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Abstract— Current consumer-grade computers and
game devices incorporate very powerful processors
that can be used to accelerate many classes of scien-
tific codes. However, programming multi-core chips,
hybrid multi-processors or graphical processing units
is not an easy task for those programmers that deal
mainly with sequential codes. In this paper, we ex-
plore the ability of the Cell Broadband Engine to
run a particular Estimation of Distribution Algorithm
(Univariate Marginal Distribution Algorithm for the
Continuous domain). From an initial sequential ver-
sion, we develop a multi-threaded one that is after-
wards reworked to run on a Cell. Both versions of the
code show significant improvements in performance,
compared to the sequential version. We analyze the
results obtained and provide some clues about the
performance/cost characteristics of the tested plat-
forms.

Keywords— Cell Broadband Engine, Estimation of
Distribution Algorithms in Continuous Domains, Par-
allel programming

I. Introduction

THE recent popularization of consumer hardware
with parallel capabilities, such as multi-core

processors (including the Cell Broadband Engine)
and GPUs, that we can find in personal comput-
ers and game consoles, brings out the potential of
enormous computing power for a budget. However,
exploiting this potential is not easy: programs have
to be reworked in order to take advantage of these
parallel, sometimes hybrid, processors. They require
complex programming methods that are not easy for
the casual programmer. Parallelism, a challenge by
itself, is not the only issue. Unfamiliar memory mod-
els, limited instruction sets, explicit communications,
etc. combine to make really hard the effective ex-
ploitation of theoretically powerful machines.

The availability of powerful computers (not nec-
essarily parallel) with large amounts of memory has
encouraged the design and implementation of non-
trivial algorithms to solve different kinds of complex
optimization problems. Some of these problems can
be solved via an exhaustive search over the solu-
tion space, but in most cases this brute force ap-
proach is unaffordable. In these situations, heuris-
tic methods (deterministic or non deterministic) are
often used, which search inside the space of promis-
ing solutions. Some heuristic approaches are specifi-
cally designed to find good solutions for a particular
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problem, but others are presented as a general frame-
work adaptable to many different situations. Among
this second group (general designs), there is a fam-
ily of algorithms that has been widely used in the
last decades: Evolutionary Algorithms (EAs). This
family comprises, as main paradigms, Genetic Algo-
rithms (GAs) [1], [2], Evolution Strategies [3], Evo-
lutionary Programming [4] and Genetic Program-
ming [5]. Even though processing speeds grow fast,
the requirements of this class of algorithms do even
faster. No matter the computing power available, we
can always find a harder problem that cannot run in
our machines, or can do so but takes too long to run.

Therefore, we have the problem (the execution
of complex optimization algorithms) and the plat-
form (consumer-grade parallel hardware). We need
to port the application to the target hardware, in
order to efficiently exploit the latter, to accelerate
program execution and/or obtain better solutions.

In this paper, we extend the work presented in [6],
in which we tested the suitability of the Cell as a
computing platform for one algorithm of the family
of Estimation of Distribution Algorithms. In par-
ticular, we studied the Univariate Marginal Distri-
bution Algorithm (UMDA), applied to solving the
OneMax function, a well-known toy problem. Due
to the characteristics of UMDA (discrete variables
and simple probabilistic model) and the problem to
solve, we observed a discouraging poor performance
in terms of execution time and scalability, compared
to that provided by a commodity multi-core per-
sonal computer. The main reason for this disap-
pointing behavior has to be found in the computa-
tion/communication ratio of this particular program.
As the vector units of the Cell have only a small lo-
cal memory, the time needed to move data from/to
the main memory dominated the overall execution
time, thus impeding the full exploitation of the Cell’s
power.

As the family of EDAs comprises algorithms in
both discrete and continuous domains, we decided
to extend our previous work by testing an algorithm
similar to UMDA, but for continuous domains. It is
called Univariate Marginal Distribution for the Con-
tinuous domain (UMDAc). The main purpose is to
evaluate the performance of the Cell platform when
working with floating-point numbers.

We followed the same methodology used to paral-
lelize UMDA. Starting from an initial sequential ver-
sion, the algorithm was ported to a parallelized ver-



Fig. 1. Cell Broadband Engine Architecture.

sion capable of running on a multi-core, symmetric
system (such as a Quad-Core Intel Xeon processor).
The parallel version was, afterwards, reworked to run
on a multi-core, hybrid system (the Cell Broadband
Engine). To further accelerate the programs, vec-
torization techniques were applied in a second step.
The final results show that our parallel and vector-
ized implementations of UMDAc can very effectively
exploit the potential of the Cell and of multi-core
CPUs.

The rest of the paper is organized as follows. Sec-
tion II discusses the architecture of the Cell Broad-
band Engine, with special emphasis on those charac-
teristics visible to the programmer. Section III sum-
marizes the main characteristics of Evolutionary Al-
gorithms and, in particular, the family of Estimation
of Distribution Algorithms in the continuous domain
and the problem to be solved with our implementa-
tion. Section IV explains the process of porting the
algorithm and the vectorization process in the two
platforms. Section VI shows the experiments made
in order to compare both implementations.

II. Cell Broadband Engine

The Cell is a microprocessor system that inte-
grates, into a single chip, a Power-based processor
(Power Processing Element, PPE), eight vector co-
processors (Synergistic Processing Elements, SPEs),
a memory interface, input/output interfaces and a
high-speed ring that acts as the interconnection fab-
ric for the remaining elements [7] (see Figure 1, ex-
tracted from [8]). A programmer that wants to take
full advantage of a Cell has to deal with two different
instruction sets: one for the PPE and another one for
the SPEs. This usually means using two compilers,
and dealing with different strategies to optimize code
running in different processors. To mention just an
example, the PPE can deal with vector operations to
accelerate parts of the program, but the SPEs must
work with vectors – its efficiency with scalars is not
brilliant.

Another peculiarity of the Cell is its memory or-
ganization. From a programmer’s point of view, the
PPE has full, direct access to the system’s main
memory. However, the SPEs have direct access only
to a very limited sized (256 KB) local store. All the
data processed by an SPE has to be previously trans-
ferred to its local store, and the resulting data, if re-
quired by the PPE or another SPE, has to be explic-

itly transferred too. To that purpose, each SPE has
a companion Memory Flow Controller (MFC) that
can take care of this transfer. A good programmer
can manage to make an SPE and its MFC work at
the same time, processing pieces of data while trans-
ferring new ones. A careless programmer may try
to simultaneously move too much data through the
interconnection fabric, which would become a bot-
tleneck because of limited capacity.

Challenges for the programmer are, therefore,
manifold: different instruction sets; real necessity
of working with vector instructions; limited mem-
ory size; explicit transfer of data between different
memory blocks, etc. Adaptation of an application
to this architecture is not trivial: a few applications
may have a natural mapping, but most require ex-
haustive reworking. A common model for organizing
Cell applications, but by no means the only one, is to
use the PPE as a main processor running most of the
application’s logic, using the SPEs as acceleration co-
processors [9]. The most compute-intensive sections
of the original PPE-only code are identified, and re-
worked to make them run in parallel in the available
SPEs. As just mentioned, this is a complex task that
requires careful organization of data structures, data
movement, synchronization, vectorization, etc.

Regarding hardware platforms, IBM sells Cell-
based systems for use as general-purpose systems,
but the most popular, consumer-available platform
to get acquaintance with this processor is Sony’s
PlayStation 3 game console. The PS3 can be easily
converted in a GNU/Linux “computer” with all the
necessary toolkits to develop and run Cell applica-
tions, by means of any of the several available Linux
distributions. The main limitation of this platform
is that only six SPEs are available: Sony guarantees
just seven working SPEs (to increase manufacture
yield), and one is always reserved for the operating
system. In this work we use a PS3 running Fixstars’
Yellow Dog Linux [10].

III. Evolutionary Algorithms

The main characteristic of Evolutionary Algo-
rithms is that they use techniques inspired by the
natural evolution of the species. In nature, species
change across time; individuals evolve, adapting to
the characteristics of the environment. This evolu-
tion leads to individuals with better characteristics.
This idea can be translated to the world of compu-
tation, using similar concepts:

Individual: Represents a possible solution for the
problem to be solved. Each individual has a
set of characteristics (genes) and a fitness value
(based on its genes) that denotes the quality of
the solution it represents.

Population: In order to look for the best solution,
a group of individuals is managed. An initial
population is created randomly, and will change
across time, evolving towards members with dif-
ferent (and supposedly better) characteristics.

Breeding: Several operators can be used to emu-



late the breeding process present in nature: mix-
ing different individuals (crossover) or changing
a particular one (mutation). These operators
are used to obtain new individuals, expected to
be better than the previous ones.

In the last two decades, Genetic Algorithms have
been widely used to solve different problems, improv-
ing in many cases the results obtained by previous
approaches. However, GAs require a large number
of parameters (for example, those that control the
creation of new individuals) that need to be cor-
rectly tuned in order to obtain good results. Gen-
erally, only experienced users can do this correctly
and, moreover, the task of selecting the best choice of
values for all these parameters has been suggested to
constitute itself an optimization problem [11]. In ad-
dition, GAs show a poor performance in some prob-
lems (deceptive and separable problems) in which
the existing crossover and mutation operators do not
guarantee that better individuals will be obtained
changing or combining existing ones.

Some authors [2] have pointed out that making use
of the relations between genes can be useful to drive a
more “intelligent” search through the solution space.
This concept, together with the limitations of GAs,
motivated the creation of a new type of algorithms
grouped under the name of Estimation of Distribu-
tion Algorithms (EDAs).

EDAs were introduced in the field of Evolutionary
Computation in [12], although similar approaches
can be previously found in [13]. In EDAs there are
neither crossover nor mutation operators. Instead,
the new population of individuals is sampled from a
probability distribution, which is estimated from a
database that contains the selected individuals from
the current generation. Thus, the interrelations be-
tween the different variables that represent the in-
dividuals are explicitly expressed through the joint
probability distribution associated with the individ-
uals selected at each generation. A common pseudo-
code for all EDAs is presented in Fig. 2.

Steps 3, 4 and 5 will be repeated until a certain
stop criterion is met (e.g., a maximum number of
generations, a homogeneous population or no im-
provement after a specified number of generations).
The probabilistic model learnt at step 4 has a signif-
icant influence on the behavior of the EDA from the
point of view of complexity and performance.

For detailed information about the characteristics
of EDAs, and the algorithms that form part of this
family, see [14], [15], [16], [17].

IV. The UMDAc Algorithm

The Univariate Marginal Distribution Algorithm
for the continuous domain (UMDAc) [18], [19], is an
EDA which supposes that there is not any depen-
dency between the variables involved in the problem.
It assumes that the joint density function follows a
n-dimensional normal distribution, which is factor-
ized by a product of one-dimensional and indepen-
dent normal densities. In every generation and for

Pseudo-code for the EDA framework.

Step 1. Generate the first population D0 of M
individuals and evaluate all of them

Step 2. Repeat at each generation l until
a stopping criterion is fulfilled

Step 3. Select N individuals (DSe
l ) from

the Dl population following a
selection method

Step 4. Obtain from DSe
l an n dimensional

probability model that shows
the interdependencies between
variables

Step 5. Generate a new population Dl+1 of
M individuals based on the sampling
of the probability distribution
pl(x) learnt in the previous step

Fig. 2. Common outline for Estimation of Distribution Algo-
rithms (EDAs).

every variable, the UMDAc performs some statistical
tests in order to find the density function that best
fits the sampling of that variable.

The UMDAc is a structure identification algorithm
because the density components of the model to be
learn are identified via hypothesis tests. This esti-
mation of parameters is performed, after the densi-
ties are identified, by their maximum likelihood esti-
mates. If all the univariate distributions are normal,
then the two parameters to be estimated at each gen-
eration and for each variable are the mean, µl

i, and
the standard deviation, σl

i. It is well known that
their respective maximum likelihood estimates are:

µ̂l
i = X l

i =
1
N

N∑
r=1

xl
i,r (1)

σ̂l
i =

√√√√ 1
N

N∑
r=1

(xl
i,r − X l

i)2 (2)

V. Parallelization of UMDAc

Evolutionary Algorithms require, in general, long
execution times. For this reason, researchers often
apply parallel techniques to reduce running times.
These techniques are also useful to improve accuracy
or to manage larger problems with the same time
budget [20], [2].

There are two basic approaches to parallelize EAs:
parallelization of program loops, and division of the
population into several independent subpopulations
(islands model). When using the islands approach,
the single population used in sequential algorithms
is split into several sub-populations (islands). These
islands evolve independently, and exchange informa-
tion about their best individuals with a predefined
frequency. These models are suitable to distributed
systems, because each island can be mapped onto a



separate processor, and the amount of communica-
tions required between islands is not very large. A
more conservative approach starts with a sequential
algorithm like that described in Figure 2, paralleliz-
ing parts of it in order to speed-up the execution
time but without changing the semantics of the algo-
rithm. There exist different proposals for GAs [21] or
EDAs [22], [23], [24]. The most time-consuming por-
tions of the code are identified and rewritten to take
advantage of a parallel computer. Among the tech-
niques to parallelize the code, or portions of it, the
Manager-Worker model is a popular one: a Manager
task runs the program, and delegates CPU-intensive
parts to a collection of Worker tasks.

The selection of the parallelization paradigm has
to be done taking into account the characteristics of
the available computing platform. We will not work
with a cluster of computers, but with on-chip multi-
processors – in particular, with a Cell system. The
limited memory of the Cell’s SPEs does not allow
us to run a complete EDA (an island) in each SPE.
Therefore, we have to opt for the Manager-Worker
approach. The Manager task will run on the PPE
and the Workers on the SPEs.

The parallel approach has been done starting from
a sequential version of UMDAc written in C++. Be-
fore designing the parallel version for the Cell, we
considered interesting, for comparison purposes, to
design a parallel version based on the Posix Threads
(pthreads) library [25], that could be executed on a
multi-core personal computer. Also, as both multi-
core Intel-based machines and the Cell include vector
instructions (that can accelerate our application), we
have also evaluated manually vectorized versions of
the code.

Following the Manager-Worker scheme, the
UMDAc algorithm will be executed by the main
thread (Manager), and when necessary, it will ask
the Workers for help. In particular, workers will col-
laborate in these phases:

• Learning the probabilistic model: As introduced
previously, UMDAc uses a very simple proba-
bilistic model, that assumes that there is no re-
lation between the variables. Therefore, once
the population has been selected, the Manager
will ask the workers to obtain parts of the mean
and standard deviation –our implementation as-
sumes normal distributions–, for a subset of
the selected population. Once each Worker has
finished, the Manager creates the main model
based on the partial values.

• Sampling and Evaluation: These two steps usu-
ally come together. That is, based on the model
learnt in the previous step, new individuals will
be created and evaluated. Again, the Manager
will ask the workers to create (and evaluate) a
subset of individuals. The number of individ-
uals to be managed by each worker can be es-
tablished statically, or assigned dynamically us-
ing an on-demand scheme. That is, when the
evaluation of the individuals takes always the
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Pthreads).

same computing time, a static assignation can
be done. However, if the time required to evalu-
ate the individual depends on the values it takes,
the on-demand scheme would be preferable.

In order to test the performance of our different
implementations of UMDAc, we used them to solve
an artificial problem, the Griewangk minimization
problem [26]. The fitness function is defined as fol-
lows:

F (x) = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
(3)

The range of all the variables of the individual is
−600 ≤ xi ≤ 600, i = 1, . . . , n, and the fittest indi-
vidual corresponds to a value of 0, that only can be
obtained when all the variables of the individual are
0.

VI. Measuring the performance of the
UMDAc

In order to test the performance of this multi-
threaded version, we completed several experiments
on an Intel Xeon Quad-Core computer. Different in-
dividual sizes were used (ranging from 100 to 3,000
variables), using a population size of 2, 5L, being L
the number of variables of the individual. Tests were
performed with 1-4 threads. UMDAc was stopped
after computing 50 generations. The results of these
experiments are shown in Figure 3.

According to the results, it can be seen that the
multi-threaded version has an adequate behavior
from the point of view of scalability. Therefore, the
second step of this work would be to test the suit-
ability of the Cell for the execution of this EDA.

We have made the same experiment with the Cell
version executed over a PS3. In this case, individ-
ual sizes range from 100 to 1,800 variables (due to
limitations on the SPE’s local store). The number of
threads (running in different SPEs) was varied from
1 to 6. The rest of the parameters – population size,
stopping criterion – were as in the previous experi-
ments. Results can be seen in Figure 4. Clearly, the
solution scales with the number of SPEs, providing
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good performance levels. This is good news because,
as reported in our previous work [6], for the UMDA
applied to discrete domains, the performance of Cell
was very poor. Therefore, we can state that the Cell
is a more suitable platform to run UMDAc (contin-
uous domain, floating-point numbers).

Vector processors give us the possibility to operate
over multiple data with a single machine instruction.
As the two platforms used in our experiments inte-
grate support for vector operations, we decided to
modify the UMDAc implementations to take advan-
tage of this feature. One of the more expensive parts
of the UMDAc is the sampling and evaluation of new
individuals. In the sampling step, an adaptation of
the Probabilistic Logic Sampling (PLS) for the con-
tinuous domain is used. This technique needs ran-
dom values to create new individuals, and thanks to
the vectorization, the process of obtaining these ran-
dom values can be done in groups of four. A similar
idea was applied to the evaluation of the individuals,
rewriting the evaluation function to compute the dif-
ferent operations: square root, cosine, square, etc. in
groups of four.

The vectorized version of the Cell implementation
was made using SPU intrinsics [27] and the libmisc
library included in the IBM Cell SDK [28], which
implements vectorized versions of a uniform random
number generator. For the Intel platform, we used
SSE intrinsics [29] and implemented our own vector-
ized version of a linear congruential generator [30].

We repeated the experiments with the vectorized
implementations of UMDAc. Results are shown in
Figures 5 and 6. Note that the scale (X axis) for
each figure is different. As we can observe, the accel-
eration levels obtained via vectorization are impres-
sive for both platforms. In Figure 7 we have plotted
the scalar/vector acceleration ratio (speedup) for 1
thread (Xeon) and 1 SPU (Cell) for different indi-
vidual sizes. We can see that for the Xeon platform
the maximum speedup is achieved for individuals of
size larger than 300, and that this figure remains sta-
ble for longer individuals. However, for the Cell, a
peak is observed for individuals of size 500, but for
larger problems speedup drops. We need to further
explore this issue, but we suspect that the cause is on
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the bottlenecks in the internal Cell interconnection
network, which saturates when large DMA transfers
occur too often – that is, when the application is too
communication-biased.

When comparing the two platforms, Figure 3 ver-
sus Figure 5, and Figure 4 versus Figure 6, we can
observe that, even using vectorized code, the Xeon
Quad-Core is one magnitude order faster. In the se-
lection of the best platform we can not forget the
cost of each solution. In terms of code development,
the Xeon Quad-Core is an easier platform to pro-
gram multi-thread code but harder at the vectoriza-
tion process than the Cell. Also if we compare their
prices, the cheapest Cell platform, the PlayStation
3, is about half price the Xeon Quad-Core, giving us
an enormous computing power for a budget.

VII. Conclusions

In this paper we have evaluated several parallel
implementations of UMDAc on two different plat-
forms: a Quad-Core Intel Xeon and a Cell (PlaySta-
tion 3) system. We have shown that the well-known
Manager-Worker parallelization scheme can be suc-
cessfully applied to port our algorithm to these plat-
forms: in both cases we are capable of exploiting
the availability of multiple cores, homogeneous for
the Xeon system, and heterogeneous for the Cell.
Additionally, as all the processors involved in our
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experiments integrate support for vector operations,
we have tested manually vectorized versions of the
programs, which were implemented using different
repertoires of intrinsics. The vectorized versions of
the programs perform exceedingly well, providing ad-
ditional speedups on the 5-9 range (depending on the
platform and the problem size).
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