and is explained by the fact that exact
learning is more sensitive to the overfitting of the data when the population
size is small. Therefore, we increase the population size to N = 500 and repeat
the same experiment for this function. The frequency matrices obtained are
shown in Fig. 2.7 and 2.8. They reveal the effect of increasing the population
size in the dependencies learned. It can be appreciated that spurious correla-
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tions have almost disappeared from the models. Both algorithms are able to
learn more accurate models with a population size of N = 500. This fact is
particularly evident in the contour figures.
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Fig. 2.7. Frequency matrices calculated from the models learned by EBNA-Local
for function Deceptive3 with N = 500 (a) Last generation (b) All generations.
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Fig. 2.8. Frequency matrices calculated from the models learned by EBNA-Exact
for function Deceptive3 with N = 500 (a) Last generation (b) All generations.

We conduct a similar analysis for function SixPeaks. Fig. 2.9 and 2.10
respectively show the frequency matrices calculated for EBNA-Local and
EBNA-Exact with a population size of N = 150. It can be seen that both
algorithms are unable to learn the accurate structure. As in the case of the
Deceptive3 function, EBNA-Exact seems to learn more spurious dependen-
cies than EBNA-Local. This fact is specially evident in the contour plot
(Fig. 2.10(b)). In this case, the patterns of dependencies is spread along the
matrix while dependencies learned by EBNA-Local are grouped around the
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diagonal. This fact may explain the better results achieved by EBNA-Local
in the time complexity experiments done for this function.
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Fig. 2.9. Frequency matrices calculated from the models learned by EBNA-Local
for function SixPeaks with N = 150 (a) Last generation (b) All generations.
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Fig. 2.10. Frequency matrices calculated from the models learned by EBNA-Exact
for function SixPeaks with N = 150 (a) Last generation (b) All generations.

Insufficient population size might be the main reason to explain the poor
quality in the mapping between the function structure and the model struc-
ture. Therefore, we repeat the experiment using a population size N = 500.
Results are shown in Fig. 2.11 and 2.12.

The images reveal that, by increasing the population size, EBNA-Exact
is able to learn a very accurate structure. The model learned captures all
the short-order dependencies of the function. This fact is corroborated by in-
specting the contour graph in Fig. 2.12(b) where there is evidence that exact
learning has gains in accuracy with respect to a smaller population size. On
the other hand, EBNA-Local does not achieve a similar improvement. Further-
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more, the accuracy of the approximation is lower than when a population size
N = 150 was used, as can be seen by comparing Fig. 2.9 and 2.11. Here, the
approximate technique could be experiencing certain learning limits. These
issues will be treated in Chapter 4.
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Fig. 2.11. Frequency matrices calculated from the models learned by EBNA-Local
for function SixPeaks with N = 500 (a) Last generation (b) All generations.
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Fig. 2.12. Frequency matrices calculated from the models learned by EBNA-Exact
for function SixPeaks with N = 500 (a) Last generation (b) All generations.

2.6.2.2 Cuban5 function

We analyze the Cuban5 function with m = 1 and n = 13. For m = 1, Cuban5
is equal to the sum of three subfunctions:

Cuban5(x) = F 5
cuban1(s0) + F 5

cuban2(s1) + F 5
cuban1(s2). (2.6)
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The interactions are determined by two different functions, F 5
cuban1 and

F 5
cuban2. Therefore, we expect Cuban5 to exhibit a different pattern of inter-

actions than those previously analyzed. As in previous experiments, we start
with a population size N = 150. The frequency matrices corresponding to
EBNA-Local and EBNA-Exact are respectively shown in Fig. 2.13 and 2.14.

Variable i

V
ar

ia
bl

e 
j

2 4 6 8 10 12

2

4

6

8

10

12

5

10

15

20

25

30

Variable i

V
ar

ia
bl

e 
j

2 4 6 8 10 12

2

4

6

8

10

12

a) b)

Fig. 2.13. Frequency matrices calculated from the models learned by EBNA-Local
for function Cuban5 with N = 150 (a) Last generation (b) All generations.
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Fig. 2.14. Frequency matrices calculated from the models learned by EBNA-Exact
for function Cuban5 with N = 150 (a) Last generation (b) All generations.

It can be seen in the images calculated from the frequency matrices of the
last generation that only some of the dependencies determined by function
F 5
cuban1 are captured by both algorithms. However, the cumulative frequencies

clearly show the existence of dependencies related to function F 5
cuban2. There

are no significant differences between both EDAs.
The frequency matrices obtained by increasing the population size to N =

500 are shown in Fig. 2.15 and 2.16. In this case, the dependencies determined
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by function F 5
cuban2 are easier to recognize in the frequency matrices of the last

generation. However, although the population size is larger, for this function
both algorithms have learned a similar structure. This fact could explain the
absence of significant differences between both algorithms in the study of
convergence reliability presented in Section 2.5.
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Fig. 2.15. Frequency matrices calculated from the models learned by EBNA-Local
for function Cuban5 with N = 500 (a) Last generation (b) All generations.
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Fig. 2.16. Frequency matrices calculated from the models learned by EBNA-Exact
for function Cuban5 with N = 500 (a) Last generation (b) All generations.

2.6.2.3 Results for the CPF function

The CPF function represents another interesting class of functions. It has
been shown that Bayesian network based EDAs such as BOA are deceived by
this function. Being CPF an additive separable function of bounded complex-
ity, BOA has an exponential scaling for it. Furthermore, in Coffin and Smith
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(2007) it is shown that increasing the population size does not always pro-
duce an improvement in the algorithm’s behavior. Authors point to the fact
that the learning algorithm used by BOA may fail to detect the higher order
type of interactions that occurs in the CPF function. Nevertheless, Chen and
Yu (2009) claim that the compact genetic algorithm, which does not conduct
linkage learning, is able to solve this problem within a polynomial number of
function evaluations to the problem size.

We will investigate whether there are differences between exact and local
learning for the CPF function with parameters: n = 15, k = 5, codd = 5 and
ceven = 0. For these parameters, the optimum can be reached in 212 different
points. As a consequence, it is likely that EBNA reaches the global solution in
the first generation. On the other hand, the limitations of the exact learning
algorithm do not allow to deal with a higher number of variables. Therefore, we
slightly change the experimental design for this specific function. We will only
analyze the models learned in the first generations of the EDAs, disregarding
whether the optimum has been found or not. The models have been calculated
using 30 independent experiments. Regarding the population size, we started
with N = 150. For this and some higher values of the population size, none
of the algorithms was able to recover any type of structure. However, the
differences appear with N = 1000. The frequency matrices calculated for
EBNA-Local and EBNA-Exact are shown in Fig. 2.17.
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Fig. 2.17. Frequency matrices calculated from the models learned in the first gen-
eration of the EDAs for function CPF with N = 1000 (a) EBNA Local (b) EBNA-
Exact.

Surprisingly, EBNA-Exact was able to recover an almost perfect structure
while EBNA-Local was not. These results reveal that, for problems such as
CPF , an accurate learning of the model might be essential to recover the cor-
rect structure of the problem. It also shows that the population size required
to discover the problem structure is higher than in previous additive functions
considered. In addition, with a sufficient populations size, the exact learning
seems to overcome the limitations exhibited by the approximate learning.
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2.6.2.4 HP protein model

The HP model has been used as a benchmark for studying different issues re-
lated with the behavior of EDAs (Santana et al. (2008a); Chen et al. (2009)). It
is a non-binary, non-decomposable problem for which extensive investigation
using evolutionary and other heuristic algorithms have been conducted (see
Cutello et al. (2007) and references therein). We use one instance of the HP
model to investigate the impact of exact learning. Fig. 2.1 shows one optimal
folding for the chosen sequence HPHPPHHPHPPHPHHPPHPH .

In the evaluation of the HP model, two variants are considered. In the
first one, infeasible individuals are assigned a penalty. In the second variant,
individuals are first repaired and after that the Protein function is used to
evaluate them. In all the experiments conducted for this function, N = 200
and 50 independent experiments of EBNA-Local and EBNA-Exact were run.
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Fig. 2.18. Frequency matrices calculated from the models learned by EBNA-Local
for the Protein function, repairing procedure with N = 200 (a) Last generation (b)
All generations.

Since the Protein function is not decomposable, a detailed description
of the problem structure is not available and we can not contrast the de-
pendencies learned with a perfect model of the interactions. However, previ-
ous research on the application of EDAs to the HP problem (Santana et al.
(2008a)) has shown that important dependencies between adjacent variables
arise. These dependencies are in part determined by the codification used,
in which each residue’s position depend on the position of the previous two.
Thus, the objective of our experiments is twofold. Firstly, to compare the class
of models learned by EBNA-Local and EBNA-Exact. Secondly, to investigate
the effect that the application of the repair mechanism has in the number and
patterns of the interactions learned by the EDAs.

Fig. 2.18 and 2.19 respectively show the frequency matrices learned by
EBNA-Local and EBNA-Exact when the repairing procedure is applied.
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Fig. 2.19. Frequency matrices calculated from the models learned by EBNA-Exact
for the Protein function, repairing procedure with N = 200 (a) Last generation (b)
All generations.

Fig. 2.20 and 2.21 show frequencies corresponding to the variant in which
the repairing procedure is not applied.
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Fig. 2.20. Frequency matrices calculated from the models learned by EBNA-Local
for the Protein function, without repairing procedure with N = 200 (a) Last gen-
eration (b) All generations.

An analysis of the figures reveal that EBNA-Exact learns a pattern of in-
teractions more localized around the diagonal representing the dependencies
between adjacent variables. The dependencies found by EBNA-Local are more
spread-out, away from the diagonal. We also observe some differences due to
the application of the repairing procedure. These differences are particularly
noticeable from the analysis of the contour graphs. Taking as an accuracy
criterion the connectedness of the adjacent variables in the problem repre-
sentation, we see that repairing helps EBNA-Local to learn more accurate
structures. Without repairing, the pattern of interactions is more fragmented.
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Fig. 2.21. Frequency matrices calculated from the models learned by EBNA-Exact
for the Protein function, without repairing procedure with N = 200 (a) Last gen-
eration (b) All generations.

However, repairing does not help EBNA-Exact, which is able to recover a
more connected structure without the application of the repairing procedure.

2.7 Conclusions

In this work we have accomplished a detailed analysis of the use of exact
learning of the Bayesian network structure in the study of EDAs. We have
conducted systematic experiments of different kinds for several functions.

Results show that learning the optimal Bayesian network at each gener-
ation does not necessarily improve the performance of the EDA. We argue
that this is mainly due to the overfitting phenomenon. In the analysis of the
structural models, we have seen that the exact method tends to learn more de-
pendences not explicitly described in the formulation of the function than the
approximate technique, especially when a small population size is used. It in-
dicates that the structures obtained by exact learning could be describing the
random errors of the samples along with the underlying relationships among
the problem variables. Nevertheless, the impact of this phenomenon depends
on the characteristics of the problem. Although in Wu and Shapiro (2006);
Lima et al. (2008, 2011) overfitting is studied in the context of EDAs, we be-
lieve that more research is needed to understand this issue. In particular, the
overfitting that takes place when an exact structural learning is accomplished
could be a subject for further research.

In general, the results show that the type of learning algorithm (whether
exact or approximate) may produce significant differences in the models
learned and in the performance of the EBNA. In particular, when the exact
learning is provided with enough information through the selected individuals,
it is able to learn accurate structural models closely related to the structure
of the problem. However, the approximate technique is not always able to
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learn accurate structures even when a large population size is used. This fact
suggests the existence of certain learning limits related to the approximate
techniques. This issue will be studied more in-depth in Chapter 4. In addi-
tion, this fact is important because usually Bayesian networks learned using
approximate algorithms are thought to accurately reflect the dependencies
that arise in the population. As the example of the CPF function illustrates,
this might not be the case for functions with a particular type of high order
dependencies.

On the other hand, we have shown that whenever the size of the problem is
manageable, exact learning of Bayesian networks is a more appropriate option
for theoretical analysis of the probabilistic dependencies. We have shown that
the analysis of the probabilistic models can reveal the effect that some EDA
components, such as repairing procedures, have in the arousal of dependencies.
By using exact learning, we have shown the critical effect that an inadequate
population size may have to capture accurate probabilistic models.



3

Optimization Problems Defined on Complex

Networks

3.1 Introduction

This chapter follows the line opened in the previous chapter regarding the
relationship among problem structure, EDA behavior and the models learned
by the algorithm. Nevertheless, although the current analysis is related to
similar concepts and motivations, a completely different methodological ap-
proach is developed. The study conducted in this chapter is mainly driven by
the topological characteristics of the structures that the interactions among
the variables of the problems provide. Taking as reference the emergent field
of complex networks, we generate a wide spectrum of networks that will serve
as problem structures. Then, the impact that the topological characteristics
of those networks have, both in the hardness of the optimization problem and
in the behavior of the EDA, is analyzed.

Nowadays, the study of networks pervades many scientific disciplines,
from biology to statistical physics or society (Strogatz (2001); Albert and
Barabási (2002)). For several years, the topological properties of real-world
networks have been described through the theory of random graphs (Erdös
and Rényi (1959)). However, advances in this field have shown that net-
works from very different domains display certain patterns of order and self-
organization. Specifically, the topological characteristics of many real-world
networks are midway between those of regular lattices and random graphs
(Watts and Strogatz (1998); Albert and Barabási (2002)). In order to quantify
these characteristics, concepts and measures such as path length, clustering
coefficient or degree distribution have been proposed (Albert and Barabási
(2002)). These subjects are studied in the field of complex networks (Erdös
and Rényi (1959); Watts and Strogatz (1998); Albert et al. (2000)) and consti-
tute a suitable framework for the study of complex systems (Dorogovtsev et al.
(2008)). In the same manner, networks emerge from the structural component
provided by the interactions among variables in many optimization problems.
Moreover, the complexity of these interactions can dramatically influence the
hardness of the problem (Dorogovtsev et al. (2008); Echegoyen et al. (2012)).
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Therefore, the study of the topological characteristics of the function struc-
ture and their impact in the optimization techniques is a relevant issue in the
development of more efficient and accurate optimization tools.

As discussed in the previous chapter, a natural link arises between the
structures used by EDAs based on Bayesian networks and the structure formed
by the interactions among the variables in the optimization problem. In this
chapter, we study the impact that varying the topological characteristics of the
function structure has in EBNA implementing Algorithm B. The functions are
defined through a network structure and interaction strengths for each couple
of variables (edges in the network). Thus, throughout a procedure based on
Watts and Strogatz (1998), we gradually change the properties of the function
structure in order to analyze EDAs in different topologies such as regular grids,
small-worlds and random graphs.

In particular, the current chapter is mainly focused on the following two
questions. i) How does the hardness of the problem change according to the
topological characteristics of its structure? and ii) how are the structures
learned by EBNA in order solve the problems depending on the topological
properties of the problem structures? In order to interpret the behavior of
the algorithm in terms of problem difficulty, we deal with the population
size that allows the algorithm to reach the optimum with reliability. Thus,
it is considered that the greater the reliable population size, the higher the
difficulty of the problem will be. By using this population size and also the
number of evaluations to reach the optimal solution for the first time, we try
to shed light on the first question. As regards the second question, we analyze
the structures learned by EBNA both by using measures taken from the field
of complex networks and studying the similarity between EBNA structures
and the original function structure.

The remainder of the chapter is organized as follows. Section 3.2 introduces
definitions of graphs and details about the creation of optimization functions
from a class of complex networks. Section 3.3 explains the experimental design.
Section 3.4 presents and discusses the results of the different experiments.
Section 3.5 discusses relevant previous works related with this chapter. Finally,
Section 3.6 draws the conclusions obtained during the study.

3.2 The function benchmark: From regular grids to

small-worlds and random graphs

The functions considered in this chapter are defined on networks where the
variables interact in pairs according to the edges. Formally, a network is repre-
sented by a graph. Thus, let G = (V,E) be an undirected graph (UG), where
V = {1, .., n} is a set of vertices which correspond to index variables in the
function, and the set of edges E is a subset of the set V × V of pairs of dis-
tinct vertices. For each network or graph we define an additively decomposable
function as follows,
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f(x) =
∑

(i,j)∈E

gij(xi, xj) (3.1)

where there is an interaction function gij for each edge in the graph.
In this chapter, the following graph-related definitions will be used. Two

nodes connected by an edge are called adjacent or neighbors. We denote the
number of neighbors or degree of the i-th node by ki. The shortest path length
between nodes i and j is denoted by dij . The following two concepts are
considered to analyze the topological characteristics of networks. Firstly, the
small-world concept which describes the fact that in most real-world networks
there exists a relatively short path between any two nodes. The characteristic
path length L is proposed in Watts and Strogatz (1998) as a measure of this
property. L is defined as the number of edges in the shortest path between
two vertices, averaged over all pairs of vertices. Thus, the characteristic path
length is calculated as L = 1

n(n−1)

∑

i6=j dij . Secondly, the clustering concept is

related to the cliqueness of the network. The tendency to cluster is quantified
by the clustering coefficient C (Watts and Strogatz (1998)). For a node i
having ki neighbors, there could be ki(ki − 1)/2 possible edges between the
neighbors (without including node i). The clustering coefficient of node i,
denoted by Ci, is the ratio between the number εi of edges that exist in the
graph among its ki neighbors (without including node i) and the total number
of possible edges between the neighbors. Then, we have Ci = 2εi

ki(ki−1) . The

clustering coefficient of the whole network is the average of all Ci’s.
The way in which the set of network topologies are generated for this

chapter is based on Watts and Strogatz (1998). That work explores models of
networks which can be found between regular grids and random graphs. They
claim that the networks of this middle ground are able to reproduce charac-
teristics of real-world networks which are present in biological, technologic or
social domains. This type of networks is called small-world networks and its
main property is that nodes are grouped into clusters with small path lengths
between any pair of nodes. In order to interpolate between regular and random
networks, the authors propose a random rewiring procedure. They start by
considering a ring of n vertices, each connected to its k nearest neighbors by
undirected edges. At each step of the procedure, the probability p of rewiring
edges of the ring is progressively increased from p = 0 (regularity) to p = 1
(chaotical).

In the current chapter, we consider a slightly different model (Santana et al.
(2008b)). The main difference is that we start from a 2-dimensional grid with
periodic boundary conditions. This allows us to represent systems disposed
on regular grids such as Ising spin glass (Ising (1925)) which represents a
classical challenge in optimization (Pelikan and Goldberg (2003); Hauschild
et al. (2009)) and it is NP-complete in its general form (Barahona (1982)).
The details of our function benchmark are given in the next section.
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Fig. 3.1. Different stages of the rewiring procedure.

3.3 Experimental design

3.3.1 Functions

In order to generate the set of functions, we start from a toroidal 2-dimensional
grid denoted by G0. The number of nodes is n = m×m where m = 7 is the
dimension of the grid. In G0, each node has 4 neighbors, being the total
number of edges 2n. Hence, we have 2n interaction functions gij . Since we
work with binary variables, each interaction function gij has four possible
values which are uniformly chosen from (0, 1).

From G0, a collection of graphs is generated by rewiring the original edges
with probability p. To generate a rewired graph Gp from G0, each edge is
visited and a decision about rewiring is made with probability p. If the edge is
rewired, the variables linked by the corresponding edge are modified but the
function values are kept intact. Duplicate edges are forbidden. This rewiring
procedure is illustrated in Fig. 3.1. The original grid (without periodic bound-
aries for simplicity) is shown on the left of the figure, a possible rewired graph
is shown in the middle and a random graph is represented on the right. To
explain how the function values are managed, we focus on the interaction
denoted by g12 in the regular grid, and by g19 after rewiring. We can see in
Table 3.1 that this interaction has the same function values before and after
rewiring, although they are associated to different variables.

Since the transition to small-network topologies is said to start at small
p values, we generate networks for values of p ∈ {0.01, 0.02, . . . , 0.1}. In ad-
dition, and in order to observe the behavior of EBNA when the topology
becomes a random graph, p is further increased by generating networks for
p ∈ {0.2, 0.3, . . . , 1.0}. For each value of p, 100 different graphs are generated
by rewiring the edges from G0 with probability p. The total number of struc-
tures generated starting from G0 is 1900. In addition, as we have created 10
different functions, the total number of considered instances is 19000.

In Figure 3.2 we show different topological characteristics of the networks
generated by the aforementioned procedure. We can see how the characteristic
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Before

x1, x2 g12
0, 0 0.2
0, 1 0.9
1, 0 0.3
1, 1 0.5

→

After

x1, x9 g19
0, 0 0.2
0, 1 0.9
1, 0 0.3
1, 1 0.5

Table 3.1. Function values of an interaction before and after rewiring.
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Fig. 3.2. Different measures taken from the networks generated by the rewiring
procedure. (a) Characteristic path length and (b) clustering coefficient.

path length L (Figure 3.2(a)) falls off steeply at low values of p, but the
decrease slows as p increases. Finally, L stabilizes at L = 2.8 around p = 0.7.
On the contrary, the average clustering coefficient C (Figure 3.2(b)) steadily
increases to p = 0.9 when it reaches the maximum value.

3.3.2 EBNA runs

Each of the generated problem instances has been solved by EBNA. The
learning step is carried out by using Algorithm B (see Alg. 1.1). The rest
of parameters are set as explained in Section 1.3.4. All runs for this work
have been conducted using a population size given by the bisection method
(Pelikan (2005)). This procedure returns a critical population size to reach the
optimum with high reliability. The bisection method has two phases. The first
phase establishes the bounds for the search of the final population size that
the method will return. Starting from an initial size N (in our case N = 16), it
is doubled until the EDA can find the optimal solution for, in this case, 10 out
of 10 independent runs. The population size that passes this test is denoted
by Nmax. Thus, the upper bound for the second phase of the bisection method
is Nmax and the lower bound is Nmin = Nmax/2, where the test failed. Note
that this first phase corresponds to the procedure carried out in Chapter 2 to
conduct the analysis of convergence reliability.
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Having established this range, the second phase refines the reliable popu-
lation size Nmax obtained in the first phase. In order to do so, the bisection
searches a population size between Nmax and Nmin for which the EDA keeps
reaching the optimum for 10 out of 10 runs in the following way. The midpoint
Nmid = (Nmax + Nmin)/2 is considered. If the EDA achieves 10 consecutive
successful runs with Nmid, then Nmax is decreased to Nmin, otherwise Nmin is
increased to Nmid. This procedure continues until Nmin and Nmax are within
a predefined threshold distance of each other. For the experiments of this
chapter, this threshold is set to 10. After applying the bisection method for a
given objective function, we have that Nmax is close to being the smallest pop-
ulation size for which a specific EDA can reliably optimize the problem. We
calculate this critical size for each problem instance and the final population
size is the average over 10 successful bisection runs.

We only work with runs for which the optimal solution is reached. The
stopping criterion for EBNA is to find the optimum for the first time. For
each function, one EBNA run has been carried out with the population size
given by bisection. All results shown are the average of 10 functions and 100
structures for a given rewiring probability p.

3.4 Empirical results

The experiments are divided into two groups. In the first one, we observe
the performance of EBNA through the population size needed to reach the
optimum with reliability (bisection size) and the number of evaluations to
reach the optimum for the first time. In the second one, we show and discuss
the influence of the topological characteristics of the function in the structures
learned by EBNA and their relationship with the original structure of the
function.

3.4.1 Analysis of the difficulty of the problems

In Fig. 3.3 we can see that the population size to reach the optimum with
reliability and the number of evaluations to reach that solution for the first
time (when bisection size is used) change in a closely related manner according
to the rewiring probability. This indicates that the performance of EBNA is
sensitive to the topological characteristics of the function structure. Since the
curves of both charts have a similar shape, we can deduce that the number of
generations remains practically constant during the rewiring procedure. It is
the population size which varies depending on the randomness of the function
structures. The use of larger population sizes suggests that the algorithm
needs more information to learn the adequate models to solve the problems.

By comparing Fig. 3.3 with the plots in Fig. 3.2, we can observe that
the bisection size and number of evaluations are related with the measures
taken from the original networks of the function. On the one hand, as the
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Fig. 3.3. Evolution of the bisection size and the number of evaluations to reach
the optimum throughout the different functions generated for each probability of
rewiring.

clustering coefficient increases, obtaining the optimum becomes harder for
EBNA because it needs a larger population and higher number of evaluations.
However, there is not a full relation. When p is 0.7 or larger, the behavior
changes: the clustering coefficient tends to stabilize while the bisection size
and number of evaluations clearly decrease. After conducting several tests on
the structures of the functions, we conjecture that this is due to a mixture
of different factors which is difficult to detect in a single measure. This is an
important issue that deserves a specific analysis.

On the other hand, there is an inverse relation between the characteristic
path length (Fig. 3.2(a)) and the behavior of EBNA (Fig. 3.3). This inverse
relation is especially remarkable from p = 0 to p = 0.1 because it is the range
in which the path length clearly decreases while bisection size and number of
evaluations increases dramatically. This fact indicates that the rewiring of a
few edges in the regular grids sharply increases the hardness of the problem
for EBNA.

Clearly, the easiest problems are those whose structures are regular grids
whereas the hardest problems are in the zone of random graphs. The transition
to small-world networks seems to moderately increase the difficulty of the
problems. Interestingly, this type of ”real-world” networks carry a medium
complexity for EBNA.

3.4.2 Analysis of the learned structures

In this section we want to analyze the structures learned by EBNA from a
global point of view. Thus, the descriptors used are averaged for all the struc-
tures learned during the run. We must take into account that the learned
structures can vary from the first to the last generation and occasionally can
be empty at the end of the runs due to the convergence of the population
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(Echegoyen et al. (2012)). Moreover, some of the structures can be discon-
nected and, therefore, the distance between variables in different connected
components of the network can not be defined. In this case, the couple of vari-
ables belonging to different connected components are not taken into account
when calculating the characteristic path length.
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Fig. 3.4. Characteristic path length taken from the whole set of structures learned
by EBNA in the optimization of the functions generated for each probability of
rewiring.

The results for the clustering coefficient of the networks learned by EBNA
are not shown because this measure hardly varies during the rewiring pro-
cedure. In fact, 63% of structures learned in the whole set of runs have a
clustering coefficient equal to 0. It indicates that the algorithm does not need
complex Bayesian network to solve the problems. Nevertheless, the character-
istic path length of the networks learned by EBNA provides valuable infor-
mation (Fig. 3.4). First of all, note that the changes in the characteristic path
length are in the same scale of values as in the original problem structures
(Fig. 3.2(a)). However, the behavior of both curves is opposite. We can ob-
serve the clear increase of the path length in the EBNA structures from p = 0
to p = 0.1 according to the decrease of this measure in the function structure
(when the small-world networks are created). This result indicates that the
rewiring of a few edges in the original grid produces a visible change in the
path length of the EBNA structures.

Taking into account the results of bisection and number of evaluations
shown in Fig. 3.3, we could interpret that the difficulty of the problems be-
tween p = 0 and p = 0.1 noticeably increases. These results combined with
the path length presented in Fig. 3.4 suggest that, in order to address the
difficulty of the problems with small-world topologies, EBNA learns struc-
tures with longer paths i.e. the algorithm tends to link more variables which
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probably form small chains or trees. Interestingly, this increase of the paths
stabilizes after passing the zone of the small-word networks.
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Fig. 3.5. Two different measures to analyze the similarity between the structures
learned by EBNA and the structure of the function.

In order to study more in-depth the degree of similarity between the struc-
tures learned by EBNA and the structure of the function, the following anal-
ysis is carried out. To this analysis the direction of the arcs in the Bayesian
networks is not taken into account. Thus, given Gf = (Vf , Ef ) the graph of
the original function structure and Gs = (Vs, Es) the undirected version of the
EBNA structure at each step, we calculate i) the ratio |Ef ∩Es|/|Ef | of edges
that match between both graphs over the total edges in the graph of the func-
tion and ii) the ratio |Ef ∩Es|/|Es| of edges that match between both graphs
over the total edges in the EBNA structure. The first measure indicates the
proportion of dependences that EBNA captures from the function. The sec-
ond measure indicates the proportion of these dependences in relation to the
total number of edges learned by the algorithm. This measure is called model
structural accuracy and has been previously used to analyze structures in
EDAs based on Bayesian networks (Lima et al. (2008)). Fig. 3.5(a) and 3.5(b)
respectively show the first and second aforementioned measures.

In Fig. 3.5(a), the curve describing the proportion of links that EBNA
learns from the whole set of interactions in the function is closely related with
the curves of population size and number of evaluations shown in Fig. 3.3. As
we are using the bisection size in the runs, Fig. 3.5(a) gives the proportion
of interactions among the function variables that EBNA needs to solve the
problem with reliability. There seems to be a direct relationship among the
topology of the problem structures, the difficulty of the problems and the
dependences that the algorithm needs to learn in order to solve that problems.

The accuracy of the EBNA structures shown in Fig. 3.5(b) displays a
similar behavior, especially in the first steps of the rewiring procedure. Nev-
ertheless, the dependences that have been learned by the model and that are
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not present in the function should be carefully interpreted. These probabilistic
dependences could be useful to avoid critical independences between problem
variables. In fact, dependences of the model that are not explicitly in the
function could be more decisive to solve the problem than other dependences
that match with the function structure.

According to both measures, we can see that, depending on the topological
characteristics of the function structure, EBNA needs a different degree of
precision in order to solve the problem with reliability. Finally, note that in
all the figures of this section, the maximum increase occurs from p = 0 to
p = 0.1, the range where the small-world networks are created.

3.5 Related work

The mapping between the problem structure and the dependences captured
in the probabilistic models learned by EDAs has been a subject of research
since the inception of EDAs (Bengoetxea (2003); Echegoyen et al. (2007);
Hauschild et al. (2007); Mühlenbein and Höns (2005)). Measures of structural
accuracy such as the one used in this chapter has been also proposed (Lima
et al. (2008)).

It has been previously shown (Santana et al. (2008b)), that the behavior
of the maximum loopy belief propagation (Pearl (1988)), an algorithm based
on the use of probabilistic models and that can be applied for optimization,
is sensitive to a variation in the path length and the clustering coefficient of
the problem instances. The effect of other topological features of the problem
structure, e.g. vertex degree distribution, in the characteristics of the evolu-
tionary search has been also investigated for genetic algorithms (Khor (2009))
and EDAs (Santana et al. (2010)). However, the influence of the path length
and clustering coefficient has not been previously analyzed in this class of
algorithms. We also notice that it is possible to indirectly change the topo-
logical characteristics of the problem structure by varying other parameters
of the function. The effects of these types of changes for EDAs, e.g. connec-
tivity patterns in random additive functions (Gao and Culberson (2005)) or
the overlapping parameter in the NK-landscapes (Pelikan et al. (2009)), have
been investigated.

The field of complex networks is also an inspiration in the development
of evolutionary algorithms. For instance, certain works (Payne and Eppstein
(2006); Whitacre et al. (2008)) try to mimic in the population the self-
organizing networks observed in nature to improve the behavior of the al-
gorithms.

In relation to the work presented here, we also conducted a preliminary
study of the impact that the function values have in the performance of the
algorithm and in the structures learned. As previously commented, different
works have analyzed the impact that the problem structure has in the algo-
rithm. However, the influence of the function values has not been taken into
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account. Furthermore, the synergy of these values with the structure could
entail dramatic changes in the properties of the problem and in the ability
of the algorithm to solve it. One of the experiments that we carried out is
explained next to illustrate the idea. Based on the same range of function
structures presented in this chapter, we considered three different classes of
function values. In this case, the function values were generated as in the Ising
spin glass problem, which will be formally introduced in Chapter 5. Then, we
considered that i) all the interactions of the problem are positive, ii) the sign
of the interactions is generated at random, iii) all the interactions are negative.
The results showed that, on average, the most difficult problems are obtained
when all the interactions are negative. In this regard, looking for the function
values that, given a structure, generate the most difficult problems could be
useful to shed light on these topics.

3.6 Conclusions

In this chapter, we have analyzed how EDAs based on Bayesian networks are
influenced by the changes in the topological characteristics of the function
structure. The range of function structures is generated following a rewiring
procedure which is able to produce networks from regular grids to small-worlds
and random graphs. In order to analyze the relationship between problem
structure and EBNA behavior, we have introduced measures such as cluster-
ing coefficient or characteristic path length taken from the field of complex
networks. In particular, we raised two main questions in Section 3.1 which are
discussed below in light of the results obtained.

• How does the hardness of the problem change according to the topological
characteristics of its structure?

In this chapter, the element that allows us to interpret the behavior of the
algorithm in terms of problem difficulty is the population size given by bisec-
tion. Despite the limited number of variables used in these experiments, the
influence of the topological characteristics of the function structure in EBNA
is appreciable. Thus, problems with the same number of explicit interactions
between variables can vary their difficulty according to the way in which those
interactions are disposed. We have observed that the difficulty of the problems
tends to increase with the randomness of the function structure. In fact, the
problems disposed on regular grids are clearly the easiest of the whole range
of problems.

• How do the structures learned by EBNA depend on the topological prop-
erties of the problem structures?

We have seen that the rewiring of a few edges from the original grid is
enough to produce an increase of the path length in the networks learned
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by EBNA. It suggests that the algorithm needs to link more variables in
order to solve the problems after the first stage of the rewiring process. In
addition, the number of function interactions that the algorithm needs to
capture in order to reach the optimum tends to increase with the randomness
of the problem structure. This reveals a relationship among the topology of
the problem structure, the difficulty of the problems and the dependences that
the algorithm needs to learn in order to solve the problems.

In general, an important fact must be pointed out: the results show a
critical change in the behavior of the algorithm when the small-world networks
are created (from p = 0 to p = 0.1). Thus, the rewiring of a few edges not
only provokes the emergence of small-world networks but also provokes a
remarkable change in the behavior of the EDA. After this stage, the results
suggest that the hardness of the functions changes more smoothly during
the rewiring procedure. The relationship between real-world networks and
problem difficulty for evolutionary algorithms could constitute an interesting
study. In fact, many optimization problems in the real world can be related
with complex networks. We believe that EDAs based on graphical models can
be an appropriate tool both to solve and understand this type of problems
due to their underlying connection throughout the networks.

As a final note, the increase in difficulty that the problems show in the tran-
sition to small-world networks (the networks that are supposed to be related
with real-world networks) could remind one of the thesis posed in Kauffman
(1993). According to his assertion, the systems (and in our context the possi-
ble optimization problems associated to these systems) that emerge in nature
could be in a boundary between order and chaos, a state that maximizes the
complexity of the systems and simultaneously maximizes the effectiveness of
the evolutionary processes taking place in the systems.
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On the Limits of Effectiveness

4.1 Introduction

Which classes of problems a search algorithm can solve, and which classes
the algorithm is not able to solve, constitute a fundamental issue that plays a
key role in understanding and developing algorithms. Nowadays, there exist
a vast amount of heuristic optimization techniques and new proposals are
being continuously published. However, little work is usually conducted with
the aim of providing a deeper understanding on where and why the different
proposed algorithms are effective. In EDA research, the development of new
and more sophisticated algorithms also constitutes a main topic (Brownlee
et al. (2009); Lima et al. (2011); Hauschild et al. (2012); Soto et al. (2012))
although the range of problems in which they are both effective and ineffective
remains practically unknown. Nevertheless, some previous works (Gao and
Culberson (2005); Coffin and Smith (2007); Chen and Yu (2009)) are related
to these issues. We argue that studying the limits of performance of any search
algorithm is a crucial task in order to achieve a more robust and efficient
spectrum of techniques.

In this chapter, we study the ability limit of EDAs to effectively solve prob-
lems in relation to the number of interactions among the variables (Echegoyen
et al. (2011b)). More in particular, we numerically analyze the learning lim-
its that different EDA implementations encounter to solve problems on a
sequence of additively decomposable functions (ADFs) in which new sub-
functions are progressively added. The study is carried out in a worst-case
scenario where the sub-functions are defined as deceptive functions. As in
previous chapters, we focus on the learning step of the algorithm. We argue
that the limits for this type of algorithm are mainly imposed by the proba-
bilistic model they rely on. To study the impact that the complexity of the
probabilistic model has in the performance of the algorithm, we use three
different implementations which were introduced in Chapter 1. Firstly, an
EDA that assumes independences between the variables (UMDA), secondly,
an EDA that learns a tree-like structure at each generation (Tree-EDA) and
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finally, an EDA that learns Bayesian networks (EBNA). Since the population
size is a critical parameter in EDAs and especially when Bayesian networks
are learned, we use different population sizes for the experiments.

According to the results, the ability of EDAs to solve the generated prob-
lems is lost dramatically after a certain number of sub-functions in the objec-
tive function. This threshold of performance shows a marked phase-transition
effect that clearly delimits the frontiers of effectiveness. The results also show
that the ability to learn structures is crucial to extend the limits of successful
EDA applicability. Nonetheless, EBNA shows a dramatic loss of performance
due to the impossibility of the structural learning method to build more com-
plex models. In addition, according to the results, the learning of unrestricted
Bayesian networks to solve the problems rapidly entails a high computational
cost. Thus, the complexity of the networks needed to solve the problems shows
an exponential increase as the number of sub-functions in an ADF increases.
Beyond the limitations of the approximate learning methods, the results sug-
gest that, in general, the use of Bayesian networks can entail strong com-
putational restrictions to overcome the limits of applicability shown in this
chapter.

The remainder of the chapter is organized as follows. Section 4.2 introduces
the definition of the fitness function and the procedure used to progressively
increase the number of interactions. This section also analyzes some properties
of the functions generated. In Section 4.3, exact factorizations for the set of
functions are built and analyzed. Section 4.4 explains and discusses the results
of the experiments. Section 4.5 draws the conclusions obtained during the
study.

4.2 Fitness functions

In order to investigate the behavior of EDAs as the complexity of the function
increases, we deal with additively decomposable functions (ADFs). This type
of functions are widely used throughout the dissertation. It is well known
that many optimization problems studied over the years can be modeled by
using ADFs. The model of function used in this chapter, in which new sub-
functions are progressively added, could be thought as a system that increases
its complexity with the time due to the creation of new interactions among
the variables.

4.2.1 Definitions

Although in previous chapters we have dealt with ADFs, they have not been
defined in a general form. Let S = {0, 1}n be the search space, a fitness
function f : S → R is additive if it can be represented as a sum of sub-
functions of lower dimension,
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f(x) =
∑

ci∈C

fi(ci) (4.1)

where x = (x1, . . . , xn) ∈ {0, 1}n and C = {c1, .., cl} is a collection of distinct
subsets ci ⊆ {x1, . . . , xn}. In addition, we assume that no set ci can be a sub-
set of any other set cj with i 6= j. This type of functions is also characterized
by its order k, which is the size of the largest subset in C.

In this chapter, we use specific instances of this general class of functions.
Firstly, all the subsets in C have three variables (k = 3). Therefore, C consists

of any collection of distinct sub-sets taken from all the C(n, k) =

(
n

k

)

possible

sub-sets of variables. Secondly, all the sub-functions fi are the same deceptive
function f3dec (Goldberg (1989)) that was previously used in Chapter 2. Given

u(y) =
∑k

i=1 yi where y ∈ {0, 1}k, this function can be defined as,

f3dec(ci) =







0.9 for u(ci) = 0
0.8 for u(ci) = 1
0.0 for u(ci) = 2
1.0 for u(ci) = 3

From the point of view of the EDA analysis, the benefit of the fitness
functions that we propose is twofold. Firstly, independently of the number of
sub-functions, we always know the global optimum, which is the solution x

of all ones. Secondly, the deceptive approach creates strong interdependences
among the three variables belonging to each sub-function.

Regarding the f3dec functions, when they are disposed without overlapping
among the set of variables, we obtain the function Deceptive3 (Goldberg
(1989)) used in Chapter 2. This specific function was proposed in the context
of genetic algorithms with the aim of analyzing their limitations. Thus, in
the current chapter, this function will constitute a useful reference in order
to analyze the limits of performance in EDAs. Nowadays, deceptive or trap
separable functions are widely used to test evolutionary algorithms.

4.2.2 Implementation of the functions

In order to progressively increase the complexity of the functions, a simple
procedure is proposed. Basically, we generate a sequence of objective functions
in which each new function adds one more sub-function to the previous one.
This sequence of functions is given by the ordered set C = {c1, .., cl}. This set
is a collection of l distinct subsets of variables randomly selected according to a
uniform distribution from all the C(n, k) possible combinations. Although we
could introduce in C all the C(n, k) distinct subsets, it will not be necessary
to reach learning limits. Thus, the s-th objective function in the sequence
sums s sub-functions which are applied to the corresponding first s subsets of
variables in C. The s-th function can be expressed as,
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fs(x) =

s≤l
∑

i=1

f3dec(ci). (4.2)

Nevertheless, the ordered set C has a restriction. The union of the first n/k
subsets cover the whole set of n variables without overlapping, forming the
function Deceptive3. Note that in the functions from s = 1 to s = n/k some
of the variables do not have any sub-function assigned. In order to complete
these functions, we directly apply the previously defined function u over the
set of variables {x\

⋃s
i=1 ci} without sub-function assignment. This stage is

especially useful to analyze the univariate and bivariate EDA. Furthermore,
this separable function is useful as a problem difficulty reference.

Finally, due to the random nature of the set C, we have created for the
experiments 100 different random instances of this type of sets and the results
shown are the average computed from them. The whole set of experiments
consists of three different problem sizes (n ∈ {24, 48, 72}) and the maximum
number of sub-functions given by C is l = 200. In addition, for each possible
function, we carry out 10 independent EDA runs. The number of runs per
instance has been restricted due to the computational cost of the experiments.

4.2.3 Degree of interaction and problem difficulty

The degree of interaction can be seen as a concept related with the interde-
pendences that arise among the variables of a problem. Although there could
be many different ways to measure this notion, in the context of the present
work, we assume that the degree of interaction is simply given by the number
of sub-functions included in the objective function.

Additionally, in order to provide a more intuitive measure of the degree
of interaction, we also take into account the number of sub-functions each
variable appears in. For example, in the separable deceptive function each
variable belongs to only one sub-function. In general, given s sub-functions
of size k over n variables, we calculate the expected number of sub-functions
assigned to each variable. It is given by,

〈s〉 = s
k

n
. (4.3)

In order to illustrate how the landscapes of the functions change according
to the number of sub-functions added, we present a simple example with n = 9
variables in Fig. 4.1. This figure shows the function values that four different
objective functions assign to all possible solutions of the search space. The
solutions are grouped by the number of ones in the x-axis with the aim of
providing more intuitive plots. The vertical dashed lines enclose the groups
of solutions with the same number of ones. For example, the area that cor-
responds to the number 4 (x-axis) contains all the C(9, 4) solutions with 4
ones. Thus, the area that corresponds to the number 0 or number 9 in the
x-axis only includes one solution. Both these solutions play a crucial role in
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the class of functions we propose, and therefore, the assignment of all zeros
is highlighted with a circle and the optimum (all ones) with two concentric
circles.

(a) f3, 3 sub-functions, 〈s〉 = 1 (b) f6, 6 sub-functions, 〈s〉 = 2

(c) f9, 9 sub-functions, 〈s〉 = 3 (d) f84, 84 sub-functions, 〈s〉 = 28

Fig. 4.1. Different snapshots that show how the landscape of the functions with
n = 9 changes according to the number of deceptive sub-functions. The space of
solutions in the x-axis is grouped and labeled by the number of ones. The vertical
dashed lines enclose the different groups of solutions that have the same number of
ones. The function values of the solutions are in the y-axis. The assignment of all
zeros is highlighted with a circle and the optimum (all ones) with two concentric
circles. (a) Landscape of the function f3 that adds 3 sub-functions and has 〈s〉 =
1. (b) Landscape of the function f6 that adds 6 sub-functions and has 〈s〉 = 2.
(c) Landscape of the function f9 that adds 9 sub-functions and has 〈s〉 = 3. (d)
Landscape of the function f84 that adds all the 84 possible sub-functions and has
〈s〉 = 28.

Fig. 4.1(a) corresponds to the landscape of a separable deceptive function
and Fig. 4.1(d) corresponds to a function that sums all C(n, k) possible sub-
functions. In turn, Fig. 4.1(b) and 4.1(c) show the landscapes for two interme-
diate functions in which each variable exactly belongs to 2 and 3 sub-functions.
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In general, we can observe, without using specific measures of problem diffi-
culty for evolutionary algorithms (Naudts and Kallel (2000)), that the opti-
mum tends to be isolated as the number of sub-functions increases. Therefore,
it will be more difficult to find useful information in the populations to guide
the algorithm towards the optimum. After the third snapshot (Fig. 4.1(c)),
the assignments of all zeros for x is the second best solution and it seems to
have a greater basin of attraction as more sub-functions are added. In addi-
tion, the neighbors of this solution, in terms of Hamming distance, tend to
have higher function values than the neighbors of the optimum. On the other
hand, we can see in Fig. 4.1(c) that there are solutions close (in terms of Ham-
ming distance) to the optimum that keep high quality function values, and
therefore, they can contain valuable information about the optimal solution.
Even in the last snapshot (Fig. 4.1(d)), some traces of information about the
optimum remain in the solutions with more than 6 ones.

4.3 Exact factorizations for the objective functions

In order to create the first relationship between the set of functions proposed
in this chapter and the EDAs that use Bayesian networks, we will consider
the concept of exact factorization. In the context of EDAs, this type of fac-
torizations were first introduced in Mühlenbein et al. (1999) and employed
in the factorized distribution algorithm (FDA), which was proposed by the
same authors. The exact factorizations are associated to objective functions
and can be defined as follows.

Definition 4.1 Any factorization of a probability distribution p(x) is said to
be an exact factorization for a function f(x) if i) the factorization can be rep-
resented by means of a junction tree and ii) it does not imply any conditional
independence not verified by the Boltzmann distribution

p(x) =
ef(x)

∑

y∈S ef(y)
(4.4)

associated to the objective function f(x).

Of course, exact factorizations can be expressed in terms of Bayesian net-
works and a complete directed acyclic graph provides a trivial exact factoriza-
tion. Nevertheless, we are interested in factorizations of minimum complexity.

As previously mentioned, we assume that the objective function f(x) is
an ADF as defined in Equation 4.1. Then, associated to this function, we can
build an undirected graphGADF = (V,E) as follows. The vertices of the graph
represent the variables of the ADF. Two vertices are connected by an edge if
and only if the corresponding variables are contained in the same sub-function
(see Fig. 4.2(a) and 4.2(b) for an example).
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It can be proved (Lauritzen (1996); Mühlenbein et al. (1999)) that any
conditional independence that can be read from GADF by means of the U-
separation criterion (see Castillo et al. (1997)) is verified in the Boltzmann
distribution of Equation 4.4. Thus, an exact factorization in terms of marginal
and conditional probability functions for f(x) can be obtained by computing
the junction tree (see Castillo et al. (1997)) of GADF . Nevertheless, we are
only interested in the complexity of the exact factorizations, not in their spe-
cific factors. In particular, we consider the order of the exact factorization,
which is given by the largest clique after triangulating GADF i.e. after adding
a chord to every cycle of length greater than 3. The number of variables of the
largest clique in the triangulated graph corresponds to the number of variables
belonging to the largest factor of the exact factorization. Of course, it is desir-
able to find a triangulation where the size of the largest clique is minimized in
order to obtain exact factorizations of minimum complexity. Unfortunately,
this problem is NP-hard (Yannakakis (1981); Arnborg et al. (1987)). To carry
out the triangulation step, we apply an heuristic method called minimum size
(see Kjaerulff (1990) for details of triangulation algorithms). Fig. 4.2 shows
an example with an ADF, the associated graph GADF and the corresponding
triangulated graph. We can see that the largest clique of this last graph is of
size 3. Therefore, the order of the exact factorization will be equal to 3.

(a) (b) (c)

Fig. 4.2. Main elements involved in calculating the order of exact factorizations.
(a) Objective function. (b) Undirected graph GADF . (c) Graph triangulated.

Roughly speaking, it could be said that exact factorizations are a sufficient
condition to reach the optimum by means of EDAs based on Bayesian net-
works, as long as a large enough population size is used. Exact factorizations
provide an upper bound for the model complexity that this type of algorithms
may need to solve a problem (Gao and Culberson (2005)). Fortunately, intro-
ducing exact factorizations in the EDA is not a necessary condition to reach
the optimum. In the context of this chapter, we believe that considering the
complexity of this type of factorizations can be useful to better understand
the limits of Bayesian network EDAs as the degree of interaction among the
problem variables increases. In Gao and Culberson (2005), this type of fac-
torizations are used to study the space complexity of EDAs in relation to the
number of variables n.
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In this section, for each function generated, we calculate the order of a pos-
sible associated exact factorization. As commented above, this calculation is
an approximation to the exact factorization of minimum complexity. Nonethe-
less, this measure provides valuable information about the complexity of the
probabilistic models that an EDA could need to solve the generated problems
in the worst case. The orders of the exact factorizations for our sequence of
functions are presented in Fig. 4.3. This figure shows the order in relation to
the average number of sub-functions assigned to each variable for the three
problem sizes. We start from 〈s〉 = 1, that corresponds with the Deceptive3
function. The results imply an exponential increase of the number of param-
eters associated to exact factorizations and therefore, the complexity of these
models quickly becomes prohibitive. Even with complete knowledge about the
formulation of the function, the construction of this type of probabilistic mod-
els encounters important computational restrictions by only adding a reduced
number of sub-functions. In addition, if these factorizations were used in an
EDA, the population size should be increased at least proportionately to the
complexity of the factorizations in order to obtain a robust learning of the
parameters (Mühlenbein (2012)).

Fig. 4.3. Order of the exact factorizations built from the set of fitness functions
with n ∈ {24, 48, 72}. The order of the factorization is depicted as a function of the
average degree of overlapping 〈s〉.

4.4 Experiments

We use three EDA implementations that differ only in the structural model
as explained in Chapter 1. Besides the EDA based on Bayesian networks (see
Alg. 1.6 for EBNA), we consider the univariate marginal distribution algo-
rithm (see Alg. 1.4 for UMDA) and the tree based estimation of distribution
algorithm (see Alg. 1.5 for Tree-EDA).



4.4 Experiments 61

4.4.1 Descriptors and parameters

We use two descriptors in order to measure the performance and effectiveness
of the aforementioned EDAs as the degree of variable interaction in the prob-
lem increases. Firstly, we calculate the ratio of successful runs. This measure
represents the proportion of problems solved by the EDAs for each level of
difficulty, which is given by the number of sub-functions in the objective func-
tion. Secondly, we calculate the Hamming distance between the best solution
given by the algorithm and the optimum. In addition, we record the order of
the Bayesian networks learned by EBNA at each generation. As introduced
in Section 4.3, the order of the Bayesian network is given by the number of
variables in the largest factor of the corresponding factorization, i.e. the max-
imum number of parents plus the child. The results that we present only take
into account the maximum order among the networks learned during each
run. This provides a measure of the computational cost of the search. All the
results are shown both in relation to the number of sub-functions and the
average number of sub-functions assigned to the variables 〈s〉.

As discussed in previous chapters, the population size is a crucial param-
eter of the algorithm. In this chapter, we use five different population sizes
N ∈ {1000, 5000, 10000, 15000, 20000}. Some preliminary results, not pre-
sented here, support the fact that the population size has a higher influence
on EDAs based on Bayesian networks than in simpler EDAs. Therefore, in
order to avoid unnecessary experiments, the last two sizes are only used for
EBNA. Finally, the stopping criterion of the algorithms is a fixed number of
n generations, that is, as many as the number of variables in the problem.

4.4.2 Results

In this section, we summarize the most relevant results obtained throughout
the study. Fig. 4.4 shows the ratio of successful runs and Hamming distance
to the optimum for each type of algorithm. We only present the results for
the problems with n = 72 variables. The behavior of the algorithms is similar
for the three problem sizes (n ∈ {24, 48, 72}) that we have considered. How-
ever, as the number of variables increases, the patterns are more evident and
clearer. Additional results regarding the rest of problem sizes can be found in
Echegoyen et al. (2011a).

In general, through the descriptors used in Fig. 4.4, we clearly observe the
manner in which the performance of different EDA implementations collapses.
The curves show a phase-transition effect after a certain degree of interaction
in the generated problems. Nevertheless, this effect is particularly noticeable
in the curves of ratio of successful runs which fall off from 1 to 0 by only
adding a few number of sub-functions. Thus, in UMDA and Tree-EDA, the
difference between total success and complete failure is in 2 sub-functions.
When EDA learns Bayesian networks, although its performance also suffers
a sudden collapse, the transition from 1 to 0 in the ratio of successful runs
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(a) UMDA (b) UMDA

(c) Tree-EDA (d) Tree-EDA

(e) EBNA (f) EBNA

Fig. 4.4. Ratio of successful runs and Hamming distance to the optimum for the
different EDA implementations with different population sizes. The x-axis at the
bottom shows the number of sub-functions. The x-axis at the top shows the corre-
sponding average number of sub-functions assigned to each variable represented by
〈s〉. (a) Ratio of success in UMDA. (b) Hamming distance in UMDA. (c) Ratio of
success in Tree-EDA. (d) Hamming distance in Tree-EDA. (f) Ratio of success in
EBNA. (g) Hamming distance in EBNA.
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is slightly more progressive. Regarding the Hamming distance, it shows a
more progressive change, which provides complementary information about
the quality of the solutions. For example, although in Fig. 4.4(a) the ratio of
success can be equal to 0 with only 4 sub-functions, UMDA returns, at this
point, solutions which are close to the optimum (Fig. 4.4(b)).

From the results presented in Fig. 4.4, we also obtain insights into the
impact that the probabilistic models and the population size have on the al-
gorithm to solve problems with increasing degree of interaction. As expected,
the probabilistic model used in the algorithm has a decisive influence on the
range of problems that it is able to solve. Thus, UMDA starts to lose its relia-
bility when the objective functions have two sub-functions, Tree-EDA is able
to exactly reach the level of Deceptive3 function and EBNA fails between the
separable function and the functions with 〈s〉 = 2 (around 40 sub-functions).
Moreover, according to our results, the higher the ability of an EDA to manage
more complex structural models, the higher the influence of the population
size is. Whereas UMDA is hardly influenced by this parameter, it is critical
to obtain a robust behavior of Tree-EDA and EBNA. As shown in Fig. 4.4(c)
and 4.4(e), the lowest population size (N = 1000) is clearly insufficient to
achieve a competent performance of these algorithms. The greatest impact
of the population size occurs in EBNA and it is reflected in the separation
between the curves shown in Fig. 4.4(e) and 4.4(f). Nevertheless, even when
EDA learns Bayesian networks, this parameter shows a limited utility to over-
come a certain threshold of sub-functions. This indicates that, although the
population size seems to be crucial to obtain a robust behavior, increasing this
parameter is not an efficient solution to solve the problems as the degree of
interaction increases. In this regard, we observe in Fig. 4.4(e) and 4.4(f) that
the different curves tend to be closer as the size of the population increases.

From the curves of Hamming distance, another observation can be made.
That is, after a certain degree of interaction in the problem, all EDAs return
the same solution, which is in the assignment of all zeros. Then, we could say
that, due to efficiency reasons, UMDA is the best option to face the problems
after this critical threshold of difficulty. From this critic’s point of view, and
taking into account the whole range of functions that can be generated from
s = 0 to s = C(n, k), EBNA provides better results in a reduced sub-space.
Note that Fig 4.4 only shows the behavior of the EDAs throughout the first
levels of difficulty. With n = 72 and k = 3, we could introduce in the fitness
function up to C(72, 3) = 59640 sub-functions. Therefore, the charts only
represent a small portion of this number. In order to illustrate the proportion
of the whole space of problems that the different EDAs were able to solve with
reliability (they reach the optimum in 95% of the runs), we provide Fig. 4.5. In
this case, the results for the three problem sizes are presented to observe the
progression as n increases. The area of the biggest squares represent the whole
range of problems from 0 to C(n, k) sub-functions. Inside each of the three big
squares, there are three small squares (from left to right they correspond to
UMDA, Tree-EDA and EBNA) which represent the proportion of the whole
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space of problems that each EDA was able to solve with reliability. This is an
intuitive result that is useful to suggest the scope for improvement that exists
for this kind of algorithms and to challenge other techniques.

(a) n = 24 (b) n = 48 (c) n = 72

Fig. 4.5. Intuitive representation of the proportion of the space of problems that
the different EDAs have been able to reliably solve. We assume that two functions
with the same number of sub-functions represent the same level of difficulty and,
therefore, the same allocation in the space of problems. The area of the biggest
squares represents the number of all possible levels of difficulty from 0 sub-functions
to C(n, k). The three squares inside the big squares (from left to right UMDA, Tree-
EDA and EBNA) represent the size of the space of problems that each EDA was
able to solve with a reliability of 95% for each problem size. (a) Number of variables
n = 24 and maximum number of sub-functions C(24, 3) = 2024, (b) n = 48 and
C(48, 3) = 17296 and (c) n = 72 and C(72, 3) = 59640.

Through the results presented in Fig 4.4, we have seen how the perfor-
mance of different EDAs suddenly collapses after a certain degree of interac-
tion among the problem variables. It seems clear that UMDA and Tree-EDA
fail due to the lack of ability to learn structures. However, in the case of
EBNA, it is worth conducting a more in-depth analysis of the causes of its
collapse. To do that, we take into account the complexity of the Bayesian
networks learned during the run. As previously mentioned, we use the or-
der of the factorizations given by these probabilistic models to measure their
complexity. We show in Fig. 4.6 the average of the maximum orders obtained
during each run. The points in this chart indicate the maximum complexity
that the algorithm has managed in each search.

Note that the effect of phase transition observed in Fig. 4.4(e) and 4.4(f)
is completely related with Fig. 4.6. Thus, the algorithm starts to fail dramati-
cally after the peaks in the curves shown in Fig. 4.6, i.e. when the algorithm is
not able to build more complex models. It is possible to check that both events
occur when the objective functions approximately have 40 sub-functions (in
the case of the largest population sizes). Fig. 4.6 suggests that the complexity
of the Bayesian networks that the algorithm needs to manage in order to solve
the problems exponentially increases with the number of sub-functions. Note
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that, when the learning method is unable to build the adequate structures
to solve more problems, the algorithm still spends important computational
resources on learning ineffective models.

To what extent the behavior discussed above depends on the structural
learning algorithm is an issue that deserve an in-depth analysis. We hypothe-
size that, in this worst-case scenario, we will probably obtain a similar scene
for other approximate learning techniques.

Fig. 4.6. Order of the Bayesian networks learned by EBNA. For this chart, we only
take into account the Bayesian network with the maximum order during each run.
The x-axis at bottom shows the number of sub-functions. The x-axis at top shows
the corresponding average number of sub-functions assigned to each variable given
by 〈s〉.

The complexity of the learned structures (Fig. 4.6) can be put into rela-
tion to the complexity of the exact factorizations (Fig. 4.3). This last result
is shown in Fig. 4.7. The curve depicted in Fig. 4.7(a) corresponds to the
order of the exact factorizations which was already shown in Fig. 4.3. Nev-
ertheless, this time the curve is only for n = 72 and is presented in relation
to the number of sub-functions. We have added a circular mark in order to
approximately indicate the area in which the collapse of EBNA is located. In
Fig 4.7(b), the order of the exact factorizations and the order of the Bayesian
networks learned by the EDA are put together. The dashed line represents
the curve of the exact factorizations. In this figure we can see that, when
the algorithm is able to optimize the functions, the maximum complexity of
the networks learned is equal to or greater than the complexity of the exact
factorizations. However, when the EDA is not able to reach the complexity of
the exact factorizations, it no longer solves more problems. The dashed line
of the exact factorizations perfectly separates, for every population size, the
problems solved from the problems unsolved.
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Fig. 4.7. (a) Order of the exact factorizations built from the set of fitness functions
with n = 72. In this case, the order of the factorizations is depicted in relation to
the number of sub-functions. A circular mark approximately indicates the range of
functions in which the collapse of EBNA is taking place. (b) Order of the Bayesian
networks learned by the EDA (Fig.4.6) along with the order of the exact factoriza-
tions in this stage (dashed line).

This result suggests that, in order to continue solving more difficult prob-
lems, the algorithm should reach the complexity of the exact factorizations.
If so, this fact would imply deep computational restrictions to solve the prob-
lems by means of Bayesian networks, independently of the implementation
of the learning technique. Regarding this issue, we could consider the hypo-
thetical behavior that an EDA with exact learning could exhibit. Assuming
that the population size is increased accordingly, it is possible that an exact
algorithm could learn the needed probabilistic information to solve problems
as the number of interactions increases. We showed in Chapter 2 that the
exact learning is able to capture the structure of the problem as long as the
population size is large enough. Nevertheless, in this hypothetical case, the
limits of applicability would be due to efficiency reasons.

These conjectures lead us to pose a last issue regarding the population. We
argue that, as the number of interactions in the function increases, a given
population size N << 2n can only provide useful information to solve the
problems to a certain degree of interaction, independently of the search algo-
rithm. The relationship between the complexity of problem and the minimum
population size needed to contain useful information to reach the optimum is
an issue that can be taken into account for further research.

4.5 Conclusions

In this chapter, we have analyzed the limits of performance that different EDA
implementations encounter as the degree of interaction among the variables of
the problem increases. We base the analysis on the use of additive decompos-
able functions in which new sub-functions with the same deceptive values are
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progressively added. Thus, the degree of interaction can be directly measured
by the number of sub-functions that the objective function includes. Moreover,
we use the separable deceptive function as a reference of problem difficulty
in order to provide more intuitive results. In the experiments, we have dealt
with three different EDA implementations. Since these algorithms only differ
in the probabilistic model used, the results show the impact that introducing
more complex models has in order to solve a wider range of problems. We have
also used different population sizes. This parameter has been critical in order
to achieve a robust behavior in EDAs based on Bayesian networks. However,
the results suggest that, in general, increasing this parameter is not efficient
to solve more complex problems.

We have discovered that, in the worst-case scenario, the performance of the
algorithm collapses with an effect of phase transition as the number of sub-
functions in the objective function increases. The threshold in which EBNA
fails is between the separable deceptive functions and the objective functions
with 2n/k sub-functions. The reason for the failure of the algorithm is in
the probabilistic models. When the EDA is not able to learn more complex
models to solve more difficult problems the algorithm collapses. In the first
stages of the sequence of functions, the complexity of the networks learned
by the algorithm tends to rise exponentially in order to reach the optimum.
However, after a certain threshold, the learning is not able to build the ade-
quate models to solve the problem and then, the algorithm fails dramatically.
It suggests that, after a certain critical degree of interaction, the learning
of Bayesian networks might not be able to recover the information needed
to reach the optimum from the population. In addition, the relationship be-
tween the structures learned by the EDA and the exact factorization suggests
strong computational limitations due to the exponential growth of the struc-
tural complexity needed to solve the problems. In order to make a step forward
in solving this type of problems, the use of other classes of probabilistic mod-
els such as factor graphs (Kschischang et al. (2001); Mühlenbein (2012)) or
the development of algorithms based on hybridizations could be a promising
alternative (Robles et al. (2006); Zhang et al. (2005, 2007)).

The limits of effectiveness shown in this chapter are directly related to
the learning step of the algorithm. However, these limits do not necessarily
have only one source. We can identify three different perspectives from which
the learning limits in EDAs could be discussed: i) Limitations of the learn-
ing methods either because the structure is given a priori or because they
learn approximate structures of bounded complexity. ii) Even by using an
ideal or exact learning algorithm, there could exist efficiency limits due to an
exponential rise of the structural complexity needed to solve the problems as
the number of interactions increases. iii) Limits due to the population either
because of the lack of information that it contains to solve the problem or
because this parameter should be exponentially increased to provide a robust
learning (Mühlenbein (2012)).
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In summary, we have explored the concept of boundaries of EDA effective-
ness in relation to the degree of interaction of the problem. The final objective
of this research trend is not to find the overall best algorithm or discredit any
technique but to better understand which algorithms are the best for which
problems.



5

Analyzing the Probability of the Optimum and

the Most Probable Solution

5.1 Introduction

Outside the extreme experimental framework specifically designed in the
previous chapter in order to reach and study the limits of performance in
EDAs, this type of algorithms has been successfully applied to solve a wide
variety of challenging optimization problems. In fact, they are nowadays a
strong alternative for solving problems from different domains such as engi-
neering (Simionescu et al. (2007); Yu et al. (2006)), biomedical informatics
(Armañanzas et al. (2008); Santana et al. (2008a); Armañanzas et al. (2011))
or robotics (Yuan et al. (2007)). Nevertheless, despite their promising appli-
cability, there is a wide variety of open questions (Santana et al. (2009b))
regarding the behavior of this type of algorithms.

Both in previous chapters and other works devoted to the study of the
behavior of EDAs, the structural component of the probabilistic models used
by the algorithm has been the main source of information (Bengoetxea (2003);
Mühlenbein and Höns (2006); Lima et al. (2007); Hauschild and Pelikan
(2008); Brownlee et al. (2008); Echegoyen et al. (2008); Hauschild et al.
(2009)). In this chapter, we propose a novel methodology based on a quanti-
tative analysis of the probabilistic models. Ultimately, the particular proba-
bility values assigned to the solutions during the search are the raw material
from which EDAs obtain their results. Therefore, studying such probabilities
should provide useful information to better understand the behavior of this
type of algorithm. Following this criterion, our quantitative analysis of EDAs
is based on monitoring the probability of certain distinguished solutions dur-
ing the search: i) the optimal solution of the function, ii) the solution with
the highest probability in the distribution and iii) the best individual in each
generation. In order to complete the quantitative analysis, we also record the
fitness function values for the solutions ii) and iii) during the search.

The proposed analysis is carried out when EDAs that use Bayesian net-
works are applied to classic benchmark problems such as separable trap func-
tions, 2D Ising spin glass and maximum satisfiability. The EDA can use dif-
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ferent structural models which can be learned from the population or created
by reproducing interactions among the variables of the problem. We also use
different population sizes in order to analyze the influence of this parame-
ter in the algorithm. Furthermore, we take into account both successful (the
optimum is reached) and unsuccessful runs (the optimum is not reached).

Throughout this study we shed light on basic questions of great interest
that still remain open in EDAs such as:

• How does the probability assigned by the probability distributions to the
optimal solution evolve during the search?

This first question plays a key role in this work and it is related with
a number of current assumptions in the application of EDAs. For example,
whether, in order to solve a problem, it is a necessary condition that the
probability associated by the algorithm to the optimal solution steadily in-
creases at each generation or whether the highest probability is assigned to
the optimum during the search.

• How does the accuracy of the information about the problem contained in
the structural model influence the internal behavior of EDAs?

This question is addressed in order to better know the relation between the
interactions of the problem and the dependences of the probabilistic model.
By using different structures in EDAs, we study the effect that introducing
more interactions in the structural model has on the behavior of EDAs in
general and in the previously mentioned assumptions about the probability
of the optimum in particular.

Some works (Baluja (2006); Hauschild et al. (2009, 2012)) have considered
different means of introducing a priori knowledge of the problem into the algo-
rithm in order to improve the efficiency and efficacy of EDAs. Understanding
the impact of this type of practices in the internal behavior of EDAs is also a
very important issue in their application to real problems.

• How does the function value for the most probable solution given by the
probabilistic models evolve during the search?

A contribution of this work is the exact calculation and analysis of the
solution with the highest probability in the distributions estimated at each
generation. Thus, by using its fitness function value, we can study how the
probabilistic model captures the properties of the function. It would be de-
sirable that the function value of the solution with the highest probability
increased during the search.

Although the main target of this work is to provide insights about these
key issues, the results obtained show a different perspective of EDAs that
is able to reveal constant patterns in their behavior. Furthermore, both the
probability and function values analyzed are able to capture the quality of
the probabilistic models in terms of their use within EDAs. Throughout the
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analysis proposed, it is also possible to better understand how the convergence
of the algorithm occurs and even detect multimodality in the problems solved.

The rest of the chapter is organized as follows. Section 5.2 introduces ab-
ductive inference in Bayesian networks. Section 5.3 explains the experimental
design. Sections 5.4, 5.5, 5.6 and 5.7 discuss Trap5, Gaussian Ising, ±J Ising
and Max-SAT problems respectively, quantitatively analyzing the behavior of
EDAs for each problem when different structural models and population sizes
are used. Section 5.8 discusses relevant previous works. Finally, Section 5.9
draws the conclusions obtained during the study.

5.2 Abductive inference in Bayesian networks

In general, abductive reasoning tries to find the hypothesis that would best
explain a set of facts or observations. In the probabilistic network context, the
abductive inference (Gámez (2004)) consists of finding the maximum a poste-
riori probability state of the network variables, given some evidence (observed
variables).

The total abductive inference involves all the problem variables and is
defined as follows. Given a probability distribution over the vector of random
variablesX and the evidence e, that is an instance of the observed variable set
E ⊆ {X1, . . . , Xn}, we want to obtain the assignment x∗

U
to the unobserved

variables XU = {X1, . . . , Xn} \E such that,

x∗

U
= arg max

xU
p(xU |e). (5.1)

Usually x∗

U
is known as the most probable explanation.

However, when this technique is applied to the probability distributions
associated to Bayesian networks in EDAs, there is no evidence. In this case,
the objective is to look for the assignment x∗ with the highest probability
for the whole vector of variables X. Knowing that P (XU |E) = P (X |E) and
having an empty evidence set E = ∅, Equation 5.1 can be directly converted
into our target,

x∗ = arg max
x

p(x|θ̂, Ŝ) (5.2)

where Ŝ is the structure of the model which has been learned from the popula-
tion and θ̂ represents the parameters of the probabilistic model estimated by
maximum likelihood. In our context of EDAs, x∗ is called the most probable
solution (MPS). As it is proven in Shimony (1994), this kind of inference is an
NP-hard problem. Therefore, its exact resolution is only feasible in problems
of limited length.
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In this work, the point with the highest probability is calculated using
probability propagation in junction trees (Castillo et al. (1997)) or variable
elimination techniques (Dechter (1999)), as they are implemented in Bayes
Net Toolbox (Murphy (2001)).

5.3 Experimental design

The experiments were mainly designed with the aim of shedding light on
the questions and assumptions mentioned in Section 5.1. Specifically, at each
generation of the EDA, we record the probability and fitness values of distin-
guished solutions of the search space: the optimum, the most probable solution
and the best individual in the population. By varying the problem size, using
different structural modes and different population sizes, different scenarios
are created to complete the analysis.

In order to show the relation between the probabilities of our distinguished
solutions and the diversity of the population, we hereby introduce additional
information that is not obtained from the probabilistic model but directly
from the population itself. Particularly, at each step of the algorithm, we
calculate the accumulated entropy of the population by means of adding the
entropy of each variable belonging to the function,

H(X) = −
n∑

i=1

ri∑

j=1

p(xj
i ) · log2p(x

j
i ). (5.3)

This metric shows how the population managed by the algorithm loses
diversity and converges. Some works have already studied these types of mea-
surements in EDAs (Ochoa and Soto (2006); Ocenasek (2006)).

In the following section, we will explain the different problems, structural
models and parameters used for the experiments. In Santana et al. (2010), the
necessary tools to reproduce the experiments or to carry out similar analysis
are implemented.

5.3.1 Problems

The whole set of problems is based on additively decomposable functions. A
general difintion of this type of functions was presented in Section 4.2.1 of the
previous chapter.

With the aim of covering a wide spectrum of applications and observe
the behavior of EDAs in different scenarios, we chose the following four test
problems: Trap5, Gaussian Ising, ±J Ising and Max-SAT. The exact details of
each problem will be introduced in the following sections. These problems are
selected for several reasons. Firstly, they have different numbers of optimal
solutions in order to investigate the influence of multimodality in the behavior
of EDAs. The first two problems have just one optimal solution and the last
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two problems have several optimal solutions. Secondly, all of them are opti-
mization problems which have been widely used to analyze EDAs (Hauschild
et al. (2009); Pelikan and Goldberg (2003); Brownlee et al. (2007)). Finally,
all the problems have a different nature. Trap5 (Deb and Goldberg (1994)) is
a deceptive function designed in the context of genetic algorithms (Goldberg
(1989)) aimed at finding their limitations. It is a separable function and in
practice it can be easily optimized if the structure is known. Gaussian Ising
and ±J Ising come from statistical physics domains and are instances of the
Ising model proposed to analyze ferromagnetism (Ising (1925)). The variables
are disposed on a grid and the interactions do not allow to decompose the
problem into independent subproblems of bounded order (Mühlenbein et al.
(1999)). It is a challenge in optimization (Hauschild et al. (2009); Pelikan and
Goldberg (2003)) and in its general form is NP-complete (Barahona (1982)).
Max-SAT is a variation for optimization of a classic benchmark problem in
computational complexity, the propositional satisfiability or SAT. In fact, SAT
was the first problem proven to be NP-complete (Cook (1971)) in its general
form. An instance of this problem can contain a very high number of inter-
actions among variables and in general, it can not be efficiently divided into
subproblems of bounded size in order to reach the optimum. With the excep-
tion of the function Trap5, we have dealt with 100 instances for each type of
problem.

Regarding the information stored at each generation, when the functions
with just one optimum are optimized, we only record our three distinguished
solutions. However, in the functions with several optimal solutions, the ana-
lyzed EDAs reach a subset of those optima and the analysis of the probability
of the optimum is extended. Thus, we calculate the probabilities during the
search for all optima reached by the alorithm in the last generation. It leads
us to see how the probability is distributed when there are different optimal
solutions. In order to gain clarity in the results, we only show the maximum
and minimum probabilities assigned by the probability distribution to the
reached optimal solutions at each generation.

5.3.2 Structural models

In the literature, several works have discussed the influence of the structure
of the probabilistic model in the behavior of EDAs (Echegoyen et al. (2007,
2008)) and the impact of using a priori knowledge of the problem in the search
(Hauschild et al. (2009, 2012)). In this chapter, we also take into account
these important issues. Therefore, in addition to deal with automatic learning
techniques, we propose to include some manageable structural models related
with the problem structure to analyze the changes produced in the internal
behavior of EDAs. We do not consider the use of exact factorizations because
they are not relevant for the purposes of this chapter. Moreover, it has been
shown (Pelikan (2005); Hauschild et al. (2009)) that the structures learned by
EDAs to solve the Ising problem are far from the complexity of the exact fac-
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torization. And for MaxSAT, this type of factorizations are computationally
intractable.

Specifically, based on the EBNA implementation, we use the following
two approaches as regards the structural models. On the one hand, we use
Algorithm B to obtain a new structure from the selected individuals at each
generation. On the other, we use two fixed structures related to the nature
of the function, and thus, only parametric learning is carried out. Since all
the functions are ADFs, an intuitive and straightforward way to create a
related structural model is by means of linking variables belonging to the same
subfunction with arcs. The first structure tries to reproduce all interactions
among variables that can be directly observed from the formulation of the
problem. As a general method, we connect two variables (representing nodes
in the graph) by an edge in the structure if the corresponding variables are
contained in the same sub-function. Then, by taking a directed acyclic version
of this undirected graph, we obtain a Bayesian network structure which will
be called dense structure. The second structure also reproduces interactions
among the variables of the function but only considers bivariate dependences.
This structure has less information but is always related with the nature of
the problem. It will be called bivariate structure.

It must be pointed out that our aim is to study the influence that different
structural models have over the probability values rather than demonstrating
their quality and accuracy.

5.3.3 Parameter configuration

The sample size is very important in order to learn Bayesian networks (Fried-
man and Yakhini (1996)) and, hence, in the behavior of EDAs based on this
type of models. This fact has been proved in previous chapters. Thus, we deal
with two different population sizes in order to analyze their influence in the al-
gorithm. Firstly, we use the bisection method (Pelikan (2005)) to determine an
adequate population size to reach the optimum (with high probability). This
size is denoted by m. The details of the bisection method were introduced in
Chapter 3. The stopping criterion for bisection is to obtain the optimum in
10 out of 10 independent runs. The final population size is the average over
20 successful bisection runs. Due to computational restrictions, the maximum
population size has been limited to 214. The population size m is always ob-
tained from EBNA executions with Algorithm B. The second population size
is half of the bisection, m/2. With this size we try to create a more realistic
scenario in which achieving the optimum is less likely. This also allows us to
analyze in detail the probability of the optimum when it is not reached.

In addition to population size, different problem dimensions have also been
taken into account. Particularly, we have used n = {50, 75, 100} for Trap5 and
Max-SAT, and n = {8 × 8, 9 × 9, 10 × 10} for both types of Ising. The up-
per bound has been set to 100 variables due to the high memory requirements
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needed to calculate the most probable solution. Increasing the number of vari-
ables would require the use of approximate inference techniques (Kschischang
et al. (2001)), spoiling the correctness of the results.

The stopping criterion is a fixed number of iterations and it is independent
from obtaining the optimum. Each execution will run n generations, that is,
as many as the number of problem variables. This number of generations is
enough to observe the convergence of the analyzed probability values.

5.3.4 Details of the experiments

The analyzed probability values are reported in logarithmic scale in order to
smoothen the probability slopes and better observe their behavior from the
beginning of the run. The number of runs which have reached the optimum
at each generation is indicated with bars on the top of the charts, where
the probability values are shown. Although we have made runs with a fixed
number of generations, the charts presented were cut when all runs have
reached the optimum or the curves are stabilized.

Concerning the total number of executions, for each Bayesian network
learning approach and population size, we carried out 50 independent runs
for Trap5 and 5 independent runs for each of the 100 instances in the rest
of the problems. All the runs belonging to 100 different instances of a given
problem are put together and analyzed as a whole in order to provide a general
view of the behavior of EDAs.

Analyzing the wide set of results collected throughout the experiments, we
have observed that EDAs show the same patterns of behavior independently
of the problem dimension. Therefore, we will focus on problem sizes of 100
variables. For the sake of simplicity, in this chapter we only present the most
relevant results. However, for the interested reader, the complete analysis is
available on the website of the Intelligent Systems Group1.

5.4 EDA behavior solving Trap5

5.4.1 Trap5 description

Our first function, Trap5 (Deb and Goldberg (1994)), is an additively separa-
ble (non overlapping) function with a unique optimum. It divides the vector
x of n variables, into disjoint subvector xI = (x5I−4, x5I−3, x5I−2, x5I−1, x5I)
of 5 consecutive variables. As previously done, we use the function u(y) =
∑k

i=1 yi where y ∈ {0, 1}k to define the function Trap5 as,

Trap5(x) =

n
5∑

I=1

trap5(xI) (5.4)

1 http://www.sc.ehu.es/ccwbayes/members/carlos/eda probs/
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where trap5 is defined as,

trap5(xI) =

{
5 if u(xI) = 5
4− u(xI) otherwise

(5.5)

This function has one global optimum in the assignment of all ones for x and
a large number of local optima, 2n/5 − 1.

Trap5 function has been used in previous works (Hauschild et al. (2009))
to study the structure of the probabilistic models in EDAs based on Bayesian
networks, as well as studying the influence of different parameters (Lima et al.
(2007)). It is important to note that this function is difficult to optimize if
the probabilistic model is not able to identify interactions between variables
(Echegoyen et al. (2009)).

5.4.2 Structures related to the problem

(a)

(b)

Fig. 5.1. Fixed structural models related with the dependences among the variables
in Trap5. (a) Dense structure. (b) Bivariate structure.

In this section we propose two fixed structures related with the Trap5
function. The dense structure is created by linking all the variables in each
sub-function trap5. Thus, by providing direction to the arcs without creating
cycles, we obtain the Bayesian network structure shown in Fig. 5.1(a). With
this structure, there are no independences between variables of the same sub-
group and variables from different partitions are independent. Exceptionally,
for this type of separable functions, this intuitive method to introduce infor-
mation of the problem into the structural model provides exact factorizations.
However, this is not the case for the rest of the problems.

As regards the bivariate structure, it is formed by a chain for each sub-
group of 5 variables. As can be seen in Fig. 5.1(b), the graph contains the
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minimum number of arcs necessary to connect all the variables belonging to
each partition.

5.4.3 Using structural learning

In this section, we present and discuss the results obtained when EBNA, using
Algorithm B, tries to optimize the Trap5 function.

(a) (b) (c)

(d) (e) (f)

Fig. 5.2. Probability values and function values when EBNA is applied to Trap5
using Algorithm B. We have 49 out of 50 successful runs with population size m and
4 out of 50 with population size m/2. (a) Successful runs with population size m.
(b) Unsuccessful runs with population size m. (c) Successful runs with population
size m. (d) Successful runs with population size m/2. (e) Unsuccessful runs with
population size m/2.(f) Successful runs with population size m/2.

In Fig. 5.2(a) we show the probability values for successful runs when the
population size m (given by bisection) is used. In this case, EBNA reaches the
optimum in 49 out of 50 runs. Theoretically, a convergence of the algorithm
to the global optimum implies an increase in its probability value as the gen-
erations advance. This fact is reflected in the results. The probability values
for the optimum and the most probable solution (MPS) grow simultaneously,
and very closely, when the executions are successful.

When a population size of m/2 (Fig. 5.2(d)) is used, the results change
drastically and only 4 runs reach the optimum. Although the behavior of the
probability values in this case is analogous to Fig. 5.2(a), we can observe that
the probability curves for the MPS and the optimum with population sizem/2
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are clearly more distant than with size m. This analysis reflects the crucial
role of the population size in the aglorithm. Another important observation
is that the growth of the probability values is slower for m/2. Thus, with this
population size, the optimum is reached for the first time, a few generations
later than with sizem (bars on the top of Fig. 5.2(a) and 5.2(d)). Nevertheless,
with both population sizes, the executions starts to reach the optimum when
its probability is approximately −10 in logarithmic scale.

The results of the probability values for the executions where the optimum
was not reached are shown in Fig. 5.2(b) and 5.2(e). In these figures, we can
see the joint growth of the probability values for the MPS and the optimum at
the beginning of the run. However, after a certain generation, both values start
to diverge and the optimum is no longer obtained. In unsuccessful runs, there
are also differences between the runs with population size m and m/2. For
this last population size, the probability of the optimum reaches lower values
both before decreasing and in the last generations. Even at the beginning of
the run, the probability of the optimum is further from the highest probability
in the distribution with population size m/2 than with m.

Concerning the fitness function value, Fig. 5.2(c) shows the results when
the population size m, given by bisection, is used in EBNA. The value of the
MPS increases at each generation and it is better than the best individual
in almost all generations. However, by looking at Fig. 5.2(f), it can be seen
that the MPS has a lower growth with population size m/2. Moreover, the
best individual of the population is better than the MPS after generation 12.
Therefore, the analysis of the function values also reflects the impact of the
population size in the algorithm. In all the experiments, the curves of function
values are similar in successful and unsuccessful runs.

Fig. 5.3. Accumulated entropies of the population when EBNA is applied to Trap5.

Finally, in Fig. 5.3 we present the accumulated entropies of the population
during the search. Only the first four curves shown in the legend correspond
to EBNA with Algorithm B. These curves show the close relation of this
measure with the exponential growth of the probability values. Moreover,
we can observe how the population converges to a unique solution since the
entropy tends to 0.
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5.4.4 Using fixed structures

In this section, we show the behavior of the algorithm when a different amount
of information is introduced in the structural model. As previously mentioned,
throughout the chapter we only show and comment on those results that
provide relevant information, avoiding excessive and redundant information.
So, when the structures are fixed, we have observed a low influence of the
population size in the results. In these cases, we only show the analysis for
the size m.

(a) (b)

Fig. 5.4. Successful runs when EBNA is applied to Trap5 using the dense structure
with population size m. The optimum is reached for the 50 executions.

Fig. 5.4 shows the probability and fitness values when the dense struc-
ture is introduced in EBNA. In this case, we obtain an ideal behavior for an
optimization process since the optimum has the highest probability during
the whole run and is reached in all executions. Furthermore, in Fig. 5.4(b)
we observe that the function values for MPS are close to the optimum from
the very beginning of the search. In this case, through a sampling based on
inference, the optimum could be reached in the first generations. We should
remember that in this case the algorithm is using an exact factorization.

The behavior of the algorithm changes drastically when the bivariate struc-
ture (Fig. 5.1(b)) is introduced. Although the EDA shows a good performance
because it reaches the optimum in 42 out of 50 runs, the evolution of the prob-
ability values (see Fig. 5.5(a)) is particular. The probability of the optimum
decreases at the beginning of the run and when the algorithm seems to con-
verge to a local optimum, it suddenly recovers. This fact also occurs for the
unsuccessful executions (Fig. 5.5(b)) where the probability of the optimum
increases in the last generations. In this case, the optimum has a high proba-
bility at the end of the run, which supports the belief that the algorithm would
be able to reach the optimum provided that more generations are allowed.

The reason for such an uncommon behavior is the following: In the first
part of the run, when the probability of the optimum decreases, the algorithm
is deceived by the function and most of the individuals in the population be-
come the local optimum. This local optimum is the assignment of zeros for
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(a) (b) (c)

Fig. 5.5. Probability values and function values when EBNA is applied to Trap5
using the bivariate structure with population size m. We have 42 out of 50 successful
executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

x because it is the suboptimal value that trap5 function gives to each trap
partition xI . Fig. 5.3 shows how the curve of entropy for the bivariate model
(Succ. m, biv) tends to 0 when the probability of the optimum is minimum in
Fig. 5.5(a) and 5.5(b). After this stage, the algorithm recovers and the proba-
bility of the optimum begins to increase. The curve of entropy for the bivariate
model indicates that different individuals are included in the population just
when the algorithm seems to converge to the local optimum. It shows that the
algorithm samples better individuals and is reflected in the fitness function
values in Fig. 5.5(c). This can be explained through the Laplace correction
and the fixed structure of chain subgraphs. This quantitative analysis justi-
fies why it is possible to reach the optimum for this function with a simple
bivariate structure.

While several works have analyzed EDA behavior using entropy measures
(Ocenasek (2006); Ochoa and Soto (2006); Wright et al. (2004)), the joint
analysis of the relationship between the type of model structure, the prob-
ability values and the entropy should support a more complete perspective
about the EDA dynamics. For instance, the phenomenon we have described
in Fig. 5.3, where the entropy initially tends to zero but later recovers, indi-
cates that stopping criteria based on the entropy, e.g. Ocenasek (2006), should
take this type of behavior into account to avoid early termination of the EDA.

5.5 EDA behavior solving Gaussian Ising

5.5.1 2D Ising spin glass description

Ising spin glass is an optimization problem which has been used and analyzed
in different works related with EDAs (Mühlenbein and Höns (2005); Shakya
(2006); Hauschild et al. (2009)). A classic 2D Ising spin glass can be simply
formulated. The set of variables x is seen as a set of n spins disposed on a
regular 2D grid L with n = l × l sites and periodic boundaries (see Fig. 5.6).
Each node of L corresponds to a spin xi and each edge (i, j) corresponds to
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Fig. 5.6. A 3× 3 grid structure L showing the interactions between spins for a 2D
Ising spin glass with periodic boundaries. Each edge has an associated strength Jij .

a coupling between xi and xj . Thus, each spin variable interacts with its four
nearest neighbors in the toroidal structure L. Moreover, each edge of L has
an associated coupling strength Jij between the related spins.

The target is, given couplings Jij , to find the spin configuration that min-
imizes the energy of the system computed as,

E(x) = −
∑

(i,j)∈L

xiJijxj −
∑

i∈L

hixi (5.6)

where the sum runs over all coupled spins. In our experiments we take hi = 0
∀i ∈ L. The states with minimum energy are called ground states.

Depending on the range chosen for the couplings Jij we have different
versions of the problem. For the Gaussian Ising problem, the couplings Jij
are real numbers generated following a Gaussian distribution. A specified set
Jij of coupling defines a spin glass instance. We generated 100 Gaussian Ising
instances using the Spin Glass Ground State server2. The minimum energy of
the system is also provided by this server.

5.5.2 Structures related to the problem

In order to create a dense structure for this problem, we reproduce the undi-
rected graph L in the model, which represents all the interactions among the
variables in the function, and direct the edges without creating cycles to ob-
tain a Bayesian network. Starting from the first spin x1 we give a westward
and southward direction to the edges as can be seen in Fig. 5.7 (a).

We are aware that for this problem, the directions given to the arcs could
modify the behavior of EBNA, due to the different independence relations
introduced in the Bayesian network. However, as previously mentioned, the
information introduced in the structural model is directly obtained from the

2 http://www.informatik.uni-koeln.de/ls juenger/index.html
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(a) (b)

Fig. 5.7. Fixed structural models for 2D Ising spin glass. (a) Dense structure. (b)
Bivariate structure.

formulation of the problem. In this sense, the direction of the arcs do not
follow a specific criterion.

The second structure is a simple model which connects all variables us-
ing a chain. This structure introduces very few interactions related with the
problem, as can be seen in Fig. 5.7 (b).

5.5.3 Using structural learning

The evolution of the probability values in different situations is presented
in Fig. 5.8. First of all, we note that when the population size m given by
bisection is used, EBNA reaches the optimum in 470 runs out of 500, while
with population size m/2 it decreases to 272. The proportion of successful
runs with m/2 indicates that, in order to reach the optimum, the population
size is less decisive in Gaussian Ising than in Trap5 (4 out of 50 successful
runs with m/2).

Fig. 5.8(a) and 5.8(c) show the probability values for successful runs with
population size m and m/2 respectively. We can observe that the probabilistic
behavior follows the same patterns as that in Trap5: i) the probability of the
optimum increases during the search, being the most probable solution at the
end of the run, ii) for the population size given by bisection, the curves for the
MPS and the optimum are closer than for m/2. Nonetheless, it can be seen
that the population size had a larger impact in Trap5 (Fig. 5.2(a) and 5.2(c)).
In that problem, the difference between the probability of the optimum and the
highest probability in the distribution had a more emphasized change when
the population size was varied (it was reflected in the number of successful
runs). Moreover, while in Trap5 the probability of the optimum was very close
to the highest probability from the first generations with population size m,
in Gaussian Ising both probability curves keep a visible distance throughout
the generations. Lastly, for Gaussian Ising, the runs do not reach the optimum
(bars on the top of the charts in Fig. 5.8(a) and 5.8(c)) until their probability
value exceeds approximately the threshold of −20 in logarithmic scale. We
note that for Trap5, this threshold was much higher (−10). These particular
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(a) (b)

(c) (d)

Fig. 5.8. Successful runs when EBNA is applied to Gaussian Ising using Algorithm
B. We have 470 out of 500 successful runs with population size m and 272 out of
500 with population size m/2. (a) Population size m. (b) Population size m. (c)
Population size m/2. (d) Population size m/2.

differences in the probability values between both problems could be due to
the characteristics of the respective landscapes.

The analysis of the function values shown in Fig. 5.8(b) and 5.8(d) sup-
ports the previous discussion. As in Trap5, the difference in function value
between the MPS and the best individual was bigger with population size
m than with m/2. However, in this case, since the population size is less in-
fluential, the difference between curves is less marked than in the previous
problem.

5.5.4 Using fixed structures

As in the previous problem, in this section we present the results for the pop-
ulation size m given by bisection. First of all, we note that the dense structure
does not always reach the optimum as in Trap5. In particular, we achieved
283 out of 500 successful runs. Although the behavior of this structure does
not outperform the behavior of EBNA with Algorithm B, its introduction in
the algorithm has considerable consequences.

In Fig. 5.9(a) we report results of the analysis of the probability values and
function values. In this case, the probability of the optimum is not the highest
probability in the distribution during the search as in Trap5 (Fig. 5.4(a)).
However, the distance between both probability curves is smaller than with
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(a) (b) (c)

Fig. 5.9. Probability values and function values when EBNA is applied to Gaussian
Ising using the dense structure with population size m. We have 283 out of 500
successful executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

structural learning except for the last generations. This behavior is probably
influenced by the criterion for directing the arcs. Depending on the instance,
one selected direction could have important effects in the probability of the
optimum. An example of this can be seen in Fig. 5.10.

Fig. 5.10. Logarithm of the probabilities in successful runs when EBNA is applied
to a particular instance of Gaussian Ising using the dense structure. For this instance,
we have 10 out of 50 successful runs.

In Fig. 5.9(c) we report the probability values when EBNA does not reach
the optimum. We observe that the probability of the optimum is close to the
highest probability in the distribution during the first generations and reaches
values up to −20 before decreasing. In general, when the dense structure is
introduced in the algorithm, the probability of the optimum in unsuccessful
runs has higher values during the search than in previous scenarios.

Regarding the function values, as can be seen in Fig. 5.9(c), the MPS is
close to the optimum from the beginning as in the case of Trap5. Moreover,
this behavior remains constant in all of the instances analyzed. Again, this
fact shows that using structures related with the interactions of the problem
presents promising properties that deserve a specific study.

When we reduce the amount of information in the structural model, the
effects in the algorithm are not only seen in the number of successful runs but
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(a) (b) (c)

Fig. 5.11. Probability values and function values when EBNA is applied to Gaussian
Ising using the bivariate structure with population size m. We have 29 out of 500
successful executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

also in the analysis. In this problem, when the bivariate structure of the chain
is introduced, we only obtain 29 out of 500 successful runs. Looking at Fig. 5.11
we can see that, both in successful and unsuccessful runs respectively, the
probability of the optimum is more distant than in the corresponding previous
scenarios from the highest probability. The low accuracy of the information
about the problem that the probabilistic models contain is also reflected in
the function values shown in Fig. 5.11(c). Although the MPS has a slightly
higher function value than the best individual at the beginning of the runs,
the MPS is lower than best individual in the remaining generations.

To conclude this part of the chapter, we would like to point out an interest-
ing relationship between the probability and function values. In unsuccessful
runs, the probability of the optimum always starts to decrease a few genera-
tions after the function values of the best individual reaches the values of the
MPS. As the behavior of the function values is similar in successful and unsuc-
cessful runs, this could suggest that the cross between both curves indicates
a critical moment in the search.

5.6 EDA behavior solving ±J Ising

5.6.1 ± J Ising description

As explained in Section 5.5, the main difference between both versions of
2D Ising spin glass, is the range of values chosen for the couplings Jij . In
the present problem, the couplings Jij are randomly set to either +1 or −1
with equal probability. This version, that will be called ±J Ising, could have
different spin configurations that reach the ground state (lowest energy) and
therefore many optimal solutions may arise. As in the previous case, 100 ±J
Ising instances were generated using the Spin Glass Ground State server3.
This server also provided the value of the minimum energy of the system. As

3 http://www.informatik.uni-koeln.de/ls juenger/index.html
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far as the fixed structural models are concerned, we use the same structures
as in Gaussian Ising.

5.6.2 Using structural learning

(a) (b) (c)

Fig. 5.12. Probability values and function values when EBNA is applied to±J Ising
using Algorithm B with population size m. We have 466 out of 500 successful runs
with population size m and 226 out of 500 with population size m/2. On average,
EBNA has reached 126 different optimal solutions at the end of the run with m and
55 with m/2. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

The analysis of problems with several optima reveals important changes
in the internal behavior of the algorithm. Although the number of successful
runs both with population size m (466 out of 500) and m/2 (226 out of 500) is
very similar to Gaussian Ising, clear differences appear in the probability val-
ues. Fig. 5.12(a) shows that the probabilities assigned to the reached optima
increase together during the generations. We have observed that the proba-
bility of the MPS does not tend to 1 (0 in logarithmic scale) as in unimodal
problems. These facts indicate that the probability distribution is shared out
among different optimal solutions in the last generations. This is verified by
the accumulated entropy of the population (Fig. 5.13) which is greater than
0 at the end of the run. In Fig. 5.14, we illustrate the specific probability
values of the MPS. We have seen that the MPS converges to higher proba-
bility values with m/2 because in this case, the average number of optimal
solutions at the end of the run is lower than with m. In the same figure, we
can see that this situation is repeated for unsuccessful runs (analysis shown
in Fig. 5.12(b)). This indicates that, although the optimum is not found, the
algorithm reaches different solutions at the end of the run. The results for
the accumulated entropy (see Fig. 5.13) confirm this behavior. An interesting
behavior in this problem is that the MPS reaches higher probability values in
successful runs than in unsuccessful ones (see Fig. 5.14). This is another issue
that would deserve a specific analysis.

In Fig. 5.12(c) we show the function values for the MPS and the best in-
dividual. We can see how the best individual clearly exceeds the MPS after
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Fig. 5.13. Accumulated entropies of the population when EBNA solves ±J Ising.

generation 12. This marked fluctuation of the MPS occurs in the same genera-
tions when the probabilities of the optima slightly separate from the highest in
the distribution in successful runs (Fig. 5.12(a)). Moreover, the probabilities
of the optima start to decrease in unsuccessful runs after the cross between
the curves of function values. This supports the idea that this phase of the
search is critical in order to reach the optimum.

Fig. 5.14. Different curves of probability for the MPS when EBNA is applied to ±J
Ising using Algorithm B. The curves correspond to successful runs with population
size m (Succ. m), successful runs with m/2 (Succ. m/2), unsuccessful runs with m
(Unsucc. m) and unsuccessful runs with m/2 (Unsucc. m/2).

5.6.3 Using fixed structures

In Fig. 5.15(a) we report the analysis of the probability values when the
dense structure is introduced and the population size given by bisection is
used. In the first generations, we can observe that the probabilities for the
optima and the MPS are especially close. We also note that the maximum
probability assigned to the set of optima is very close to the MPS during the
search. According to the experiments, in this problem, the influence of the
selected direction for the arcs is less dramatic than in Gaussian Ising. In fact,
EBNA reaches the optimum in 463 out of 500 runs against 283 out of 500
in Gaussian Ising. This indicates that, depending on the problem, the same
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amount of information introduced in the structural model can have a different
impact both on the probability values and the performance of the algorithm.
It could depend on properties of the search space such as multimodality.

(a) (b) (c)

Fig. 5.15. Probability values and function values when EBNA is applied to ±J
Ising using fixed structures with population size m. (a) Probability values for the
dense structure. We have 463 out of 500 successful runs and, on average, EBNA
has reached 138 different optimal solutions at the end of the runs. (b) Probability
values for the bivariate structure. We have 105 out of 500 successful runs and, on
average, EBNA has reached 47 different optimal solutions at the end of the runs.
(c) Function values for the bivariate structure.

In Fig. 5.15(b) and 5.15(c) we show the results obtained when EBNA
uses the bivariate structural model. In this case, we have 105 out of 500
successful executions. This is a clear improvement in the performance of the
algorithm with regards to Gaussian Ising in this same scenario. This enhanced
performance is reflected in the analysis of the function values (Fig. 5.15(c)).
In the first generation the MPS is clearly better than the best individual in
the population. Moreover, at the beginning of the run, its difference is even
more noticeable than in the case of EBNA using Algorithm B.

5.7 EDA behavior solving Max-SAT

5.7.1 Max-SAT description

The last problem in our analysis is the maximum satisfiability or Max-SAT
problem, which has been often used in different works about EDAs (Pelikan
and Goldberg (2003); Brownlee et al. (2007)). Put simply, given a set of
Boolean variables x and a Boolean expression φ, SAT problem asks if there
is an assignment of the variables such that the expression φ is satisfied. In a
Boolean expression we can combine the variables using Boolean connectives
such as ∧ (logical and), ∨ (logical or) and ¬ (negation). An expression in the
form xi or ¬xi is called a literal.

Every Boolean expression can be rewritten into an equivalent expression
in a convenient specialized style. In particular, we use the conjunctive normal
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form (CNF) φ =
∧q

i=1 Ci. Each of the q Cjs is the disjunction of two or more
literals which are called clauses of the expression φ. We work with clauses of
length k = 3. When k ≥ 3, the SAT problem becomes NP-Complete (Cook
(1971)). An example of a CNF expression with 5 Boolean variables and 3
clauses would be, φ = (x1 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x4 ∨ ¬x2).

The Max-SAT problem has the same structure as SAT, but the result, for
an assignment x, is the number of satisfied clauses instead of a truth value.
In order to solve Max-SAT, the assignment x that maximizes the number
of satisfied clauses must be found. Thus, the optimization function can be
written as,

fMax−SAT (x) =

q
∑

i=1

φ(Ci) (5.7)

where each clause Ci of three literals is evaluated as a Boolean expression that
returns 1 if the expression is true or 0 if it is false. Since Ci is a disjunction,
it is satisfied if at least one of its literals is true. The variables can overlap
arbitrarily in the clauses.

Particularly, we work with the Uniform Random-3-SAT problems obtained
from the SATLIB (Hoos and Stutzle (2000)) repository. All the instances used
are satisfiable. The presented results comprises 100 instances of 100 variables
and 430 clauses. It is important to note that there could be several assignments
x that satisfy all clauses and therefore, this problem could have different
optimal solutions.

5.7.2 Structures related to the problem

(a) (b) (c)

Fig. 5.16. Structures for Max-SAT given a SAT expression φ. (a) Related undirected
graph, (b) related Bayesian network where σ1 is the ancestral order and (c) related
tree structure where σ2 is an order to add edges in the tree.

As different Max-SAT instances have different interactions among vari-
ables, a particular structure for each instance is needed. In order to create the
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dense structure, we join the variables belonging to the same clause Ci with
edges. This step is illustrated in the example of Fig. 5.16(a) where a SAT
formula is proposed. Now, in order to create a Bayesian network structure, we
must direct the edges without creating cycles. In order to do this, we use an
ancestral order which tries to minimize the number of parents per variable.
Thus, the variables are ordered from the highest to the lowest number of over-
laps in the clauses of the SAT instance. This type of structure is illustrated
in Fig. 5.16(b) where σ1 is the defined ancestral order. However, obtaining
the MPS for such dense Bayesian network would be unfeasible due to the size
of the cliques (up to 70 variables). Therefore, we were forced to reduce the
complexity of the structure by deleting some edges. The high density of the
interactions between variables in Max-SAT only allows us to work with two
parents per variable. Thus, for each variable we select the two parents that
correspond with the most frequent interactions with the child obtained from
the clauses.

To create the bivariate structure, in this case a tree, we have followed
a procedure similar to the Chow-Liu algorithm (Chow and Liu (1968)). In
Fig. 5.16(c) we illustrate a possible final result for a particular SAT formula.
Firstly, we create an order σ2 for pairs of variables, related to the number of
times that each couple of variables appear together in the SAT clauses, from
the highest to the lowest. This is the scoring criterion for the arcs. Starting
with an empty structure and following such an order, at each step we add
an undirected edge without creating cycles. If there are ties, the selection is
random. At the end of the procedure, the root of the tree is the most over-
lapped variable in the SAT formula taken from the most frequent couple.

The Max-SAT problem would be a very interesing benchmark to conduct
an analysis of the learning limits as it was done in the previous chapter.

5.7.3 Using structural learning

In general, the analysis of EBNA when it is applied to Max-SAT shows simi-
lar behavior patterns to ±J Ising. However, as we previously discussed, each
problem provides particular nuances to the analysis. For Max-SAT, we only
show the results when EBNA uses the population size given by bisection be-
cause this parameter has a lower impact on the algorithm. In this problem,
EBNA is only able to obtain bisection sizes for 20 out of 100 instances. In
those instances where we do not have a bisection size, we use the maximum
population size allowed in the experimentation (214). In order to analyze un-
successful runs in instances for which EBNA is not able to reach the optimum,
we introduced 350 optimal configurations obtained by a specific solver4 for
Max-SAT.

As we can see in Fig. 5.17(a), the probability assigned to the set of optima
is far from the highest in the distribution and this is reflected in the number

4 http://minisat.se/
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(a) (b) (c)

Fig. 5.17. Probability values and function values when EBNA is applied to Max-
SAT using Algorithm B with population size m. We have 95 out of 500 successful
executions. On average, EBNA has reached 1452 different optimal solutions at the
end of the runs. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

of successful runs, in this case, 95 out of 500. Throughout the chapter, we
have seen that the more distant the MPS and the optima are, the lower the
performance in terms of ratio of successful runs is. In this problem, the curves
of probability indicate a lower exponential growth than in the rest of the
problems. In fact, the different optimal solutions start to be reached in later
generations (bars on the top of Fig. 5.17(a)). We also note that the MPS
reaches low probability values at the end of the runs (approximately, 0.05 for
Max-SAT against 0.15 for ±J Ising in the same scenario). This is due to the
high number of optima that EBNA is finding. Particularly, on average, we
have 1452 different optimal solutions at the end of the runs.

In unsuccessful runs (Fig. 5.17(b)), the probabilities of the optima reach
much lower maximum values than in the rest of the problems in the same sce-
nario. Regarding the function values (Fig. 5.17(c)), although the MPS slightly
outperforms the values of the best individual at the beginning of the run, this
last solution is better than the MPS during a noticeable number of genera-
tions. Once again, the probabilities assigned to the optima start to decrease
in unsuccessful runs some generations after the curve of the best individual
crosses the curve of the MPS. The high number of optimal solutions, the great
distance in probability between the MPS and the optima and the low quality
of the function values of the MPS, reflect the hardness of this problem for
EBNA.

5.7.4 Using fixed structures

In Fig. 5.18 we provide the probability values for successful runs. Although
the dense structures only have a maximum of two parents per node, we can
see the influence of this type of structure in the analysis. If we compare the
dense structure with Algorithm B, we see that not only the maximum prob-
ability assigned to the set of optima is closer to the highest probability in
the distribution, but also there is a lower difference in probability among the
curves shown in the chart. Nevertheless, in all cases the optimum starts to
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Fig. 5.18. Successful runs when EBNA is applied to Max-SAT using the dense
structure with population size m. We have 31 out of 500 successful runs. On average,
EBNA has reached 400 different optimal solutions at the end of the run.

be reached when the maximum probability of the optima has the value of
20 approximately. In contrast with structural learning, with fixed structures,
EBNA reaches a lower number of optimal solutions at the end of the run, and
this fact is also reflected in the final probability values. In this problem, the
analysis shows a very similar behavior for both fixed structures.

5.8 Related work

In Mühlenbein et al. (1999), an analysis of the probability assigned by EDAs
to the optimum solution is carried out for the Boltzmann EDA (BEDA) and
factorized distribution algorithms (FDAs) that use valid and invalid factor-
izations. The analysis of the probabilities, which was carried out for a toy
example, served to illustrate that, under the infinite population assumptions
made by BEDA, the use of a valid factorization is a sufficient but not nec-
essary condition for a steady increase, until convergence, of the probability
given by BEDA to the optimum. Our work can be seen as an extension of the
work presented in Mühlenbein et al. (1999) in the sense that we investigate
the probabilities of EDAs that apply structural and parametric learning of a
more complex class of models and across a range of different problems. We
also provide a method to exactly determine the most probable solution given
by the model.

As previously discussed, most of the research done concerning the models
learned by EDAs based on Bayesian networks has focused on structural de-
scriptors of the networks, and specifically on the type (i.e. correct or spurious)
and number of the network edges (Hauschild and Pelikan (2008); Echegoyen
et al. (2008); Hauschild et al. (2009); Lima et al. (2007); Echegoyen et al.
(2007); Lima et al. (2008)). The analysis of the Bayesian network edges learned
by EDAs has allowed to study the effect of the selection and replacement pro-
cedures (Hauschild et al. (2009); Lima et al. (2007)) as well as the learning
method (Echegoyen et al. (2008, 2007); Lima et al. (2008)) in the accuracy
of the models learned by EDAs and the efficiency of these algorithms. A
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more recent work (Lima et al. (2008)) considers the likelihood given to the
selected set during the model learning step as another source of information
about the behavior of the algorithm. In this case, not only the structure but
also the probabilities are taken into consideration when computing the model
descriptor. Nevertheless, none of the previously mentioned papers uses the
probabilities given by the models to some distinguished solutions (e.g. most
probable explanation, known optimum, etc.) as a means to reveal information
about EDAs. In no case are there references to the most likely solution that
could be sampled from the learned model.

For EDAs that use Markov models (Shakya (2006); Shakya and Santana
(2012)), different issues related with the relationship between the fitness func-
tion and the probabilistic models learned by EDAs have been investigated.
Relevant to the work presented in this chapter, is the use of the models learned
by the distribution estimation using Markov network algorithm (DEUM)
(Shakya et al. (2005); Shakya and McCall (2007); Brownlee et al. (2012))
as predictors of the fitness function.

In Brownlee et al. (2008), the product moment correlation coefficient be-
tween the Markov model learned by DEUM and the fitness function is used to
measure the quality of the model as a fitness function predictor. For a given
solution, the prediction is the value given by the Markov model to the solu-
tion. The quality of the model is measured using the correlation computed
from samples of the search space. Furthermore, the prediction accuracy of
Markov models with different structural complexity is investigated for differ-
ent selection strategies and population sizes.

A substantial difference between the work presented in Brownlee et al.
(2008) and the results introduced in this chapter is that the analysis of the
prediction given by the models is constrained to the solutions taken from the
selected population or random samples. The most probable explanation given
by the model is not computed. Another difference is that the evolution of the
models throughout the generations is not analyzed. By computing the most
probable individual given by the model at each generation, we are able to
obtain a dynamic view of the quality of the probability model.

5.9 Conclusions

In this work we have analyzed EDAs from a quantitative point of view in
order to better understand their internal behavior. Through the recording of
probability and function values for a set of distinguished solutions during the
search, we have directly studied the probability distributions generated by this
type of algorithms. More specifically, the proposed analysis has allowed us to
investigate basic open issues raised in Section 5.1, whose study entails a deeper
understanding and development of EDAs. Now, we return to these questions,
providing the new knowledge that we obtained throughout the study.
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• How does the probability assigned to the optimal solution by the proba-
bility distributions evolve during the search?

We can distinguish different scenarios depending on the number of opti-
mal solutions of the function to be optimized and the success of the search. In
general, in order to reach an optimal solution, its probability must exceed a
certain threshold which can vary depending on the intrinsic characteristics of
the problem. On the one hand, when EBNA is applied to unimodal problems
(Trap5 and Gaussian Ising) and the optimal solution is found, its probability
continuously increases until it reaches the value of 1. One exception is func-
tion Trap5 and the bivariate structure where the probability of the optimum
decreases at the beginning of the run and it increases in the last generations.

On the other hand, when EBNA successfully solves multimodal problems
(±J Ising and Max-SAT), it is able to reach a subset of the optimal solutions
and their probability values also increase during the search. In these problems,
the probability is distributed among different solutions at the end of the run
(note that the number of generations is limited). Thus, the non-convergence to
1 of the probability values of the MPS or the best individual of the population
(both probability curves always rise simultaneously) reflects the multimodal-
ity of the function. Moreover, these probability values are lower when the
algorithm reaches a higher number of optima. This finding can be used to
detect multimodality when an unknown problem needs to be faced.

In unsuccessful runs, the probability of the optimum always has a similar
pattern. At the beginning of the run, it increases together with the probability
of the MPS and the best individual of the population. However, after a cer-
tain generation, before reaching a specific probability threshold, it decreases
rapidly.

Both the probability of the MPS and the best individual of the popula-
tion in logarithmic scale, accurately show how that the algorithm converges
as the generations advance. Therefore, by monitoring the probability of the
best individual, it would be possible to know the speed of convergence of the
algorithm and then, detect a possible premature convergence. According to
this, modifications in the replacement technique could be performed in order
to regulate the diversity of the population. This information could also be
useful in order to distinguish between exploration and exploitation phases.
Thus, we could stop the search at the right time (before the probability of the
optimum starts to decrease) and take advantage of the information contained
in the probabilistic model by using exploitation techniques.

The population size also influences the probability assigned to the optimum
during the search and this is reflected in the number of successful runs. When
the population size given by bisection is used, the probability values for the
optimum tend to be closer to the highest probability in the distribution and,
in most of the cases, this is beneficial in order to solve the problem.

• How does the accuracy of the information about the problem contained in
the structural model influence the internal behavior of EDAs?
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The results support the conclusion obtained in Hauschild et al. (2009)
regarding the difficulty of creating adequate probabilistic models by hand even
with complete knowledge of the problem structure. However, the quantitative
analysis of the models reveals that the use of information about the problem
has an important impact in the internal behavior of the algorithm.

In particular, we provide two clear conclusions. Firstly, when we are able
to introduce all the interactions between the variables of the problem, the
probability of the optimum tends to be closer to the highest probability in
the distribution. Secondly, when we introduce this information, the function
value for the MPS is very close to the optimum from the beginning of the
run. However, despite these favorable properties, these type of models do not
always perform satisfactorily. The experimental results indicate that the PLS
sampling method (one of the most widely used) does not extract all the valu-
able information contained in the probabilistic models. For this reason, in
order to take advantage of both the high probability assigned to the opti-
mum and the high quality function values of the MPS, the use of a sampling
based on exact or even approximate belief propagation techniques (Mendiburu
et al. (2007); Lima et al. (2009); Mendiburu et al. (2012)) could be beneficial.
Another reason we point out for such non-constant behavior is the direction
assigned to the arc, which conditions the order the variables will be sampled
by the PLS technique. A possible solution for this issue could be to, according
to a given score, look for the best direction for the arcs at each step of the
algorithm.

When the information about the problem that the probabilistic model
contains is reduced, the probability of the optimum is more distant from the
highest in the distribution. Moreover, the function value of the best individual
is closer to the MPS in the first generations. These facts justify the poor
performance of the algorithm in these cases.

• How does the function value for the most probable solution evolve during
the search?

The function value for the MPS always increases during the search until
it stabilizes in the last generations. At the beginning of the run, it is usually
better than the best individual in the population.

As we previously said, the difference between the function values of the
MPS and the best individual increases when a dense structure is used. Another
interesting observation is that this difference also reflects the impact that
the population size has on a particular problem. Thus, when we increase
the population size in order to solve Trap5, both the difference between the
function values analyzed and the number of successful runs clearly increases.
However, for Max-SAT, increasing the population size hardly influences the
curves of function values and the performance of the algorithm. Therefore, by
analyzing the MPS and the best individual with different population sizes, we
can predict, without additional information about the problem, if increasing
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this parameter will be useful in order to obtain better results or if we need to
look for other solutions to improve the performance of the algorithm.

By using these function values, we believe that it is also possible to iden-
tify different phases of the search. According to the results, in unsuccessful
runs, the probability of the optimum starts to decrease shortly after the func-
tion value of the best individual outperforms the function value of the MPS.
Moreover, the optimum is never reached before this event. It could be used to
identify the end of the exploration stage and avoid a premature convergence.

In summary, the difference in function value between the MPS and the
best individual could be used, i) to improve the setup of EDA parameters, ii)
to measure the quality of the information introduced about the problem in
the model, iii) to measure the quality of sampling methods and iv) to detect
critical phases in the search. Finally, the analysis carried out in this work
has become useful in order to learn about different aspects of the algorithm
and propose improvement solutions. We believe that similar approaches to
analyze EDAs can be especially useful for other EDA practitioners both in
fundamental research and in real problem applications.



6

On the Taxonomy of Optimization Problems

under EDAs

6.1 Introduction

In the previous chapter, we analyzed EDAs by looking at the probability dis-
tributions generated by this type of algorithms during the search. Constant
patterns of behavior were identified which provided us with new knowledge
about EDAs. Nevertheless, we also saw that the curves of probability values
had different nuances in each optimization problem. In this regard, the be-
havior of an EDA can be specified by the sequence of probability distributions
generated at each generation and, depending on the problem, the algorithm
can exhibit a different performance. Based on this description of the EDA,
identifying and classifying the different behaviors, and how these behaviors
relate with the characteristics of the optimization problems, is a fundamental
issue to understand the underlying mechanisms that govern this type of algo-
rithms. In general, understanding the relationship between a search algorithm
and the space of problems is a fundamental issue in the optimization field.

In the current chapter, we lay the foundations to elaborate taxonomies of
problems under EDAs based on the probability distributions generated at each
generation. With the aim of developing this type of taxonomies, we start by
considering whether it is possible to group the optimization problems accord-
ing to the behavior of the EDA. Therefore, we are questioning the existence
of groups of problems in which the EDA exhibits a similar performance re-
garding the optimization purpose. In order to start the study of this topic, we
make the following three assumptions: i) we consider EDAs with infinite pop-
ulation, ii) the selection scheme is based on the rank of the solutions and iii)
the algorithm is applied in the space of injective functions. These assumptions
are needed to address the development of the basic theoretical foundations,
nevertheless, the assumptions ii) and iii) could be relaxed to further increase
the scope of the study.

In order to elaborate taxonomies of optimization problems under EDAs
that satisfy these assumptions, a crucial element is the definition of an equiv-
alence relation between objective functions. The equivalence relation, which
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is based on the the sequences of probability distributions generated during
the search, partitions the space of functions into equivalence classes. We will
see that it is possible to assert that the algorithm has the same behavior for
the functions belonging to the same class. In turn, we show that only the
probabilistic model is able to create partitions of the space of problems. From
the definitions provided, it can be deduced that all the objective functions are
equivalent when the probabilistic model is able to exactly recover the underly-
ing distribution of the selected individuals. Therefore, we can say that all the
optimization problems are equally difficult from the point of view of this type
of EDA. This crucial role of the probabilistic model supports the importance
that has been attributed to it in the literature regarding the classification of
different EDAs and the development of new techniques and studies.

The partition of the space of problems under EDAs is studied in depth for
a simple algorithm whose probabilistic model assumes independence among
the variables of the problem. The key point to understand the behavior of an
EDA for a given problem is the way in which the objective function is related
with the probabilistic model. We show that this relation can be expressed by
means of a structure of sets. For this type of univariate EDA, the necessary
and sufficient condition to identify equivalent functions is provided. Next, we
develop the operators that allow us to describe the functions in the same class
and count the number of elements per class. Another fundamental topic that
we take into account is the relation between the behavior of the EDA and the
properties of the objective function. In particular, we study the connection
between the equivalence classes and the local optima of the objective functions
belonging to each class. We show that the functions in the same class have
the same number of local optima and in the same ranking positions. This
fact reveals the intrinsic connection between local optima and any EDA that
introduces a univariate probabilistic model. This link has only been shown for
specific EDA implementations (González et al. (2001); Zhang (2004)).

Finally, numerical simulations of a univariate EDA that implements tour-
nament selection (Zhang (2004)) are conducted. The algorithm is applied to
the injective functions defined over the search space {0, 1}3. The partition of
the space of problems in equivalence classes allows us to carry out a detailed
analysis of the different EDA behaviors. Through the numerical analysis, we
mainly study the complexity of the problems belonging to each class. Due to
the relevant role that the local optima play in EDAs that assume independence
among the variables, we present the difficulty of the problems in relation to
that number. Moreover, the experiments are useful in order to illustrate the
taxonomy of problems which is abstractly presented throughout the chapter.

The rest of the chapter is organized as follows. Section 6.2 formally intro-
duces the problems to solve and discusses some elements of the EDA procedure
that are important in this chapter. Section 6.3 presents EDAs with infinite
population and provides the specific definitions involved in the framework of
the current work. In Section 6.4, the concept of equivalence between functions
is presented and discussed. Section 6.5 regards the study of the equivalence
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classes under a simple EDA. Firstly, it explains and establishes the sufficient
and necessary condition to decide the equivalence between two functions. Sec-
ondly, the operators to describe the functions in the same class are deduced.
Lastly, the relationship between the equivalence classes and local optima is
presented. In Section 6.6, numerical experiments are conducted. Finally, Sec-
tion 6.7 draws the conclusions obtained during the study.

6.2 Background

In this chapter we consider the following optimization problems as introduced
in Chapter 1:

x∗ = arg max
x

f(x) (6.1)

where S = {0, 1}n is the search space, x = (x1, . . . , xn) ∈ S is a solution and
f : S → R is the objective function. For the sake of simplicity, we deal with
binary solutions although the fundamental results provided do not depend
on the cardinality of the variables or the codification of the solutions. The
cardinality |S| of the search space is therefore 2n. Throughout the chapter,
we assume that the function f(x) is injective. Thus, for each z ∈ f(S) there
is only one x = (x1, . . . , xn) ∈ S such that f(x) = z. The results could be
generalized to non-injective functions because the most basic definitions that
we present do not depend on the injectivity of the function.

A crucial fact that we use in the development of the current work is the
following. A function f(x) naturally induces a permutation σ of the solutions
of the search space S. This permutation σ is thought as a 2n-tuple of the
elements in S ordered according to function values f(S). The first solution of
σ, namely x1, has the highest function value, x2 has the second highest and
so on, with the last solution x2n being the one with the lowest function value:

f(x1) > f(x2) > . . . > f(x2n).

Of course, the first solution x1 of σ corresponds to the solution x∗ that solves
Problem 6.1. Independently of the specific function values f(S), whenever they
provide the same ranking of the solutions x ∈ S, the function is represented
by the same permutation σ. In the case of injective functions, we have 2n!
permutations σ and the set containing all possible σ is denoted by Π . A σ
permutation can also be seen as a ranking of the solutions. From now on, the
objective function f(x) and the corresponding σ can be used indistinctly as
synonyms.

We also define the bijective function σ : S → {1, . . . , 2n} in order to deal
with the permutation σ. Thus, σ(x) = τ gives the position τ of the solution
x ∈ S in the permutation σ. We make certain abuse of notation because σ
can represent both a permutation of the solutions in S and the function σ(x)
defined above. Nonetheless, both elements refer the same entity and they will
be used without ambiguity as needed.
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In Table 6.1, we provide an example of the permutation σ induced by
a function f(x). In the first column are the original function values, in the
second column the corresponding 2n-tuple σ of the solutions x ∈ S is disposed
and in the third column we indicate the ranking values given by σ(x).

f(x) σ σ(x)

100 (1, 1, 1) 1
50 (0, 1, 0) 2
45 (0, 0, 1) 3
20 (1, 0, 0) 4
10 (0, 1, 1) 5
3 (1, 0, 1) 6
1 (1, 1, 0) 7
0 (0, 0, 0) 8

Table 6.1. Example of permutation σ induced by an injective function with n = 3
variables.

As it is known, EDAs use explicit probability distributions p(x) with the
aim of finding the optimal solution x∗ and solve Problem 6.1. In this chapter,
we would like to see the EDA procedure in terms of the probability distribu-
tions involved in the search (Santana et al. (2009b)) (see Fig. 6.1). Firstly,
Dt denotes the EDA population at generation t and p(x, t) is the underlying
probability distribution of this sample. Secondly, ps(x, t) is the probability
distribution of the selected individuals Ds

t . Finally, p
a(x, t) is the distribu-

tion given by the probabilistic model chosen to approximate ps(x, t). Once
we have pa(x, t), the next generation Dt+1 is constructed by sampling this
distribution.

Fig. 6.1. Probability distributions determined by the components of an EDA. Dt,
Ds

t , Dt+1: population and selected individuals at generation t and population at
generation t+1; p(x, t), ps(x, t), pa(x, t): Probability distributions of the population,
the selected set and the probabilistic model approximation at generation t.
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In any evolutionary algorithm, selection is one of the fundamental oper-
ators and therefore, a wide variety of proposals can be found in the liter-
ature. According to Lee and El-Sharkawi (2008), the selection schemes can
be classified into two groups: proportionate selection and ordinal-based selec-
tion. Proportionate-based procedures select individuals based on their specific
function values. Ordinal-based selection procedures select individuals based on
their rank within the population. Thus, this class of selection only takes into
account qualitative information about the function i.e. it only uses the fact
that f(x) > f(y) instead of the real value given by the function.

In this work, we assume that the algorithm uses this last type of selection.
We must say that assuming ordinal-based selection is not a insurmountable
restriction because the definitions that we present could be extended to selec-
tions that take into account the specific function values. Common examples of
selection schemes based only on the rank of the solutions are truncation, tour-
nament, linear ranking or exponential ranking selection. These schemes are
considered in a wide variety of evolutionary algorithms, both in solving real
problems and in theoretical studies (Blickle and Thiele (1996); Prügel-Bennett
(2000); Zhang (2004)).

6.3 The infinite population EDA model

The application of the EDA scheme to face optimization problems can involve
an unapproachable variety of situations and behaviors.With the aim of dealing
with all possible EDA behaviors, we use an infinite population model (e.g.
Mühlenbein et al. (1999); Zhang and Mühlenbein (2004); Zhang (2004)) in
which the algorithm is reduced to its essence and random errors are canceled.

In this type of EDA model, it is assumed that the empirical probability
distribution induced by the solutions in Dt and Ds

t (Fig. 6.1) will converge
to the underlying probability distributions p(x, t) and ps(x, t) respectively, as
the size of the sample tends to infinity. Therefore, p(x, t) and ps(x, t) could
be thought of as the population and the selected individuals at iteration t in
EDAs with infinite population (Zhang and Mühlenbein (2004)). Consequently,
we can assume that p(x, t+ 1) = pa(x, t).

6.3.1 The algorithm and the population

In Alg. 6.1 we formally describe the infinite population EDA procedure that
we consider in the current work. This algorithm will be simply denoted by A.

It is established that the first step in algorithmA is to create the permuta-
tion σ of the solutions x ∈ S. The permutation σ that the objective function
provides is a crucial element of the algorithm.

As commented above, an infinite population can be represented by the
probability distribution p(x, t) that the algorithm manages at time t. Never-
theless, algorithm A does not explicitly work with the distributions p(x, t).
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1 σ ← permutation of the solutions x ∈ S given by f(x)

2 pt=0 ← generate the initial population

3 do

4 Compute the probability of selection through the selection operator φ
as ps

t = φ(pt)

5 Compute pa
t =M(ps

t , σ) to approximate ps
t .

6 pt+1 ← pa
t

7 t ← t+ 1

8 until Convergence

Alg. 6.1: EDA with infinite population, A.

Instead, at each generation, this algorithm manages a probability vector
p = (p1, p2, . . . , p|S|) where each probability value pi in p corresponds to the
probability of the solution xi, which is in the position i of the permutation σ.
It is always interpreted that the first value p1 of the vector p is the probability
of the optimal solution, p2 is the probability of the second best solution, and
so on, with the last probability p2n corresponding to the solution with the
worst function value. Accordingly, we have the probability vectors ps and pa

representing the selected population and the approximation respectively. To
be absolutely precise, the probability vectors at time t should be represented
as pt = (pt1, p

t
2, . . . , p

t
|S|). Note that, unlike the probability distribution p(x), a

vector p implies no specific assignment of probabilities to x configurations. In
order to obtain the probability distribution p(x, t) that algorithm A manages
at time t, we link the vector pt and the permutation σ through the pair (p, σ).
The pair (p, σ) induces a probability function p(x) such that p(σ−1(i)) = pi.
Therefore, we have that p1 = p(σ−1(1)) is the probability of the optimum,
p2 = p(σ−1(2)) is the probability of the second best solution and so on.

The arrangement of the probability vector p and its relationship with the
permutation σ is illustrated in Table 6.2. In this example, we consider two
different permutations σ1 and σ2. We assume that algorithm A was applied
to both functions and that it manages the same probability vector pt at time t.
We can see that, for example, p1 is associated to the solution (1, 1, 1) according
to σ1. However, according to σ2, p1 is associated to the solution (0, 0, 0).
Therefore, p1 is the probability of the optimum in both cases, independently
of the specific configuration of this solution. In the third column of Table 6.2,
we can see that the same vector induces different probability distributions
depending on σ. Note that, since we have 2n! different permutations σ, a
vector p can correspond to 2n! different probability distributions.

The space of the possible probability vectors that the algorithm can gen-
erate is defined by the following simplex:
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σ1 pt p(x, t) ps
t

(1,1,1) p1 p(σ−1(1)) = p(1, 1, 1) ps1
(0,1,0) p2 p(σ−1(2)) = p(0, 1, 0) ps2
(0,0,1) p3 p(σ−1(3)) = p(0, 0, 1) ps3
(1,0,0) p4 p(σ−1(4)) = p(1, 0, 0) ps4
(0,1,1) p5 p(σ−1(5)) = p(0, 1, 1) ps5
(1,0,1) p6 p(σ−1(6)) = p(1, 0, 1) ps6
(1,1,0) p7 p(σ−1(7)) = p(1, 1, 0) ps7
(0,0,0) p8 p(σ−1(8)) = p(0, 0, 0) ps8

σ2 pt p(x, t) ps
t

(0,0,0) p1 p(σ−1(1)) = p(0, 0, 0) ps1
(1,0,1) p2 p(σ−1(2)) = p(1, 0, 1) ps2
(1,1,0) p3 p(σ−1(3)) = p(1, 1, 0) ps3
(0,1,1) p4 p(σ−1(4)) = p(0, 1, 1) ps4
(1,0,0) p5 p(σ−1(5)) = p(1, 0, 0) ps5
(0,1,0) p6 p(σ−1(6)) = p(0, 1, 0) ps6
(0,0,1) p7 p(σ−1(7)) = p(0, 0, 1) ps7
(1,1,1) p8 p(σ−1(8)) = p(1, 1, 1) ps8

Table 6.2. Arrangement of the probability vectors and their relationship with the
probability distributions. Example with n = 3 variables.

Ω|S| = {(p1, p2, . . . , p|S|) :

|S|
∑

i=1

pi = 1, pi ≥ 0}.

In addition, we establish that any initial vector p0 = (p1, . . . , p2n) satisfies
that pi < 1 for all i ∈ {1, . . . , 2n}. From any given p0, the application of
algorithm A to a function f induces a deterministic sequence of probability
vectors:

p0,p1,p2,p3, . . . . (6.2)

We use this sequence to describe the behavior of the algorithm. Note that
if we took into account the probability distributions p(x, t) to describe the
EDA behavior, the algorithm could always generate different sequences of
distributions for each possible σ. The use of probability vectors p provides a
higher level of abstraction, which is essential in order to group EDA behaviors.

6.3.2 The selection scheme φ

As previously indicated, we assume selection schemes based on the rank of the
solutions within the population. Since in algorithm A any probability value pi
is interpreted as the probability of the solution σ−1(i) with position i in the
permutation σ, the selection can be simply defined by a function φ : Ω|S| →
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Ω|S|. This function modifies the probability values of the individuals according
to the rank in which they are.

In order to create the partition of the space of problems, we do not need
to consider any specific implementation of the selection operator φ. However,
it will be essential for φ to satisfy three basic properties or axioms.

• Property 1 (Neutrality). The selection operator is independent of the con-
figuration x of a solution. This operator only takes into account the fitness
value f(x) of the solution. Although this property is implicit in the defi-
nition of φ, we believe that it is worth a brief discussion. Thus, since we
assume ordinal-based selection scheme, given p, we always obtain the same
the probability vector ps = φ(p) after selection, independently of σ. This
fact is illustrated in the last column of Table 6.2 where we indicate that
the probability vector after selection is the same in both functions.

• Property 2 (No degeneration). The selection operator can not assign ex-
treme probabilities 1 or 0 to solutions whose probabilities are in the in-
terval (0, 1). More formally, the vector ps = (ps1, . . . , p

s
2n), computed as

ps
t = φ(pt) at generation t, satisfies that if 0 < pi < 1 then 0 < psi < 1 for

all i ∈ {1, . . . , n} in every generation t = 1, 2, 3, . . .. In addition, if pi = 0
then psi = 0. The convergence of the algorithm can only take place as a
result of the evolutionary process when t tends to infinity.

The conditions mentioned above are needed in order to guarantee that
the taxonomies of problems are valid for any implementation of φ. Therefore,
the selection φ will play no role in the partition of the space of optimization
problems.

In the context of EDAs, some examples of selection schemes formulated
and studied under infinite population can be found in Mühlenbein et al.
(1999), Zhang and Mühlenbein (2004) and Zhang (2004).

6.3.3 The approximation step M

In algorithmA, the approximation step deals with the probability distribution
ps(x) of the selected individuals. Therefore, the probability vector ps has to
be related with the corresponding solutions x by means of the pair (ps, σ).
The approximation step is defined as a function M : Ω|S| ×Π → Ω|S| and it
is computed as pa = M(ps, σ) in the algorithm.

We assume that the function M approximates the distribution ps(x) by
using a Bayesian network (s, θs). According to the factorization expressed
by the structure s, the corresponding set of parameters θs are calculated
from ps(x) to obtain the probability distribution pa(x). This approximate
distribution pa(x) will be in the space of probability distributions allowed
by the structure s. For the sake of simplicity, we assume that any Bayesian
network (s, θs) managed by algorithm A is implicit in the function M.
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Note that the approximation M is the only operator in A that takes into
account the permutation σ. Therefore,M can translate the difference between
functions to different behaviors of the algorithm.

6.4 Equivalent functions and equivalence classes

In this section we discuss the concept of equivalence between functions and
provide the formal definitions. An EDA A induces deterministic sequences of
probability vectors. An iteration of this algorithm is computed by a function
G : Ω|S| ×Π → Ω|S| as pt+1 = G(pt, σ). The function G is a composition of
the selection φ and the factorization function M (steps 4 and 5 in Alg. 6.1)
such that G = M◦φ. Thus, the sequence of probability vectors induced by A
can be expressed as the iterations of the function G:

p0,G(p0, σ),G
2(p0, σ),G

3(p0, σ), . . .

where Gt(p0, σ) is the vector at iteration t.
The properties of functions similar to Gt have usually been studied by

means of discrete dynamical systems. In González et al. (2001) and Zhang
(2004), important insights and results about the convergence of some EDAs
were provided using this approach. In the current chapter, the definition of
equivalence does not consider specific implementations for M or φ and hence,
we do not have a formulation of G to study the dynamics of the algorithms.
Although the iterations of G are modeled as a dynamical system, we will take
a more general perspective to describe the behavior of EDAs.

The definition of equivalence between objective functions under EDAs can
be expressed as follows.

Definition 6.1 Let σ1 and σ2 be the permutations induced by the objective
functions f1(x) and f2(x) respectively. Let A be an EDA with any given φ
and M. We say that σ1 and σ2 are equivalent under A, and by extension f1
and f2, if for any p0 ∈ Ω|S|, G

t(p0, σ1) = Gt(p0, σ2) for all t = 1, 2, 3, . . ..

In a less formal way, we say that two functions are equivalent under A if
the corresponding sequences of probability vectors induced by the algorithm
are equal from any initial point. The equivalence between functions means
that we have the same EDA behavior if we focus on the rank of the solu-
tions instead of their specific x configurations. Therefore, if two functions are
equivalent, we can say that the algorithm will have the same performance
in terms of solving Problem 6.1. In Table 6.3, a very simple example with
n = 2 variables illustrates the equality of vector sequences. Departing from
the uniform distribution, algorithm A exactly induces the same sequence of
vectors pt. If both sequences are equal from any initial p0 then σ1 and σ2 will
be equivalent. Note that the sequences of probability distributions p(x, t) are
different.
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σ1 p0 p1 p2 p3 . . . p∞

(1,1) 0.25 0.4375 0.6836 0.8999 . . . 1
(0,1) 0.25 0.3125 0.2539 0.0962 0
(0,0) 0.25 0.1875 0.0586 0.0039 0
(1,0) 0.25 0.0625 0.0039 0.0000 . . . 0

σ2 p0 p1 p2 p3 . . . p∞

(1,0) 0.25 0.4375 0.6836 0.8999 . . . 1
(1,1) 0.25 0.3125 0.2539 0.0962 0
(0,1) 0.25 0.1875 0.0586 0.0039 0
(0,0) 0.25 0.0625 0.0039 0.0000 . . . 0

Table 6.3. Example with n = 2 variables of two equal sequences when A is applied
to σ1 and σ2.

Definition 6.1 provides an equivalence relation because it is a reflexive,
symmetric and transitive relation between functions. Given this equivalence
relation, for each σ, we have the equivalence class of σ, denoted by [σ]. The
equivalence relation partitions the space of functions into equivalence classes
under an algorithm A. The sequences of probability vectors generated by the
algorithm uniquely identify the functions in a class.

The equivalence between functions is defined under a given algorithm A
which implements certain φ and M. However, as we discussed in the previ-
ous section, both operators do not play the same role. If two functions are
equivalent under A, then both functions will be equivalent for any given φ
implemented in A satisfying Properties 1 and 2. However, two functions that
are equivalent for M could not be so for M′, which implements a different
probabilistic model. We can conclude that only the factorization used to ap-
proximate ps(x) can create different partitions of the space of problems. This
partition is independent of the implementation of φ.

By taking into account all the aforementioned definitions of algorithm,
function and equivalence, we can deduce the following result assuming that φ
satisfies the properties of neutrality and no degeneration.

Theorem 6.1 Let A be an EDA whose implementation of M satisfies pa(x, t) =
ps(x, t) for all t = 1, 2, 3, . . .. All the objective functions are in the same equiv-
alence class under A.

Proof. The proof of the theorem is straightforward. Two functions σ1 and
σ2 are equivalent if A generates the same sequence of probability vectors de-
parting from any initial p0. Due to the neutrality of φ, we obtain the same vec-
tor ps

0 = φ(p0) after selection for σ1 and σ2. Next, ifM satisfies pa(x) = ps(x)
then M(ps

0, σ1) = M(ps
0, σ2) and therefore we have the same vector pa

0 for
both functions. Since pt+1 = pa

t , the algorithm obtains the same probability
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vector p1 and consequently it will obtain the same vectors pt at any time
t = 2, 3 . . .. ⊓⊔

Therefore, if it is assumed that p(x, t+1) = ps(x, t), the algorithm has the
same behavior for all the injective functions and hence, the same properties of
convergence to the optimum (Mühlenbein et al. (1999); Zhang and Mühlenbein
(2004)). As commented above, only the probabilistic model is able to create
partitions of the space of problems. And moreover, if this model is able to
exactly represent the distribution of the selected individuals, all the functions
are in a single class. These results support the usual classification of EDAs
which is carried out according to the probabilistic model implemented.

6.4.1 Descriptors of the behavior of EDAs

Once the space of problems is divided into equivalence classes, we could study
the behavior that the algorithm exhibits in each class. In this regard, we
discuss the role of two descriptors of the behavior of the EDA. On the one
hand, the most basic descriptors are the sequences of probability vectors. By
definition, we know that the algorithm induces the same set of sequences for
any function in the same class and different sets of sequences for functions in
different classes. Therefore, the set of sequences associated to any function of a
class can be used to unequivocally represent the behavior of the corresponding
class.

On the other hand, the behavior of an EDA can be described by using the
basins of attraction of the solutions in S. Basin of attraction is a term used in
dynamical systems that we adopt in a simplified manner. Roughly speaking,
the basin of attraction of a point x in a dynamical system is the set of initial
points that converge to x. More formally, by using the function G, we say
that the basin of attraction of a solution x ∈ S, is the set Z ⊆ Ω|S| such
that ∀p ∈ Z, limt→∞Gt(p, σ) = px, where px assigns 1 to the corresponding
ranking position of this solution i.e. pσ(x) = 1. According to this definition,

the basins of attraction related to each solution generate a partition of Ω|S|

that can be expressed by the sets Z1, . . . ,Z|S|.
The sequences of probability vectors express the complete process of con-

vergence, whereas the basins of attraction represent only the final convergence
of the algorithm. From Definition 6.1, we can deduce that if functions σ1

and σ2 are equivalent, the algorithm generates the same basins of attraction
Z1, . . . ,Z|S| for both functions. Therefore, all the functions belonging to the
same class have the same basins of attraction. However, two different classes
could have the same basins of attraction although they always have different
sequences of probability vectors. Informally speaking, we might say that, for
functions in different classes, the algorithm can reach the same places although
it uses different roads.
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6.5 Case study: Univariate EDA

The concepts and definitions about the taxonomy of problems that were ab-
stractly discussed in the previous sections will be studied in-depth in a simple
EDA that assumes independence among the variables of the problem. Differ-
ent algorithms such as population-based incremental learning (Baluja (1994)),
compact genetic algorithm (Harik et al. (1998)) or univariate marginal distri-
bution algorithm (Mühlenbein (1998)) introduce this type of model.

We consider that the function M approximates the distribution ps(x) as
follows. The structure s implemented in M provides a factorization of the
joint probability distribution which assumes that the variables of the problem
are independent. Then, considering the set of parameters θs, the function M
can be expressed in the following form (Larrañaga and Lozano (2002)),

pa(x|θs) =

n∏

i=1

ps(xi|θi) (6.3)

where θs = (θ1, . . . , θn). The local parameters θi = (θ0i , θ
1
i ) specify the

marginal probability distributions ps(xi) where θxi

i is the probability value
ps(Xi = xi). In EDAs with finite population, each parameter θxi

i can be es-
timated from the selected individuals by using different approaches such as
relative frequencies or more sophisticated update rules. Nevertheless, in the
model of infinite population, the marginal probabilities can be exactly calcu-
lated as,

ps(xi) =
∑

x\xi

ps(x). (6.4)

From now on, we will obviate the explicit reference to the parameters θs in
Equation 6.3. Specifically, the function M is implemented in algorithm A as,

pa(x) =

n∏

i=1

∑

x\xi

ps(x). (6.5)

6.5.1 Equivalence condition

The key to understand the relation between a given optimization problem and
an EDA is the way in which the permutation σ is related to the probabilistic
model (s, θs) used to compute the approximation step M. More specifically,
we take into account how the ranking positions τ = σ(x) of the solutions are
organized in the different marginal distributions that form the factorization.
These positions τ are grouped by using different sets as described below. The
calculation of each marginal probability ps(xi) can be put into relation with
the ranking of the solutions which are involved in it. Thus, by using the inverse
function σ−1(τ) we can rewrite Equation 6.4 as,
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ps(xi) =
∑

x\xi

ps(x) =
∑

τ∈Q
xi
i

ps(σ−1(τ)) (6.6)

where Qxi

i = {τ : σ−1(τ) = (y1, . . . , yn) ∧ yi = xi} is the set of ranking po-
sitions corresponding to points x ∈ S, whose probabilities have been used to
calculate the marginal distribution. Note that the cardinality of any Qxi

i is al-
ways 2n−1. For each marginal probability, we have the set of ranking positions
associated to p(Xi = 0), denoted by Q0

i , and the set associated to p(Xi = 1),
denoted by Q1

i . Note that the sets Q
xi

i are intrinsically related to the parame-
ters θxi

i . Then, we associate the set Oi = {Q0
i , Q

1
i } to the marginal distribution

p(xi). Note that for all i, Q0
i ∪ Q1

i = {1, . . . , 2n} and Q0
i ∩ Q1

i = ∅. In addi-
tion, all the sets Qxi

i involved in the factorization have to be different. Finally,
we define the set Gσ = {O1, O2, . . . , On} which includes all the information
needed to link the function and the factorization. The ranking positions be-
longing to each subset depend on the function σ to which the algorithm is
applied. In summary, the relationship between the probabilistic model and
the function σ is expressed by the structure of sets represented in Fig. 6.2
(a). An illustrative example of the definitions mentioned above is presented in
Fig. 6.2 (b). We can see that, by using Equation 6.6, the marginal probability
p(X1 = 0) is calculated through the solutions with the rankings {2, 3, 5, 8}.
In turn, p(X1 = 1) is associated to the set of rankings {1, 4, 6, 7}. Thus, we
have the set O1 = {{2, 3, 5, 8}, {1, 4, 6, 7}} related to the marginal distribution
p(x1). In this example, we also have the sets O2 = {{3, 4, 6, 8}, {1, 2, 5, 7}} as-
sociated to p(x2) and O3 = {{2, 4, 7, 8}, {1, 3, 5, 6}} for p(x3). Finally, we can
create the corresponding set Gσ = {O1, O2, O3} associated to the factorization
of the probability distribution and the function σ being optimized.

(a) (b)

Fig. 6.2. (a) Set-based representation of the relation between the function and the
probabilistic model. (b) Example of set Gσ and the corresponding function σ for
n = 3 variables.
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In general, we can prove the following necessary and sufficient condition
of equivalence between objective functions when algorithm A implements the
function M according to Equation 6.3. By using this condition, we will carry
out the partition of the space of functions into equivalence classes.

Theorem 6.2 Let A be an EDA that implements M as pa(x) =
∏n

i=1 p
s(xi).

Two functions σ1 and σ2 are equivalent under A if and only if the correspond-
ing sets Gσ1

and Gσ2
are equal.

Proof. Two functions σ1 and σ2 are equivalent if A generates the same
sequence of probability vectors departing from any initial p0. Therefore, we
need to prove that Gt(p0, σ1) = Gt(p0, σ2) in every generation t for all ini-
tial p0 if and only if Gσ1

= Gσ2
. Firstly, we show that if Gσ1

= Gσ2
, then

Gt(p0, σ1) = Gt(p0, σ2). In order to do that and taking into account that φ is
independent of σ, it is enough to prove that M(ps, σ1) = M(ps, σ2) for any
given ps. Gσ1

= Gσ2
if and only if for any Oσ1

i ∈ Gσ1
, there exists Oσ2

j ∈ Gσ2

such that Oσ1

i = Oσ2

j and vice versa. In turn, Oσ1

i = Oσ2

j if an only if for

any Qxi

i ∈ Oσ1

i there exists Q
xj

j ∈ Oσ2

j such that Qxi

i = Q
xj

j and vice versa.
Therefore, according to Equation 6.6, if Gσ1

= Gσ2
, then we are calculating

the same set of probability values for both functions and we will obtain the
same probability vector pa in both cases.

Secondly, we prove that if Gt(p0, σ1) = Gt(p0, σ2) in every generation t
for all initial p0, then Gσ1

= Gσ2
. To prove this part of the theorem, it

suffices to consider a specific set of initial probability vectors containing values
greater than 0 only in the desired positions. Thus, let p0 = (p1, p2, . . . , p2n)
be any initial vector such that pi > 0 if σ−1

1 (i) = (1, x2, . . . , xn), otherwise
pi = 0. These initial vectors have probability values greater than 0 only in
the positions associated to solutions that begin with 1 in σ1. Due to Property
2 of φ, we obtain a vector ps

0 after selection with non-zero probabilities in
the same positions as in p0. Then, we have that ps(X1 = 1, t = 0) = 1 for
σ1 after selection. Since we know that G1(p0, σ1) = G1(p0, σ2), it necessarily
implies that there exists j ∈ {1, . . . , n} such that ps(Xj = xj , t = 0) = 1
for σ2 and therefore Oσ1

1 = Oσ2

j . Otherwise, we would have that pi > 0

for all i in G1(p0, σ2) and hence, the sequence would be different. By the
same argument, any initial vector p0 = (p1, p2, . . . , p2n) satisfying pi > 0 if
σ−1
1 (i) = (x1, 1, . . . , xn) implies that there exists k 6= j, k ∈ {1, . . . n} such

that Oσ1

2 = Oσ2

k . The same process is repeated for the remaining indices until
n, where we consider any initial point p0 = (p1, p2, . . . , p2n) such that pi > 0 if
σ−1
1 (i) = (x1, x2, . . . , 1). Since we have already matched n− 1 sets Oσ1 ∈ Gσ1

with the corresponding n − 1 sets Oσ2 ∈ Gσ2
, there remains a last index

variable l such that Oσ1

n = Oσ2

l . Therefore, if the algorithm generates the
same sequences of probability vectors from every initial point for σ1 and σ2,
then Gσ1

= Gσ2
. ⊓⊔
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6.5.2 Characterization of equivalence classes

Before addressing in detail the description of the functions belonging to a
class, we show in Table 6.4 an example of three equivalent functions σ, σ′

and σ′′ . We have applied two different operations to obtain these equivalent
functions. Firstly, we have generated the function σ′ by negating the values
x1 for all x = (x1, x2, x3) belonging to σ. Secondly, the function σ′′ has been
obtained by swapping the values x2 and x3 for all x = (x1, x2, x3) belonging
to σ′. This operation can be seen as a swapping of the columns x2 and x3. In
Fig. 6.3, we present the corresponding sets Gσ, Gσ′ and Gσ′′ related to the
functions of Table 6.4. Since these sets are equal, we know by Theorem 6.2
that the functions are equivalent.

σ σ′ σ′′

Rank (x1, x2, x3) (¬x1, x2, x3) (¬x1, x3, x2)

1 (1,1,1) (0,1,1) (0,1,1)
2 (0,1,0) (1,1,0) (1,0,1)
3 (0,0,1) (1,0,1) (1,1,0)
4 (1,0,0) (0,0,0) (0,0,0)
5 (0,1,1) (1,1,1) (1,1,1)
6 (1,0,1) (0,0,1) (0,1,0)
7 (1,1,0) (0,1,0) (0,0,1)
8 (0,0,0) (1,0,0) (1,0,0)

Table 6.4. Equivalent functions σ, σ′ and σ′′.

In general, taking into account that σ is defined as a 2n-tuple of the solu-
tions x = (x1, . . . , xn) ∈ S, the following two operations permit the descrip-
tion of the functions in the class [σ]:

• Operator M1 (Negation). Given a permutation σ and an index i ∈
{1, . . . , n}, the operator M1 returns a function σ′ such that for all rank-
ing positions τ ∈ {1, . . . , 2n} verifies σ−1(τ) = (x1, . . . , xn), σ

′−1(τ) =
(y1, . . . , yn) and yi = ¬xi. Through this operation we change zeros with
ones, and vice versa, in the corresponding variable xi. This operator can
be successively applied until all combinations of variable negations are
obtained. Thus, including σ in the count, we can generate 2n different
functions by means of M1.

• Operator M2 (Swapping). Given a permutation σ and two indexes i, j ∈
{1, . . . , n}, the operator M2 returns a function σ′ such that for all rank-
ing positions τ ∈ {1, . . . , 2n} verifies σ−1(τ) = (x1, . . . , xn), σ

′−1(τ) =
(y1, . . . , yn), yi = xj and yj = xi. If we consider the elements of σ dis-
posed in columns, then we can say that the permutation of the columns
associated to the variables Xi and Xj produces an equivalent function.
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From this interpretation, it is easy to see that n! different functions can
be generated by applying M2.

Fig. 6.3. Example with n = 3 variables of three equal sets Gσ, G
′

σ and G′′

σ associated
to three equivalent functions σ, σ′ and σ′′ presented in Table 6.4.

According to Theorem 6.2, we can assert that, given a function σ, the
aforementioned operators return equivalent functions σ′ because Gσ = Gσ′ .
In fact, these two operators are a consequence of this equality of sets. We
have previously shown how the set Gσ is created from σ according to the
probabilistic model used by the algorithm. Inversely, we can also read the
permutation σ from the set Gσ. Thus, a set Qxi

i is telling us the positions τ
of the permutation σ in which Xi = xi (check Fig. 6.2). If these positions are
read from every set Qxi

i , then we will obtain σ. Note that if we modify the
ranking positions belonging to Qxi

i , we are modifying the positions in which
Xi = xi and therefore we will read a different permutation σ.

Specifically, departing from a given Gσ, we can move the ranking positions
that this set contains in two different ways in order to read different functions
σ′ such that Gσ = Gσ′ . The first type of movement is as follows. Given any
Oi = {Q0

i , Q
1
i } ∈ Gσ, the ranking positions τ0 ∈ Q0

i and τ1 ∈ Q1
i are swapped

together between both subsets to create an equal set Gσ′ in which τ1 ∈ Q0
i

and τ0 ∈ Q1
i . From Gσ′ , we can read a new function σ′ equivalent to σ. In

Fig. 6.3, this type of movement is applied to the set O1 ∈ Gσ obtaining an
equal set Gσ′ . From this movement, we deduce that the negation operator M1
produces equivalent functions.

In the second type of movement, given any pair Oi = {Q0
i , Q

1
i }, Oj =

{Q0
j , Q

1
j} ∈ Gσ, we can exchange the ranking positions belonging to both

sets Oi and Oj as follows. Let τi ∈ Qxi

i and τj ∈ Q
xj

j , we swap the elements

between the sets Qxi

i and Q
xj

j to create the set Gσ′ in which τj ∈ Qxi

i and

τi ∈ Q
xj

j . All the ranking positions τi belonging to Oi = {Q0
i , Q

1
i } have to be

moved at the same time, otherwise, the associated marginal probability will
make no sense. In Fig. 6.3, this type of movement is applied to the sets O2
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and O3 in Gσ′ producing an equal set Gσ′′ . From this movement we deduce
that the swapping operator M2 produces equivalent functions.

Based on the above-mentioned movements that the equality of sets allows,
it can be stated that, given σ, the operators M1 and M2 allow to describe
all the functions in the class [σ]. There are no more operations that produce
equivalent functions according to Theorem 6.2. Therefore, by combining all
possible functions that can be generated by using M1 and M2, we can conclude
that the number of equivalent functions σ per class is n!2n. Therefore, the
number of classes is

(2n − 1)!

n!
.

This is the number of different behaviors that an univariate EDA can show
in solving Problem 6.1.

6.5.3 Equivalence classes and local optima

The impact that different problem characteristics have in the performance of
search algorithms is a fundamental topic in the optimization field. Properties
such as the number of local optima, the additive decomposition of the function
(Mühlenbein and Mahnig (1999b); Gao and Culberson (2005)) or many other
difficulty measures (Naudts and Kallel (2000)) have been proposed and studied
in order to advance the performance of evolutionary algorithms according to
those descriptors of the problem. Particularly, in the field of EDAs, the relation
between the local optima of the function and specific EDA implementations
has been theoretically shown in González et al. (2001) and Zhang (2004). In
this section, we connect this property of the problems with the equivalence
classes developed along the chapter.

We consider the neighborhood system in S induced by the Hamming dis-
tance. Thus, the distance H(x,y) between two solutions x and y is given
by,

H(x,y) =
n∑

i=1

|xi − yi|.

The neighbors of a solution x are those solutions y ∈ S such that
H(x,y) = 1. In terms of the permutation σ, a solution x is called a local
optima if σ(x) < σ(y) for any y ∈ S such that H(x,y) = 1. Fig. 6.4 illus-
trates how the neighborhood system and the local optima can be seen for the
given σ. Each vertex of the cube represents a solution x ∈ S. Below each
solution, we have the corresponding position of each x in σ. It can be checked
that the first four solutions in the permutation are local optima because they
are better solutions than their neighbors. These solutions are marked in bold.

The relation between the equivalence classes and the Hamming neighbor-
hood system in S is established by the following theorem.

Theorem 6.3 All the functions in the same equivalence class [σ] have the
same number of local optima and in the same ranking positions.
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Fig. 6.4. Example of Hamming neighborhood system with n = 3 over the function
σ. Numbers in bold represent local optima.

Proof. A local optimum can be defined according to the position that
it holds in the permutation σ and the Hamming distance to the preced-
ing solutions. Then, a solution σ−1(i) = x is a local optima for σ if
H(σ−1(i), σ−1(j)) ≥ 2 for all j < i. Given a function σ, it is easy to see
that by applying the operators M1 and M2 of negation and swapping, any
function σ′ that we obtain verifies H(σ−1(i), σ−1(j)) = H(σ′−1(i), σ′−1(j))
for all i, j ∈ {1, . . . , 2n}. Therefore, if there is a local optima in the position i
of σ then there is a local optima in the same position i of σ′ and vice versa.
Since the operators M1 and M2 allow to describe all the functions of a class,
these functions always have the same number of local optima and in the same
ranking positions. ⊓⊔

Theorem 6.3 agrees with the results presented by González et al. (2001)
and Zhang (2004). According to these works, all the local optima are attractive
fixed points (Scheinerman (1996)) of the dynamical systems that were used to
model the corresponding univariate EDA implementations. Therefore, since
we say that the algorithm has the same behavior for all the functions belonging
to a class, all those functions should necessarily have the same number of
local optima and in the same ranking positions to support González et al.
(2001) and Zhang (2004). Nevertheless, Theorem 6.3 could also provide a more
general perspective because it implies that the relation between univariate
EDAs and the local optima of the function is an intrinsic property of the
probabilistic model and independent of the implementation of the selection
scheme.

6.6 Numerical Experiments in S = {0, 1}3

In this section, we use the previously elaborated partition of classes of the
functions to carry out a more detailed analysis of the different behaviors
the univariate EDA can have in the injective functions in {0, 1}3. We con-
duct numerical simulations of an EDA with infinite population which imple-
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ments tournament selection and computes the approximation step according
to Equation 6.5. The local dynamical behavior of this algorithm was theoret-
ically studied in Zhang (2004).

Particularly, we will concentrate on the complexity of the classes for the
algorithm. The complexity is measured by two descriptors: i) the size of the
basin of attraction of the global optimum, ii) the generated sequence of prob-
ability vectors. We will consider that the smaller the size of the basin of at-
traction in a class, the more difficult the problems in that class are. Moreover,
when two classes have the same basin size, then the more time the algorithm
takes to converge, the more difficult the function is.

In order to add more information to this analysis, and taking into account
the relevant role that the local optima play in the EDA that assumes inde-
pendence (see Theorem 6.3), we will put the previous complexity results in
relation to this problem characteristic. We will see that the complexity for the
EDA in terms of the size of the basin of attraction is closely related with the
number of local optima and their positions in the function ranking. To the
best of our knowledge, this is the first time that such an analysis is done in
the literature.

6.6.1 Experimental design

We take into account all the possible σ that can be constructed over the search
space S = {0, 1}3. Therefore, we consider 23! = 40320 functions. By creating
the set Gσ for each function and applying Theorem 6.2 for each pair of sets, we
group the functions by equivalence classes. We have 3!23 = 48 functions per
class and hence 840 classes. We only need to consider one function per class
because all the functions in the same class behave equivalently. The selection
of the function which represents the class is arbitrary.

To carry out the EDA simulations, we need to specify four elements: the
initial points, the selection mechanism, the approximation step (Equation 6.5),
and the stopping condition. We create 10000 initial probability vectors which
try to be representative of the simplex Ω8. These initial points have been ran-
domly generated by sampling a Dirichlet distribution with all the parameters
equal to 1. In addition, we also take into account the uniform distribution
as an initial point. Then, for each function, we launch 10001 EDA runs one
from each initial probability vector previously generated. All these runs try
to represent the EDA behavior for the corresponding optimization problem.

We use two-tournament selection according to Zhang (2004) to implement
the selection φ. This selection takes uniformly at random two solutions of the
population and then chooses the individual with best objective function value.
This procedure should be repeated until the selected set is completed. Since
we deal with injective functions, two solutions can not have the same function
value. In the infinite population EDA model, the probability vector ps after
tournament selection can be computed from the vector p as follows:
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1 local optimum, 21%

2 local optima, 61%

3 local optima,14%

4 local optima, 4%

Fig. 6.5. Proportion of classes with different number of local optima.

psi = p2i + 2pi

n∑

j=i+1

pj . (6.7)

Tournament selection obeys the properties that we imposed to φ in Sec-
tion 6.3.2. Therefore, the partition induced from the equivalence condition of
Theorem 6.2 is valid.

The stopping condition of the algorithm is a maximum of 40 iterations.
This number of generations provides a satisfactory trade-off between accuracy
in the numerical results and computational cost. The algorithm converges to 1
in 93% of all the runs conducted. In the rest of the runs, the highest probability
value after 40 generations is always greater than 0.9998. In these cases, it
is assumed that the algorithm has converged to the corresponding solution.
The numerical precision that we have used is double-precision floating point
requiring 64 bits per stored value.

In the numerical analysis, the size of the basins of attraction are stored
in a vector b = (b1, . . . , b8) where each bi is the number of initial points that
have converged to the solution with rank i.

6.6.2 Results

First of all, in Fig. 6.5, we show the proportion of functions with different
number of local optima in order to provide a general perspective of this prob-
lem characteristic. By considering classes instead of specific functions, we have
180 classes with just one local optimum (the global optimum), 510 classes with
two local optima, 120 classes with three local optima and finally 30 classes
with four local optima.

6.6.2.1 Analysis based on basins of attraction

In order to provide a first general picture of the equivalence classes, we repre-
sent in Fig. 6.6 the basins of attraction of the optimum by means of different
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Fig. 6.6. Size of the basin of attraction of the optimal solution for each class.

colors. The sizes of these basins of attraction are interpreted in terms of prob-
lem difficulty. The color bar on the right of this picture indicates the relation
between the colors and the size of the basin. At the bottom of the spectrum,
the green color is assigned to the largest basins of attraction which indicate
easy problems. At the top, the dark colors represent low basins and hence,
they reveal the hardest problems. In addition, the classes have been grouped
by the number of local optima. Thus, the picture has been divided into four
parts separated by vertical gray lines. From left to right, we have the classes
with one, two, three and four local optima respectively. In each of these parts,
the classes are ordered according to the size of the basins of attraction.

Note that we have assigned the green color only to the classes in which the
size of the basins is 10001 or it is a very close number to that. We start to use
yellow colors when approximately 150 initial points do not converge to the
optimum. We try to highlight all the small variations between classes because
they could imply dramatic differences in EDAs with finite populations and
problems with greater dimension. According to Fig. 6.6, we could say that
the green classes are easy. These green classes cover all the problems with one
local optima and a small number of problems with two local optima. It can be
observed that a higher number of local optima does not necessarily imply more
difficult problems. In fact, the darkest colors are in the area corresponding to
classes with two local optima. It is the zone in which we can see the widest
range of colors.
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As discussed in Section 6.4, different classes can have the same basins of
attraction. Thus, Fig. 6.6 shows how the classes can be grouped according
to these basins of attraction. This fact could be related to the existence of
a second level of grouping among classes. Nevertheless, it deserves a specific
study.
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Fig. 6.7. Basins of attraction of the optimal solution (x-axis) and the best local
optimum (y-axis). (a) Classes with one local optimum besides the global optimum.
As indicated in the legend, the local optimum can hold the ranks 2, 3, 4 or 5 in a
permutation σ. (b) Classes with two local optima besides the global optimum. The
two local optima can be at the following ranking positions: (2, 3), (2, 4) and (2, 5).
(c) Classes with three local optima besides the global optimum. The three local
optima can be at the following ranking positions: (2, 3, 4) and (2, 3, 5). The dashed
line (y = 10001 − x) serves as reference to indicate the basins of attraction of the
rest of local optima.

Through Fig. 6.7, we analyze the basins of attraction of both the global
optimum and the rest of local optima. We consider all the ranking positions
at which the local optima can be allocated. In this case, when we refer to
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local optima, the global optimum is not included. The different scenarios are
indicated in the legends and expressed by means of different markers. Note
that in these plots only the basins of the global optimum and the best local
optimum are explicitly indicated. The dashed line y = 10001 − x is used as
reference to illustrate the proportion of initial points that have converged to
the rest of local optima.

In Fig. 6.7(a), we show the classes with one local optimum. This solution
can be in different positions of the permutation σ as indicated in the fig-
ure. Note that the difficulty of the problem strongly depends on the ranking
position of the local optimum. When this solution changes from the second
position to the third position of the ranking, the difficulty of the problem
decreases dramatically. In fact, when the local optimum has rank 5, the com-
plexity of the problems is very similar to the complexity of a problem without
local optima. Fig. 6.7(b) and 6.7(c) show the classes with two and three lo-
cal optima respectively. We can see the frequency in which the algorithm
can reach the different local optima depending on the class. Analogously to
the previous situation, as the local optima have a lower rank, their basins
of attraction clearly decrease. Particularly, when the rank of the worst local
optimum changes from 3 to 4 in Fig. 6.7(b), the difficulty of the problems
dramatically decreases. In Fig. 6.7(c) the changes are more subtle. Neverthe-
less, we can observe that the classes with a local optimum in the fifth position
never reach the highest complexities of the classes with a local optimum in
the fourth position.

6.6.2.2 Analysis based on sequences

We know that the sequences of probability vectors generated by the algorithm
uniquely identify the functions in a class. In this section, we use this fact in
order to distinguish the different EDA behaviors for the classes with only one
local optimum (the global optimum). According to the basins of attraction
(Fig. 6.6), all these classes have the same complexity for the algorithm. How-
ever, we can observe in Fig. 6.8 different convergence behaviors. In Fig. 6.8(a),
we show the curves that the probability of the optimum depicts throughout
the generations. Alternatively, Fig. 6.8(b) represents the same probabilities of
the optimum by means of colors. The specific probability values are shown in
the color bar on the right. Particularly in Fig. 6.8(b), we can clearly see how
several classes on the bottom of the chart have a slower convergence. This
slower convergence to the optimum can also be interpreted as a consequence
of facing harder problems. From this point of view, we could say that not all
the functions with one local optima have the same complexity. This fact could
have implications in EDAs with finite samples.
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Fig. 6.8. Probability of the optimum along the generations for the classes with only
one local optimum. (a) Curves of the probability of the optimum. (b) Probability of
the optimum represented by means of colors for each class. The specific probability
values are shown in the color bar.

6.7 Conclusions

This chapter can be divided into three main parts. Firstly, we have laid the
foundations to create taxonomies of problems under EDAs by providing the
needed definitions regarding the optimization problems, the algorithm and
the equivalence relation. From these definitions, it has been deduced that
all the problems are in the same class when the probabilistic model does not
impose restrictions to approximate the distribution of the selected individuals.
Secondly, we have studied the taxonomy of problems that arises under an
univariate EDA. To express the relation between the probabilistic model and
the function, we have defined the sets Gσ. Based on these sets, we are able to
provide a necessary and sufficient condition to decide the equivalence between
functions and to partition the space of problems. Through the operators of
negation and swapping, it is possible to describe all the functions in a class
and count its members. By taking into account the aforementioned elements,
we reveal an intrinsic connection between the univariate probabilistic model
and the neighborhood system induced by Hamming distance. In the third
and last part, we have conducted numerical simulations of an univariate EDA
which implements tournament selection. We can extract the following main
conclusions from the experiments. i) A higher number of local optima does
not necessarily imply more difficult problems. In this regard, the difficulty of
the problem strongly depends on the ranking position of the local optima. ii)
We have observed how the classes can be grouped according to the basins of
attraction showing a second level of grouping. iii) We have shown that not all
the functions without local optima have the same complexity.

In general terms, this chapter introduces a framework which allows to
formally study the relationship between EDAs and the space of optimization
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problems. The results that we have presented can be generalized and extended
in many directions. Specifically, once the partition of the space of problems
has been created, we consider the following questions particularly important:
how to describe and identify the classes of easy and hard problems for EDAs?
(Chen et al. (2010)), which are the problem descriptors that allow to identify
the class to which that problem belongs to?, how to study the convergence
of the algorithm (Zhang (2004); Zhang and Mühlenbein (2004)) for the prob-
lems in a class?, which is the minimum complexity that should be introduced
in the probabilistic model in order to converge to the optimum? (Echegoyen
et al. (2012)), how to extrapolate these results to algorithms that use finite
samples?. This type of issues could be translated to other evolutionary algo-
rithms. We believe that working in the direction given by these questions is
important to reach an in-depth understanding of the underlying mechanisms
that govern evolutionary algorithms.





7

Conclusion

7.1 Introduction

The following section gathers the general conclusions obtained throughout the
different contributions. More specific conclusions were presented at the end
of the corresponding chapters. Section 7.3 discusses some outstanding open
research trends and poses possible lines for future work. Finally, Section 7.4
presents the publications that result from work in this dissertation.

7.2 Conclusions

In essence, this thesis has been devoted to increase our comprehension about
EDAs. Although we have worked in discrete domains and all the probabilis-
tic models that we have considered can be expressed by means of Bayesian
networks, many of the concepts and ideas that have been discussed can be
extrapolated to other kinds of EDAs or even to other evolutionary algorithms.

All the contributions of the dissertation have been mainly developed by
paying attention to three basic elements. Firstly, of course, the optimization
problems, which have been described through different characteristics such as
the structure, the multimodality or the local optima. Secondly, the learning
step of the EDA, which determines the probabilistic models used by the al-
gorithm, and thirdly, the population. It is well known that EDAs and other
evolutionary algorithms have different parameters and can be mixed with ad-
ditional techniques with the aim of improving their performance. However,
the aforementioned three elements, together with the selection step, are the
essence of this type of algorithms and hence, they are the corner stone to
understand their behavior in a broad sense, regardless of specific implemen-
tations.

The main topics and conclusions of this thesis are summarized in the
following paragraphs.
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The relationship between the structure that the interactions of the problem
variables provide and the structural models learned by the algorithm has been
a recurrent issue throughout the dissertation. In this regard, we have seen that
the structures that the algorithm learns during the search provide valuable
information about the interdependences among the variables of the problem.
This fact has been observed in other related works and it is considered as a
distinctive feature of EDAs compared with other types of evolutionary algo-
rithms. However, it has also been noticed that introducing a learning method
that obtains the best Bayesian networks at each generation does not neces-
sarily improve the performance of the algorithm. Nevertheless, with enough
population size, this type of algorithm is able to obtain structures that provide
much more information about the problem than the approximate learning.

We have also seen that the topology of the problem structure influences
both the difficulty of the problem and the models learned by the algorithm.
By considering a range of problems with the same number of explicit inter-
actions between variables, we have shown that the problems with a regular
grid-like structure seem to be easier for EDAs. However, rewiring a few num-
ber of interactions is enough to increase the complexity of the problem and
due to this, the algorithm needs to learn more dependences related to the
problem structure in order to reach the optimum. The structure of this type
of problems has been related to networks that emerge in natural systems,
called small-world networks. These results bring to mind the hypothesis of
Kauffman (1993) in which it is said that complex systems in nature achieve
a state which optimizes the complexity of the tasks the system can perform
and simultaneously optimizes evolvablity. Roughly speaking, evolvability can
be understood as the ability of a population of organisms to evolve through
natural selection.

The ability of EDAs to capture the structure of the problem has been
shown and analyzed. However, where the limits of the algorithm are in order
to do that is an open issue. We have seen that, in the worst-case scenario,
EDAs encounter important limitations as the number of interactions among
the variables of the problem increases. In fact, after a certain degree of inter-
action, the performance of the EDA drops drastically even using unrestricted
Bayesian networks. Although learning structural models clearly improves the
behavior of the algorithm, the relationship between these structures and the
exact factorizations associated to the functions suggests different sources for
the limits of the EDA performance. On the one hand, the results suggest limits
due to the use of approximate learning techniques. On the other hand, even
by considering an ideal or exact learning method, the limits could be due to
the computational cost of managing the increasing structural complexity that
seem to be needed to solve the problems. Improving our knowledge about
the limits of EDAs and other search algorithms, form the basis to start to
conceive a framework in which, based on that knowledge, we could select the
most appropriate algorithm depending on the problem at hand.
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When the algorithm is studied from the perspective of the probability of
the optimum and the most probable solution, novel insights can be provided.
The main elements of the algorithm that we have considered, which are the
structural model and the population size, clearly influence the probability of
the optimum and the most probable solution. Moreover, the patterns of behav-
ior are constant in every optimization problem analyzed. For instance, using
an adequate population size or an accurate structural model increases the
probability of the optimum during the search in relation to the most prob-
able solution, even in runs where the optimum is not reached. In addition,
the function values of the most probable solution also reflect the influence of
the population size and the structural model accuracy. The properties of the
problem at hand, such as the multimodality, or even the difficulty that it en-
tails for the algorithm, are reflected in this type of analysis. The experimental
framework designed is not only useful to better understand EDAs but also to
devise new improvements of the algorithm.

Finally, after studying EDAs through different approaches, we have con-
ducted a formal attempt to describe the relationship that emerges between
EDAs and the space of optimization problems. We have laid the foundations
to elaborate taxonomies of problems under EDAs. Thus, given an EDA, the
space of problems can be partitioned in equivalence classes representing the
different behaviors that the algorithm can exhibit. The classes can be con-
nected with characteristics of the problems belonging to them. Through this
taxonomy, we have shown an underlying connection between the neighbor-
hood system induced by the Hamming distance and univariate EDAs. More-
over, we have analyzed numerically the difficulty of the problems belonging
to each class and the relation of that difficulty with the number of local op-
tima. For instance, we have shown that a higher number of local optima does
not necessarily imply more difficult problems or that not all the functions
without local optima necessarily have the same complexity. In general, this
contribution opens new research lines since new and more general results can
be deduced from the definitions and concepts presented. In addition, exploring
the relation that emerges between a search algorithm and the space of opti-
mization problems can entail a better understanding of the limits of effective
application of that algorithm. Therefore, the development of the equivalence
classes could be thought from the perspective of the learning limits and both
roads could be connected.

7.3 Future work

The contributions of this dissertation have left different lines of work open.
Some of these lines are related with ongoing research trends whereas other
topics can constitute new subjects of research. We believe that the following
points are the most interesting for further study.
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• As previously commented, the relationship between the structure of the
problem and the structural models used by EDAs is a recurrent issue
throughout the thesis. In this regard, different adjectives such as benign,
malign, strong or deceptive have been used to describe the interactions
among the variables of the problem and then, study their effect both in
EDAs and other evolutionary algorithms. Although some attempts to for-
malize this type of concepts have been presented (Kallel et al. (2000);
Ochoa and Soto (2006); Santana et al. (2005)), we clearly need to conduct
more research in order to understand and specify all the aforementioned
terms in the context of optimization by means of EDAs.

• The concepts discussed in the previous point are closely related to the dif-
ficulty of the problems. We have studied how the topology of the problem
structure determines the difficulty of the problems for EDAs. However, the
role that the function values of the sub-functions play in the complexity of
the problem is a question that remains open. Note that considering these
function values also implies taking into account the concepts mentioned
above regarding the properties of the interactions among the variables
of the problem. In general, we believe that there is a lack of formalism
and understanding when dealing with the interactions among the problem
variables, their relation with the structural model and their impact in the
difficulty of the problem. Continuing research in this direction is a funda-
mental task to better understand the relationship between the structure
of the problem and the probabilistic models that the algorithm needs to
reach the optimum.

• Regarding the limits of effectiveness in EDAs, a more in-depth study
should be carried out in order to increase the soundness of the conclusions.
Thus, more accurate learning techniques, more sophisticated EDAs aided
by niching or local searches, or even other approaches such as mixtures
of evolutionary algorithms, should be tested under the same worst-case
scenario. Then, analyzing the levels of problem difficulty that this type of
algorithms successfully reaches, would be useful to better understand both
the learning limits of EDAs and the limits of other search techniques. To
complement the results obtained by using functions based on deceptive
sub-functions, similar experiments could be conducted with other classes
of functions such as Max-SAT or Ising. The role of the population in the
limits of effectiveness of the algorithm was also discussed. We argue that a
given population size can only contain useful information to solve problems
to a certain degree of interaction among their variables. However, studies
related with the information that the populations contain about the prob-
lem have hardly been considered. We believe that the formalization and
study of this notion would be worthwhile.

• The taxonomy of problems presented in the previous chapter opens new
research lines. First of all, some generalization such as the introduction
of non-injective functions and general Bayesian networks could be devel-
oped. In addition, providing the needed definitions to deal with any type
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of selection scheme could also be considered. Other important extensions
are related to the connection between the characteristics of the problems
and the equivalence classes to which they belong. We have shown the
connection of the classes with the neighborhood system induced by the
Hamming distance for univariate EDAs. This connection can be studied
for more complex probabilistic models. For example, preliminary results
indicate that, if we add an arc to the univariate model, then it is possible
to include functions with one and two local optima in the same class. This
implies that some functions with two local optima can entail the same
difficulty as functions with one local optimum (the global optimum). This
agrees with Zhang (2004), where it is said that using higher order statis-
tics could improve the chance of finding the global optimum. Moreover,
we hypothesize that it is possible to discover new links with other prob-
lem characteristics or descriptors. For instance, we have very preliminary
results regarding the additive decomposition of the functions and its re-
lationship with the equivalence classes. In turn, the classes could also be
tagged in terms of the difficulty of the problems they contain. In an ideal
scenario, the information available about the problem at hand could be
used to identify the class to which it belongs to and then try to advance,
for example, whether for a given factorization the algorithm will reach the
optimum. In fact, knowing if a determined factorization will converge to
the optimum for a given function is one of the most important issues in
EDAs.
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Spain. Pp. 277-284, 2007.

D. Technical reports

• C. Echegoyen, Q. Zhang, A. Mendiburu, R. Santana, J.A. Lozano. Ana-
lyzing limits of effectiveness in different implementations of estimation of



7.4 Contributions 129

distribution algorithms. Technical Report EHU-KZAA-TR-2-2011. Uni-
versity of the Basque Country, Department of Computer Science and Ar-
tificial Intelligence, January 2011.

• C. Echegoyen, A. Mendiburu, R. Santana, J.A. Lozano. A quantitative
analysis of estimation of distribution algorithms based on Bayesian net-
works. Technical Report EHU-KZAA-TR-2-2009. University of the Basque
Country, Department of Computer Science and Artificial Intelligence, Sep-
tiembre 2009.

• R. Santana, C. Echegoyen, A. Mendiburu, C. Bielza, J. A. Lozano, P.
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Armañanzas, R. (2009). Consensus policies to solve bioinformatic problems
through Bayesian network classifiers and estimation of distribution algo-
rithms. PhD thesis, The University of the Basque Country (UPV/EHU),
Spain.
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Santana, R., Larrañaga, P., and Lozano, J. A. (2008a). Protein folding in
simplified models with estimation of distribution algorithms. IEEE Trans-
actions on Evolutionary Computation, 12(4):418–438.
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