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1. Introduction

A current hybrid, on-chip multiprocessor, such as the Cell Broadband Engine, promises an enormous computing power
(up to 200 GFlops) for a budget. We can find this chip on game consoles and other consumer devices. At the same time,
the computational power available from desktop PCs continues growing at an incredible pace, and we should not forget
the number-crunching abilities of graphical processing units. Users that run scientific codes are willing to take advantage
of this power, but this is not an easy task. Programs have to be reworked in order to use efficiently parallel and hybrid pro-
cessors. These machines require sophisticated programming models that are not easy for the casual programmer. Parallel-
ism, a challenge by itself, is not the only issue. Unfamiliar memory models, limited instruction sets, explicit communications,
etc. combine to make really hard the effective exploitation of theoretically powerful machines.

The availability of increasingly powerful computing platforms has encouraged the design and implementation of non-
trivial algorithms capable of solving different kinds of complex optimization problems. Some of these problems can be tack-
led via an exhaustive search over the solution space, but in most cases this brute force approach is unaffordable. In these
situations, heuristic methods (deterministic or non deterministic) are often used, which search inside the space of promising
solutions. Some heuristic approaches are specifically designed to find good solutions for a particular problem, but others are
presented as general frameworks adaptable to many different situations. Among this second group (general designs), there is
a family of algorithms that has been widely used in the last decades: Evolutionary Algorithms (EAs). This family comprises,
as main paradigms, Genetic Algorithms (GAs) [1,2], Evolution Strategies [3], Evolutionary Programming [4], Estimation of
Distribution Algorithms (EDAs) [5] and Genetic Programming [6]. Even though processing speeds grow fast, the
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requirements of this class of algorithms grow even faster. No matter the computing power available, we can always find a
harder problem that cannot run in our machines, or can do so but takes too long to complete.

Complex algorithms could run much faster in current machines if the implementations were adapted to the system’s
characteristics. That is a fact. Programming to take full advantage of a parallel, hybrid, machine is a difficult task. That is an-
other fact. In this paper we report our experiences reworking and porting to parallel platforms two instances of Estimation of
Distribution Algorithms: the Univariate Marginal Distribution Algorithm for the discrete and for the continuous domains
(UMDA, and UMDA,, respectively). We start from initial, sequential versions and develop first a parallel version for multi-
core, symmetric systems (such as quad-core Intel Xeon). These programs are, afterwards, reworked to run on a multi-core,
hybrid system: the Cell Broadband Engine. The degree of success of each of the approaches, in terms of reduction of execu-
tion times, has been very different, depending mainly on the characteristics of the problem being solved. In this paper we
describe the porting process, and discuss the causes of this disparity of results. We also provide some hints about the pecu-
liarities of the Cell processor, and some best practices to take advantage of this platform.

Portions of this work have been presented in [7,8]. In this paper we present a unified view of those preliminary works,
adding new insights into the reasons behind the success (or failure) of our developments in parallel EDAs. In particular,
we incorporate a discussion about influence of compilers on the obtained results, and also include some performance figures
obtained on IBM’s Cell simulator [9].

The rest of the paper is organized as follows. Section 2 discusses the architecture of the Cell Broadband Engine, with spe-
cial emphasis on those characteristics visible to the programmer. Section 3 summarizes the main characteristics of Evolu-
tionary Algorithms with focus on the family of Estimation of Distribution Algorithms. Section 4 introduces the Univariate
Marginal Distribution Algorithm (UMDA) with its variants for the discrete and the continuous domains. In Section 5 we de-
scribe the approach we have selected to parallelize UMDA. In Section 6 we evaluate a parallel implementation that targets
symmetric multiprocessors. In Section 7 we do the same with a porting to the Cell. Section 8 discusses the impact of program
vectorization on execution speed. We end with some conclusions in Section 9.

2. The Cell Broadband Engine

The Cell is a microprocessor system that integrates, into a single chip, a PowerPC core (Power Processing Element, PPE),
eight vector co-processors (Synergistic Processing Elements, SPEs), a memory interface, input/output interfaces and a high-
speed ring that acts as the interconnection fabric for the remaining elements [10] (see Fig. 1). A programmer who wants to
take full advantage of a Cell has to work with two different instruction sets: one for the PPE and another for the SPEs. This
usually means using two compilers, and dealing with different strategies to optimize code running in different processors. To
mention just an example, the PPE can deal with vector operations to accelerate parts of the program, but the SPEs must work
with vectors - its efficiency with scalars is poor.

Another peculiarity of the Cell is its memory organization. From a programmer’s point of view, the PPE has full, direct
access to the system’s main memory. However, the SPEs have direct access only to a small (256 KB) Local Store (LS). All
the data processed by a SPE has to be previously transferred to its LS, and the resulting data, if needed by the PPE or another
SPE, has to be explicitly transferred too. To that purpose, each SPE has a companion Memory Flow Controller (MFC) that takes

Fig. 1. Architecture of the Cell Broadband Engine.
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care of data transfers using Direct Memory Access (DMA). A good programmer can manage to make a SPE and its MFC work
at the same time, processing some pieces of data while transferring other pieces. A careless programmer may try to simul-
taneously move too much data through the interconnection fabric, which would become a bottleneck because of its limited
capacity.

Challenges for the programmer are, therefore, manyfold: different instruction sets; real necessity of working with vector
instructions; limited size of the LS; explicit data transfers between different memory blocks, etc. Adaptation of an application
to this architecture is not trivial: a few applications may have a natural mapping, but most require exhaustive reworking. A
common model for organizing Cell applications, but by no means the only one, is to use the PPE as a main processor running
most of the application’s logic, using the SPEs as acceleration co-processors [11]. The most compute-intensive sections of the
original PPE-only code are identified, and reworked to make them run in parallel in the available SPEs. As just mentioned,
this is a complex task that requires careful organization of data structures, data movement, synchronization, vectorization,
etc. In summary, using this computing platform will require the programmer to deal with unfamiliar techniques.

Regarding hardware platforms, IBM sells Cell-based blades for use in general-purpose systems, but the most popular, con-
sumer-available platform to get acquaintance with this processor is Sony’s PlayStation 3 game console. The PS3 can be easily
converted into a GNU/Linux “computer” with all the necessary toolkits to develop and run Cell applications, by means of any
of the several available Linux distributions. The main limitation of this platform is that only six SPEs are available: Sony guar-
antees just seven working SPEs (to increase manufacture yield), and one is always reserved for the operating system. In this
work we use a PS3 running Fixstars’ Yellow Dog Linux distribution [12].

3. Evolutionary Algorithms

The main characteristic of Evolutionary Algorithms is that they use techniques inspired by the natural evolution of the
species. In nature, species change across time; individuals evolve, adapting to the characteristics of the environment. This
evolution leads to individuals with better characteristics. This idea can be translated to the world of computation, using sim-
ilar concepts:

Individual: Represents a possible solution for the problem to be solved. Each individual has a set of characteristics
(genes) and a fitness value (based on its genes) that denotes the quality of the solution it represents.

Population: In order to look for the best solution, a group of individuals is managed. An initial population is created ran-
domly, and will change across time, evolving towards members with different (and supposedly better) characteristics.
Breeding: Several operators can be used to emulate the breeding process present in nature: mixing different individuals
(crossover) or changing a particular one (mutation). These operators are used to obtain new individuals, expected to be
better than the previous ones.

In the last two decades, Genetic Algorithms have been widely used to solve different problems, improving in many cases
the results obtained by previous approaches. However, GAs require a large number of parameters (for example, those that
control the creation of new individuals) that need to be correctly tuned in order to obtain good results. Generally, only expe-
rienced users can do this correctly and, moreover, the task of selecting the best choice of values for all these parameters has
been suggested to constitute itself an optimization problem [13]. In addition, GAs show a poor performance in some prob-
lems in which the existing crossover and mutation operators do not guarantee that better individuals will be obtained
changing or combining existing ones.

Some authors [2] have pointed out that making use of the relations between genes can be useful to drive a more “intel-
ligent” search through the solution space. This concept, together with the limitations of GAs, motivated the creation of a new
type of algorithms grouped under the name of Estimation of Distribution Algorithms (EDAs).

EDAs were introduced in the field of Evolutionary Computation in [5], although similar approaches can be previously
found in [14]. In EDAs there are neither crossover nor mutation operators. Instead, the new population of individuals is sam-
pled from a probability distribution, which is estimated from a database that contains the selected individuals from the cur-
rent generation. Thus, the interrelations between the different variables that represent the individuals are explicitly
expressed through the joint probability distribution associated with the individuals selected at each generation. A common
pseudo-code for all EDAs is presented in Fig. 2.

Steps 3-5 will be repeated until a certain stop criterion is met (e.g., a maximum number of generations, a homogeneous
population or no improvement after a specified number of generations). The probabilistic model learnt at step 4 has a sig-
nificant influence on the behavior of EDAs from the point of view of complexity and performance. Depending on the used
model, we can classify EDAs into these classes:

o Without dependencies: We assume that all the variables are independent.

e Bivariate dependencies: We consider only the dependencies between pairs of variables. Therefore, the process of estimat-
ing the joint probability is still simple and fast.

e Multiple dependencies: There are no restrictions on the dependencies to be considered. Obviously, this is a more complex
process.
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Step 1. Generate the first population Dy of M
individuals and evaluate all of them.
Step 2. Repeat at each generation [ until
a stopping criterion is fulfilled.
Step 3. Select N individuals (D;¢) from the D,
population following a selection method.

Step 4. Obtain from D¢ an n dimensional model that
shows the (in)dependencies between variables.
Step 5. Generate a new population D1 of

M individuals sampled from the model
learnt in the previous step.

Fig. 2. Outline of the Estimation of Distribution Algorithms (EDAs).

For detailed information about the characteristics of EDAs, and the algorithms that form part of this family, the interested
reader can see [15-18].

4. The UMDA algorithm

In this work we focus on two variants of the Univariate Marginal Distribution Algorithm (UMDA), a very simple EDA. UMDA
follows the general scheme shown in Fig. 2. In the previous section we have explained how the complexity of EDAs depends
strongly on the procedure used to learn the model. UMDA uses the simplest way to estimate this model, because it assumes
that all the variables in the problem are independent. Depending on whether the addressed problem fits on the discrete or on
the continuous domain, these estimators will be calculated in a different way. In the next subsections we explain the differ-
ences between the continuous and the discrete versions of UMDA (UMDA, and UMDA,, respectively) and we show the prob-
lems that we solve with each algorithm. These problems are common optimization problems, selected by its simplicity.

4.1. UMDA, - UMDA on the discrete domain

The algorithm UMDA, introduced in [19] considers that the model to be learnt is a probability distribution expressed as a
product of n univariate and independent probability distributions:

pi®) = p(*DF,) = [ i) )
i=1

where each Univariate Marginal Distribution is estimated from marginal frequencies:

N 0i(Xi = x;|D*
pl(Xi):ZjJ ]( . Xl 11> 2)

being

1 if in the jth case of D}%,, Xi=x
0 otherwise

5(Xi = xi[Dj%y) = { 3)
We have applied this algorithm to solve OneMax, a well known optimization problem with a very simple objective function.
This problem consists of maximizing:

n
OneMax(x) = > x; (4)
i-1
where x; € {0,1}. That is, the best solution is reached when all the variables of the individual take value 1.

4.2. UMDA; - UMDA on the continuous domain

The variation of UMDA for the continuous domain (UMDA,) [20,21] considers that the model to be learnt is a joint density
function that follows a n-dimensional normal distribution, which is factorized by a product of one-dimensional and indepen-
dent normal densities. In every generation and for every variable, UMDA, performs some statistical tests in order to find the
density function that best fits the sampling of that variable.

UMDA. is a structure identification algorithm, because the density components of the model to be learnt are identified via
hypothesis tests. This estimation of parameters is performed, after the densities are identified, by their maximum likelihood
estimates. If all the univariate distributions are normal, then the two parameters to be estimated at each generation ! and for
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each variable are the mean, y!, and the standard deviation, ¢'. It is well known that their respective maximum likelihood
estimates are:

A—lN
H=Xi=y D X (5)

=1

-

being N the number of individuals in the population and x., the different variables which compound each individual. These two
parameters, i and o, will be used later to generate new individuals. For this purpose, an adaptation of the Probabilistic Logic
Sampling (PLS) proposed in [22] is used. With PLS the instances are generated one variable at a time in a forward way. For the
generation of a univariate normal distribution, a simple method based on the sum of 12 uniform variables is applied [23].

In this work we have tested UMDA, applied to the resolution of the Sphere model optimization problem. This is a simple
minimization problem, defined so that each variable takes values from a range —M < x; <M, i=1,...,n and the fitness func-
tion for each individual is as follows:

Fio) = Y% 7)
i=1

As we can see, the fittest individual is the one in which all components are 0, which corresponds to the fitness value 0.

5. Parallelizing UMDA

The resolution of problems by means of programs that implement Evolutionary Algorithms requires, in general, long exe-
cution times. For this reason, researchers often apply parallel techniques to reduce running times. The same techniques can
also be used to improve solution accuracy, exploring a wider part of the solution space, or to manage larger problems within
the same time budget [2,24]. In this paper we describe our experience with the parallelization of UMDA, considering the two
versions of the algorithm. They are not identical, but the approach followed in both cases is basically the same - we will state
the differences when necessary.

There are two basic approaches to parallelize EAs (including EDAs and, therefore, UMDA): acceleration of program sec-
tions, and division of the population into several independent sub-populations (islands model) [25-27]. When using the is-
lands-based approach, the single population used in sequential algorithms is split into several sub-populations (islands).
These islands evolve independently, and exchange information about their individuals with a specified frequency. These
models are particularly suitable for distributed systems, because each island can be mapped onto a separate processor,
and the amount of communications required between islands is not very large.

A more conservative approach starts with a sequential algorithm, parallelizing parts of it in order to reduce the execution
time but without changing the semantics of the algorithm. The most time-consuming portions of the code are identified and
rewritten to take advantage of a parallel computer. Among the techniques to parallelize the code, or portions of it, the Man-
ager-Worker model is a popular one: a Manager task runs the main program, and delegates CPU-intensive parts to a collec-
tion of Worker tasks. For the interested reader, in the literature we can find different parallelization proposals following this
approach, for Genetic Algorithms [28] and also for EDAs [29-31].

The selection of the parallelization paradigm has to be done taking into account the characteristics of the target comput-
ing platform. We will not work with a cluster of computers, but with on-chip multiprocessors including a Cell system. The
limited memory of the Cell’s LSs does not allow us to run a complete EDA (an island) on each SPE. Therefore, we have opted
for a Manager-Worker approach in which the Manager task runs on the PPE and the Workers on the SPEs.

The starting point of our work is a sequential version of UMDA written in C++. We completed a profile of the program,
identifying those phases in which it spends most of the CPU time - thus, the candidates for acceleration. We have split run-
ning time into three portions, related to the main parts of the algorithm: Sampling + Evaluation of new individuals, Learning
of the new model, and other tasks. In Fig. 3 we have plotted the results of this profiling. As we can see, the most expensive
part is always the Sampling + Evaluation phase, which takes between 60% and 95% of the execution; actual percentage de-
pends on the algorithm, the problem being solved and the individual size. The second most-costly part is the Learning phase.

The degree of success we can expect from our acceleration approaches depend on the parts of the program we are dealing
with. The larger the non-parallelized portions, the lesser the expected reduction of time. For example, a parallelization of the
Sampling + Evaluation and the Learning phases should be more successful than a parallelization of the Sampling + Evaluation
phase only.

Note that in this paper we are dealing with very simple EDAs solving very simple problems. In other scenarios the relative
cost of the Learning phase would be higher because of the complexity of Learning a model that takes into consideration the
dependencies between variables. Similarly, we are dealing with problems (OneMax and Sphere model) with extremely simple
evaluation functions; in any other problem the evaluation of individuals would be more costly, increasing the relative effort
devoted to the Sampling + Evaluation phase. Therefore the reader should understand that, to a certain extent, this work could
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Fig. 3. Profiling of UMDA.

be considered a worst-case study on the parallelization of EDAs. As we will see later, for the Cell platform, there are other
limitations that could impede the parallelization of costly EDA/problem combinations.

Although our final objective is to test the Cell platform, we considered of great interest for comparison purposes the
development of parallel versions of our programs targeting state-of-the-art, multi-core x86 desktop computers. In addition
to this, as all the tested platforms (x86-based machines and the Cell) include vector instructions, we manually reworked all
the programs to take advantage of this feature in order to further accelerate the programs.

Regarding the specific platforms, we have used:

e A quad-core desktop computer with an Intel Xeon E5420 processor at 2.50 GHz, 4 GB of RAM and GNU/Gentoo Linux
operating system. In this platform, programs have been compiled using GNU'’s gcc (version 4.3.2) [32].

e The PS3 installation of GNU-Linux described before. Tested compilers are GNU’s gcc (version 4.1.1) and IBM'’s xIc (version
V10.1) [33].

For tuning and debugging tasks, we have also used GNU'’s gprof profiling tool [34], and the Full-System Simulator for the
Cell Broadband Engine Processor [9].

6. Parallel UMDA on a quad-core Xeon

As stated before, our approach to the parallelization of UMDA has been the implementation of a Manager-Worker
scheme. For the desktop PC platform, Manager and Workers are implemented by means of Posix Threads (Pthreads) [35].
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Using this API all the threads can share the main data structures (they can have private variables too) and have mechanisms
to synchronize if required. The UMDA algorithm is executed by the main thread (Manager) and, when necessary, it asks the
Workers for help. In particular, Workers collaborate in these phases:

e Learning the model: The Manager will ask the Workers to obtain parts of the model for a subset of the selected population.
Once all Workers have finished, the Manager creates the main model based on the partial values.

e Sampling + Evaluation: Based on the model learnt in the previous step, new individuals will be created and evaluated. Note
that this is the most expensive phase of UMDA, as can be seen through the execution profile of the sequential programs.
Again, the Manager will ask the Workers to create (and evaluate) a subset of individuals. The number of individuals to be
managed by each Worker can be established statically, or assigned dynamically using an on-demand scheme. When the
evaluation of individuals takes always the same computing time, a static assignment would be enough to guarantee a
good balance of the computational workload among the Workers. However, if the time required to evaluate an individual
depends on the values it takes, the on-demand scheme would be preferable. In our experiments we use a static distribu-
tion of the workload as the fitness evaluation takes a constant time.

Both UMDA, and UMDA, have been parallelized using this approach. In order to test the parallel implementations, we
have run and compared them against the sequential counterparts when solving the test problems discussed in Section 4
(OneMax for UMDA, and Sphere model for UMDA,). We used different individual sizes (L) for the target problems, ranging
from 100 to 1900 variables, using a population size of 2.5L. The stopping criterion was the evaluation of 50 generations.
The target machine in all cases was the quad-core Xeon, with a number of Worker threads that varied from 1 to 4. The results
of all these experiments have been summarized in Figs. 4 and 5, in which we can see the execution times for both versions
when the individual size grows.

Note that the running times of the sequential runs are different to those of the 1-Worker runs. This is because in the 1-
Worker cases there are two threads running in different cores: the Manager and a Worker - although they never run simul-
taneously. The use of more resources (in particular, of more cache memory) provides this slight improvement in efficiency.

The most relevant result is that the parallel programs are always faster than the sequential ones, and they scale very well
with the number of Workers. Efficiency levels are close to the theoretical limit. Application speedups, relative to the sequen-
tial versions, are summarized in Table 1.

7. Porting UMDA to the Cell

Once we have the multi-threaded parallel version of UMDA running on the quad-core Xeon symmetric multiprocessor,
we are ready to port it to the Cell. To do so, we have to rewrite the code to adapt it to the characteristics of this hybrid
multiprocessor.
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3 Workers ---+---
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Fig. 4. UMDA, solving the OneMax problem. Execution times on the quad-core Xeon.
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Fig. 5. UMDA_ solving the Sphere model problem. Execution times on the quad-core Xeon.
Table 1
Speedups of UMDA on the quad-core Xeon, for different individual lengths.
Num. Workers UMDA, UMDA.
100 1000 1900 100 1000 1900
1 1.33 1.22 1.14 1.11 1.05 1.07
2 1.44 229 221 1.86 2.08 2.13
3 1.59 3.16 3.17 2.16 293 3.17
4 2.18 3.71 3.92 1.96 3.95 4.06

7.1. Modifications to the program structure

Firstly we have to deal with heterogeneity: the Master thread will run on the PPE, and the Worker threads will be separate
programs running on the SPEs. In the quad-core Xeon we took advantage of a large, shared memory space, which simplifies
communication among tasks avoiding explicit data movements. This memory model is not valid for the Cell. Portions of code
have to be introduced in order to explicitly move data, using DMA, from the main memory to the SPE’s LSs and vice versa.
This process is costly not only in terms of programming difficulty, but also in terms of application running times.

The profiling of UMDA helped us identifying those parts that should be delegated to the Workers: Learning the probability
model, and Sampling + Evaluation. That is what we did for the quad-core Xeon platform. For the Cell, though, we made the
Workers deal only with the latter. During the Learning phase, in the multi-thread version, the Manager asks the Workers to
obtain the partial models for a subset of the selected individuals, a subset to which Workers have access by means of the
shared memory. In the case of the Cell, it would be necessary to explicitly send the subsets to the SPEs using DMA transfers.
Taking into account that the model learnt by UMDA is very simple, the cost of computing a part of the model is smaller than
the cost of the transfers - therefore, efficiency would be penalized.

In Listings 1 and 2 we can see how a SPE uses DMA transfers to fetch a new model at the beginning of each new gener-
ation, and how explicit transfers are used again to send the recently generated individuals.

For the Sampling + Evaluation phase, we repeat for the Cell the same scheme used in the multi-thread code. The Manager
asks the Workers to create and evaluate a given number of individuals. The Workers (executed in the SPEs), use a double-
buffer technique to create, evaluate and send the individuals to the PPE using DMA. This technique consists on working on an
individual while, in parallel, another one is being transferred to the Manager. In Figs. 6 and 7 we can see the pseudo-codes for
the parallelized version of UMDA: the Manager running in the PPE, and the Workers running in the SPEs. These figures can be
directly compared with Fig. 2, which corresponds to the sequential version.

The decisions about the program phases that are delegated to the Workers, together with the profiling information from
the sequential UMDA (see again Fig. 3), allows us to predict that the levels of scalability of the Cell ports will not be as good as
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tag = spu_read in_mbox ();
// Synchronization via Mailbozes

mfc_get (model, model address, model size, tag, 0, 0);

// DMA transfer initiation. Parameters are:

// model: A floats vector where the model is stored

// model_address: A pointer to destination at Main Memory
// model_size: Model’s size

// tag: Channel to be used

mfc_write tag mask (tag mask);
mfc_read tag status_all ();
// Waiting for the transfer finalization at channel stored in tag

Listing 1. DMA model transfer in the SPE.

mfc_write tag mask (1<<z);

spu_mfcstat (MFC_TAG_ UPDATE ALL);

spu_ write_out_mbox (z);

// Waiting to the last transfer end over the channel z

z = spu_read in_mbox ();
// Signaling availability of the channel from the PPE

delete inds [z];
inds [z] = ind;
// Updating the buffer

mfc_put ( inds [z], inds [z].address, inds [z].size, z, 0, 0);
// Transfering the new individual over channel z

Listing 2. Transfer of an individual in the SPE.

Step 1. Generate the first population Dy of M individuals
and evaluate all of them.
Step 2. Repeat at each generation [ until a stopping
criterion is fulfilled.
Step 3. Select N individuals (D{¢) from the D; population
following a selection method.
Step 4. Obtain from DZS“ a model that shows
the (in)dependencies between variables.
Synchronization via Mailboxes.
Step 5. Ask the SPEs to generate and evaluate N individuals.
Synchronization via Mailboxes.

Fig. 6. Pseudo-code of UMDA on the Cell - PPE part.

Synchronization via Mailboxes.
Step 1. Transfer the model from

the PPE to each SPE.
Step 2. For i =1..M/6 do

Step 3. Generate a new individual sampled

from the model learnt in the previous step.
Step 4. Evaluate the individual.
Step 5. Transfer the individual via DMA.

from the SPE’s LS to the PPE’s Main Memory.
Synchronization via Mailboxes.

Fig. 7. Pseudo-code of UMDA on the Cell - SPE part.
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those obtained with the quad-core platform. In particular, we expect the parallel version of UMDA, scaling much better than
the parallel version of UMDA,.

When dealing with the Cell, a good parallelization scheme is not the only key to obtain an effective program. Due to the
limited size of each SPE’s LS (256 KB for both code and data), it is recommendable (even compulsory) to reduce the size of the
code as much as possible. In the following lines we discuss some ideas that can help obtaining binaries of small size:

Optimization flags: The optimization level used when compiling a program affects not only the speed of the executable,
but also its size. In Tables 2 and 3 we show the impact that different optimization flags for GNU gcc and IBM xIc have on
the overall execution times of our UMDA codes, and also the size of the Worker part (the binary that runs on the SPEs). In
this particular case all options for gcc result in very similar execution times, but we can notice significant differences in
sizes. However, with xIc there are notable differences in both execution times and code sizes. The right size/speed ratio
has to be found, taking into account that a smaller code can free more space for larger data structures, something that
conveniently exploited can result in shorter running times. For the experiments, we have used the -03 optimization flag
with the gcc compiler.

C++ exception handling: This mechanism increases in about a 10% the size of the code. We can avoid this system (for
well debugged code) using the flag -fno-exceptions with gcc, or -qnoeh with xIc.

Libraries: It is also important to be careful with the libraries linked with the SPE code. As dynamic linking is not available
for the SPEs, all the required libraries must be linked statically, increasing the final size of the executable. For example, an
implementation of UMDA populations using the C++ Standard Template Library makes final code 70 KB larger than an
alternative implementation using arrays.

Ignoring these suggestions can result in a code that does not fit into the SPEs’ Local Stores, or a code that leaves no room
for the local data structures. This can be an important drawback when designing and adapting code for the Cell.

7.2. Performance of parallel UMDA on the Cell

In this section we analyze the behavior of the Cell ports of UMDA. Tests have been made varying the length of the indi-
viduals from 100 to 1900 variables; the number of Worker threads (used SPEs) has been varied from 1 to 6, and the stopping
criterion was to complete 50 generations for each problem. This criterion has been selected to guarantee a fair comparison
between program versions - although it may make programs stop before reaching an optimal solution.

Results are summarized in Figs. 8 and 9 and Table 4. The first conclusion is that UMDA, does not make an efficient usage
of the Cell architecture. The 1-Worker version (involving the PPE plus a single SPE) is slightly faster than the sequential ver-
sion (running only on the PPE). Adding additional resources (more Workers) does not significantly accelerate running times.

Table 2
Code size and execution times (solving OneMax and Sphere Model) for different gcc compilation flags. Individual size = 1000. Fifty generations. Six SPEs.
Flags UMDA, UMDA.
Size (bytes) Exec. time (s) Size (bytes) Exec. time (s)
-Os 120,860 65.65 120,796 29.99
-00 144,628 141.19 144,300 72.10
-01 124,076 49.59 123,964 20.37
-02 123,164 54.33 123,068 20.06
-03 126,772 49.56 126,676 20.21
Table 3
Code size and execution times for different xlc compilation flags. Individual size = 1000. Fifty generations. Six SPEs.
Flags UMDA, UMDA,
Size (bytes) Exec. time (s) Size (bytes) Exec. time (s)
-00 147,944 140.60 147,752 69.38
-02 156,520 48.84 156,136 19.72
-02 -qcompact 150,056 95.83 149,800 43.75
-03 184,856 48.41 190,120 19.44
-03 -qcompact 159,960 93.44 162,024 43.03
-04 98,896 46.60 106,448 19.14
-04 -qcompact 101,936 555.50 104,320 276.19
-05 102,352 45.66 103,504 18.18

-05 -qcompact 97,080 545.49 99,064 269.69
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Fig. 8. UMDA, solving the OneMax problem. Execution times on the Cell.
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Fig. 9. UMDA_ solving the Sphere Model problem. Execution times on the Cell.
Table 4
Speedups of UMDA on the Cell, for different individual lengths.
Num. Workers UMDA, UMDA.
100 1000 1900 100 1000 1900
1 1.47 1.15 1.14 0.87 0.92 0.93
2 2.32 1.41 1.33 1.67 1.71 1.65
3 291 1.52 1.40 2.44 2.40 2.23
4 2.97 1.58 1.45 3.03 3.00 2.68
5 2.86 1.62 1.48 3.70 3.53 3.07
6 2.84 1.64 1.49 4.07 3.98 3.38
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For UMDA, the picture is different: sequential and 1-Worker versions take approximately the same time, and adding Work-
ers always result in smaller times; the maximum speedup achieved is around 3.5 for 6 SPEs, independently of the individual
size. Note that, from the profiling information, it is not surprising that UMDA, scales better than UMDA,, because the par-
allelized portion of the program (the Sampling + Evaluation phase) is significantly larger.

In order to better understand the reasons behind the scalability properties of the programs, we have used IBM’s Full-Sys-
tem Simulator for the Cell [9]. We ran the programs inside this environment, making measurements of resource utilization
on the SPEs. Some of these measurements are depicted in Figs. 10-12. Each figure comprises two parts: the upper one shows
the CPU utilization of one SPE, while the lower one depicts the DMA transfers carried out in the same SPE.

Figs. 10 and 11 correspond to the execution of UMDA, with individuals of 200 variables, using one and six SPEs, respec-
tively. The gaps between execution blocks correspond to the execution of the non-parallelized parts of the program on the
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Fig. 13. Speedups of parallel UMDA on the Cell for different values of k. Ind. length = 1900



C. Pérez-Miguel et al./Parallel Computing 36 (2010) 618-634 631
PPE. It can be seen that, with a single SPE, these gaps are relatively small compared to the Worker execution blocks. This is
obviously not the case when there are six Workers, because execution blocks are notably shorter and the sequential code
gains relative weight.

When individual size grows, the non-parallelized part of UMDA increases too (Fig. 3). Therefore, the weight of the PPE
part should augment. We have confirmed this behavior running the program in the simulator using an individual with 500

variables: see Fig. 12.
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Fig. 14. Impact of vectorization of UMDA for the quad-core Xeon.
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Fig. 15. Impact of vectorization of UMDA for the Cell.
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For the sake of brevity we have not included the figures for the UMDA, program, as they do not provide additional insights
into the program’s behavior. Finally, we want to remark that the graphs allow us to verify that the double-buffer technique
works well, allowing the SPEs to run while data transfers are taking place.

In the Introduction we discussed how the utilization of simple evaluation functions can be considered a stress-test for the
parallel UMDAs, because the part to run in parallel is precisely the Sampling + Evaluation phase. What would happen if these
functions were not that simple?

Instead of using other, more costly, evaluation functions, we decided to run additional tests artificially increasing the
evaluation cost. To that extent, we added a parameter k to the programs, which indicates a number of times the evaluation
function will be (unnecessarily) executed. This way we can manually tune the relative weight of the Sampling + Evaluation
phase. Results for different values of k, for an individual size of 1900, are summarized in Fig. 13. As expected, now UMDAy
shows better scalability figures, because SPEs are used more efficiently (run for more time between sequential phases). It is
not surprising that with UMDA, additional benefits are minor, because the non-parallelized phases of the algorithm were
small from the beginning.

8. Impact of manual vectorization

Vector processors give us the possibility to operate over multiple data elements with a single instruction. As the two plat-
forms used in our experiments integrate support for vector operations, we decided to modify our UMDA implementations to
take advantage of this feature.

We already know that the most expensive phase of UMDA is the sampling and evaluation of new individuals. To accel-
erate the sampling step we have adapted (vectorized) the random number generation function, making it capable of gener-
ating values in groups of four. Similarly, the function that evaluates individuals was rewritten to carry out the different
arithmetic operations in groups of four.

The vectorized version of the Cell implementation was made using SPE intrinsics [36] and the libmisc library included in
the IBM Cell SDK [37], which provides a vectorized version of a uniform random number generator. For the Intel platform we
used SSE intrinsics [38] and implemented our own vectorized version of a linear congruential generator [39].

We repeated the experiments with the manually vectorized implementations of UMDA when managing problems with
individuals of length 1900. In Fig. 14 we summarize the execution times on the quad-core Xeon, comparing vectorized vs.
non-vectorized code using one and four Workers; this is done to verify that benefits of vectorization add to those of parall-
elization. Results for the Cell are in Fig. 15, using one and six Workers.

We can observe that manual vectorization is always beneficial, and that the acceleration levels for UMDA, are impressive.
While this is true for both platforms, benefits on the Cell are higher. This is because the SPEs are vector processors, designed
specifically for this form of computing, and the cost of a scalar operation with a single data element can be superior to that of
a vector operation over four data elements.

These figures also allow us to do a direct platform-to-platform comparison. They show clearly that, for the class of codes
we are dealing with, the quad-core Xeon can be up to one order of magnitude faster than the Cell platform. We have to take
into consideration that the Xeon platform is a high-end desktop computer, considerably more expensive than a PS3 (but not
ten times more expensive). Additionally, in our experience, the homogeneous quad-core is much easier to program than the
heterogeneous Cell - except the part related to vectorization, which is harder to use in the Xeon. The promise of huge com-
puting power for a budget using consumer gadgets can be true, but the programming effort required to take advantage of
these platforms is still too high.

9. Conclusions

In this paper we have implemented and evaluated several parallel ports of UMDA, an instance of the class of Estimation of
Distribution Algorithms, for two different platforms: a homogeneous quad-core Intel Xeon and a hybrid Cell processor that
fuels a Sony PlayStation 3. A profile of the sequential program was the key to identifying the portions to be accelerated, via
parallelism based on a Manager-Worker scheme. In the quad-core Xeon Manager and Workers were implemented using
threads that communicate by means of shared memory structures. In the Cell the implementation was more complex for
different causes, being the main one the lack of a global memory shared by all the SPEs. In this platform the Manager runs
on the PPE and the Workers on the SPEs. DMA transfers are required to move data (individuals) back and forth the main
memory.

Experimental work shows that the degree of success of these programs depends on the platform on which they run. The
Xeon versions have been a complete success: for large-enough problems (in terms of complexity of the functions to evaluate,
and also in terms of individual sizes) the utilization of multiple processing cores immediately results in program accelera-
tion. Achieved speedups are very close to the theoretical ones. And this can be accomplished without major programming
efforts.

The Cell platform, main theme of this paper, presents a different picture. Programming the Cell is a challenge for many
reasons, from which we stress one: the lack of a large, shared memory. SPEs are only able to process data and instructions
from their small LSs. The programmer has to include instructions to move data back and forth, and SPE programs have to be



C. Pérez-Miguel et al./ Parallel Computing 36 (2010) 618-634 633

small. These restrictions limited the amount of computational work delegated to the SPEs, and also the complexity of the
problems being solved. Regarding program acceleration, achieved speedups have always been less than four, when using
the six available SPEs.

As all the platforms used in our experiments integrate support for vector operations, we have tested manually vectorized
versions of the programs, implemented using different repertoires of intrinsics. The vectorized programs perform exceed-
ingly well, especially on the Cell. The lesson to learn is that if we ignore the vector nature of this platform we will get poor
performance figures.

To summarize this work, we can affirm that a Cell system is full of potential, but this potential is not easily extracted. The
required programming effort is considerably high, and returns are not always good. Still, once a programmer has familiarity
with the platform, the task of efficiently using it becomes easier, giving us the possibility of using a low-cost but powerful
machine.
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