
Porting Estimation of Distribution Algorithms to the Cell Broadband Engine

Carlos Ṕerez-Miguel, Jose Miguel-Alonso and Alexander Mendiburu
Department of Computer Architecture and Technology

The University of the Basque Country
{carlos.perezm, j.miguel, alexander.mendiburu}@ehu.es

Abstract

Current consumer-grade computers and game devices
incorporate very powerful processors that can be used
to accelerate many classes of scientific codes. However,
programming multi-core chips, hybrid multi-processors or
graphical processing units is not an easy task for those pro-
grammers that deal mainly with sequential codes. In this
paper, we explore the ability of the Cell Broadband Engine
to run a particular Estimation of Distribution Algorithm
(Univariate Marginal Distribution Algorithm for the Con-
tinuous domain). From an initial sequential version, we
develop a multi-threaded one that is afterwards reworked
to run on a Cell. Both versions of the code show signif-
icant improvements in performance, compared to the se-
quential version. We analyze the results obtained and pro-
vide some clues about the performance/cost characteristics
of the tested platforms.

1 Introduction

The recent popularization of consumer hardware with
parallel capabilities, such as multi-core processors (includ-
ing the Cell Broadband Engine) and GPUs, that we can
find in personal computers and game consoles, brings out
the potential of enormous computing power for a budget.
However, exploiting this potential is not easy: programs
have to be reworked in order to take advantage of these
parallel, sometimes hybrid, processors. They require com-
plex programming methods that are not easy for the casual
programmer. Parallelism, a challenge by itself, is not the
only issue. Unfamiliar memory models, limited instruction
sets, explicit communications, etc. combine to make really
hard the effective exploitation of theoretically powerfulma-
chines.

The availability of powerful computers (not necessar-
ily parallel) with large amounts of memory has encouraged
the design and implementation of non-trivial algorithms to
deal with different kinds of complex optimization problems.

Some of these problems can be solved via an exhaustive
search over the solution space, but in most cases this brute
force approach is unaffordable. In these situations, heuris-
tic methods (deterministic or non deterministic) are often
used, which search inside the space of promising solutions.
Some heuristic approaches are specifically designed to find
good solutions for a particular problem, but others are pre-
sented as a general framework adaptable to many differ-
ent situations. Among this second group (general designs),
there is a family of algorithms that has been widely used
in the last decades: Evolutionary Algorithms (EAs). This
family comprises, as main paradigms, Genetic Algorithms
(GAs) [10, 13], Evolution Strategies [29], Evolutionary Pro-
gramming [9] and Genetic Programming [16]. Even though
processing speeds grow fast, the requirements of this class
of algorithms grow even faster. No matter the computing
power available, we can always find a harder problem that
cannot run in our machines, or can do so but takes too long
to run.

Therefore, we have the problem (the execution of com-
plex optimization algorithms) and the platform (consumer-
grade parallel hardware). We need to port the application to
the target hardware, in order to efficiently exploit the latter,
to accelerate program execution and/or obtain better solu-
tions.

In this paper, we extend the work presented in [7], in
which we tested the suitability of the Cell as a computing
platform for one algorithm of the family of Estimation of
Distribution Algorithms. In particular, we studied the Uni-
variate Marginal Distribution Algorithm (UMDA), applied
to solving theOneMax function, a well-known toy prob-
lem. Due to the characteristics of UMDA (discrete variables
and simple probabilistic model) and the problem to solve,
we observed a discouragingly poor performance in terms of
execution time and scalability, compared to that provided
by a commodity multi-core personal computer. The main
reason for this disappointing behavior has to be found in
the computation/communication ratio of this particular pro-
gram. As the vector units of the Cell have only a small local
memory, the time needed to move data from/to the main

Figure 1. Cell Broadband Engine Architec-
ture.

memory dominated the overall execution time, thus imped-
ing the full exploitation of the Cell’s power.

As the family of EDAs comprises algorithms in both dis-
crete and continuous domains, we decided to extend our
previous work by testing an algorithm similar to UMDA,
but for continuous domains. It is called Univariate Marginal
Distribution for the Continuous domain (UMDAc). The
main purpose is to evaluate the performance of the Cell plat-
form when working with floating-point numbers.

We followed the same methodology used to parallelize
UMDA. Starting from an initial sequential version, the al-
gorithm was ported to a parallelized version capable of run-
ning on a multi-core, symmetric system (such as a Quad-
Core Intel Xeon processor). The parallel version was, af-
terwards, reworked to run on a multi-core, hybrid system
(the Cell Broadband Engine). To further accelerate the pro-
grams, vectorization techniques were applied in a subse-
quent step. The final results show that our parallel and vec-
torized implementations of UMDAc can very effectively ex-
ploit the potential of the Cell and of multi-core CPUs.

The rest of the paper is organized as follows. Section 2
discusses the architecture of the Cell Broadband Engine,
with special emphasis on those characteristics visible to the
programmer. Section 3 summarizes the main characteris-
tics of Evolutionary Algorithms and, in particular, the fam-
ily of Estimation of Distribution Algorithms in the contin-
uous domain, as well as the problem to be solved with our
implementation. Section 4 explains the porting of the al-
gorithm and the vectorization process in the two platforms.
Section 6 shows the experiments made in order to compare
both implementations. Conclusions of this work are sum-
marized in Section 7

2 Cell Broadband Engine

The Cell is a microprocessor system that integrates, into
a single chip, a Power-based processor (Power Processing

Element, PPE), eight vector co-processors (Synergistic Pro-
cessing Elements, SPEs), a memory interface, input/output
interfaces and a high-speed ring that acts as the intercon-
nection fabric for the remaining elements [15] (see Fig-
ure 1, extracted from [31]). A programmer who wants to
take full advantage of a Cell has to work with two different
instruction sets: one for the PPE and another one for the
SPEs. This usually means using two compilers, and dealing
with different strategies to optimize code running in differ-
ent processors. To mention just an example, the PPEcan
deal with vector operations to accelerate parts of the pro-
gram, but the SPEsmustwork with vectors – its efficiency
with scalars is not brilliant.

Another peculiarity of the Cell is its memory organiza-
tion. From a programmer’s point of view, the PPE has full,
direct access to the system’s main memory. However, the
SPEs have direct access only to a very limited sized (256
KB) local store. All the data processed by an SPE has to
be previously transferred to its local store, and the result-
ing data, if required by the PPE or another SPE, has to be
explicitly transferred too. To that purpose, each SPE has a
companion Memory Flow Controller (MFC) that takes care
of this transfer. A good programmer can manage to make an
SPE and its MFC work at the same time, processing pieces
of data while transferring new ones. A careless programmer
may try to simultaneously move too much data through the
interconnection fabric, which would become a bottleneck
because of its limited capacity.

Challenges for the programmer are, therefore, manifold:
different instruction sets; real necessity of working with
vector instructions; limited memory size; explicit transfer
of data between different memory blocks, etc. Adaptation
of an application to this architecture is not trivial: a few ap-
plications may have a natural mapping, but most require ex-
haustive reworking. A common model for organizing Cell
applications, but by no means the only one, is to use the PPE
as a main processor running most of the application’s logic,
using the SPEs as acceleration co-processors [14]. The most
compute-intensive sections of the original PPE-only code
are identified, and reworked to make them run in parallel
in the available SPEs. As just mentioned, this is a com-
plex task that requires careful organization of data struc-
tures, data movement, synchronization, vectorization, etc.
In summary, using this computing platform will require the
programmer to deal with uncommon techniques. For exam-
ple, all the data movements between the PPE and the SPEs
are controlled by the last ones (SPEs). They must manage
their own buffers in the main memory and synchronize with
the PPE (generally using mailboxes), and this must be done
explicitly by the programmer.

Regarding hardware platforms, IBM sells Cell-based
blades for use in general-purpose systems, but the most pop-
ular, consumer-available platform to get acquaintance with

this processor is Sony’s PlayStation 3 game console. The
PS3 can be easily converted in a GNU/Linux “computer”
with all the necessary toolkits to develop and run Cell appli-
cations, by means of any of the several available Linux dis-
tributions. The main limitation of this platform is that only
six SPEs are available: Sony guarantees just seven working
SPEs (to increase manufacture yield), and one is always re-
served for the operating system. In this work we use a PS3
running Fixstars’ Yellow Dog Linux [1].

3 Evolutionary Algorithms

The main characteristic of Evolutionary Algorithms is
that they use techniques inspired by the natural evolution
of the species. In nature, species change across time; in-
dividuals evolve, adapting to the characteristics of the en-
vironment. This evolution leads to individuals with better
characteristics. This idea can be translated to the world of
computation, using similar concepts:

Individual: Represents a possible solution for the problem
to be solved. Each individual has a set of characteris-
tics (genes) and a fitness value (based on its genes) that
denotes the quality of the solution it represents.

Population: In order to look for the best solution, a group
of individuals is managed. An initial population is cre-
ated randomly, and will change across time, evolving
towards members with different (and supposedly bet-
ter) characteristics.

Breeding: Several operators can be used to emulate the
breeding process present in nature: mixing different
individuals (crossover) or changing a particular one
(mutation). These operators are used to obtain new in-
dividuals, expected to be better than the previous ones.

In the last two decades, Genetic Algorithms have been
widely used to solve different problems, improving in many
cases the results obtained by previous approaches. How-
ever, GAs require a large number of parameters (for exam-
ple, those that control the creation of new individuals) that
need to be correctly tuned in order to obtain good results.
Generally, only experienced users can do this correctly and,
moreover, the task of selecting the best choice of values
for all these parameters has been suggested to constitute it-
self an optimization problem [11]. In addition, GAs show a
poor performance in some problems (deceptive and separa-
ble problems) in which the existing crossover and mutation
operators do not guarantee that better individuals will be
obtained changing or combining existing ones.

Some authors [13] have pointed out that making use of
the relations between genes can be useful to drive a more

Pseudo-code for the EDA framework.

Step 1. Generate the first populationD0 of M
individuals and evaluate all of them

Step 2.Repeat at each generationl until
a stopping criterion is fulfilled

Step 3. SelectN individuals (DSe
l) from

theDl population following a
selection method

Step 4. Obtain fromDSe
l ann dimensional

probability model that shows
the interdependencies between
variables

Step 5. Generate a new populationDl+1 of
M individuals based on the sampling
of the probability distribution
pl(x) learnt in the previous step

Figure 2. Common outline for Estimation of
Distribution Algorithms (EDAs).

“intelligent” search through the solution space. This con-
cept, together with the limitations of GAs, motivated the
creation of a new type of algorithms grouped under the
name of Estimation of Distribution Algorithms (EDAs).

EDAs were introduced in the field of Evolutionary Com-
putation in [22], although similar approaches can be previ-
ously found in [33]. In EDAs there are neither crossover
nor mutation operators. Instead, the new population of in-
dividuals is sampled from a probability distribution, which
is estimated from a database that contains the selected indi-
viduals from the current generation. Thus, the interrelations
between the different variables that represent the individuals
are explicitly expressed through the joint probability distri-
bution associated with the individuals selected at each gen-
eration. A common pseudo-code for all EDAs is presented
in Fig. 2.

Steps 3, 4 and 5 will be repeated until a certain stop cri-
terion is met (e.g., a maximum number of generations, a ho-
mogeneous population or no improvement after a specified
number of generations). The probabilistic model learnt at
step 4 has a significant influence on the behavior of the EDA
from the point of view of complexity and performance.

For detailed information about the characteristics of
EDAs, and the algorithms that form part of this family,
see [19, 27, 20, 28].

4 The UMDAc Algorithm

The Univariate Marginal Distribution Algorithm for the
continuous domain (UMDAc) [17, 18] is an EDA in which
it is assume that there are no dependencies between the vari-
ables involved in the problem. It assumes that the joint den-
sity function follows an-dimensional normal distribution,
which is factorized by a product of one-dimensional and in-
dependent normal densities. In every generation and for ev-
ery variable, the UMDAc performs some statistical tests in
order to find the density function that best fits the sampling
of that variable.

The UMDAc is a structure identification algorithm be-
cause the density components of the model to be learnt are
identified via hypothesis tests. This estimation of parame-
ters is performed, after the densities are identified, by their
maximum likelihood estimates. If all the univariate distri-
butions are normal, then the two parameters to be estimated
at each generation and for each variable are the mean,µl

i,
and the standard deviation,σl

i. It is well known that their
respective maximum likelihood estimates are:

µ̂l
i = X l

i =
1

N

N∑

r=1

xl
i,r (1)

σ̂l
i =

√√√√ 1

N

N∑

r=1

(xl
i,r − X l

i)
2 (2)

BeingN the number of individuals in the population and
xl

i,r the different variables which compound each individ-
ual. This two parameters,µ and σ, will be used later to
generate new individuals. For this purpose, an adaptation
of the Probabilistic Logic Sampling (PLS) proposed in [12]
is used. In this method the instances are generated one vari-
able at a time in a forward way. For the simulation of a
univariate normal distribution, a simple method based on
the sum of 12 uniform variables is applied [30].

5 Parallelization of UMDAc

Evolutionary Algorithms require, in general, long execu-
tion times. For this reason, researchers often apply parallel
techniques to reduce running times. These techniques are
also useful to improve accuracy or to manage larger prob-
lems with the same time budget [5, 13].

There are two basic approaches to parallelize EAs: par-
allelization of program loops, and division of the pop-
ulation into several independent subpopulations (islands
model). When using the islands approach, the single popu-
lation used in sequential algorithms is split into several sub-
populations (islands). These islands evolve independently,
and exchange information about their best individuals with

a predefined frequency. These models are suitable to dis-
tributed systems, because each island can be mapped onto a
separate processor, and the amount of communications re-
quired between islands is not very large. A more conser-
vative approach starts with a sequential algorithm like that
described in Figure 2, parallelizing parts of it in order to
speed-up the execution time but without changing the se-
mantics of the algorithm. There exist different proposals for
GAs [8] or EDAs [24, 25, 21]. The most time-consuming
portions of the code are identified and rewritten to take ad-
vantage of a parallel computer. Among the techniques to
parallelize the code, or portions of it, the Manager-Worker
model is a popular one: a Manager task runs the program,
and delegates CPU-intensive parts to a collection of Worker
tasks.

The selection of the parallelization paradigm has to be
done taking into account the characteristics of the available
computing platform. We will not work with a cluster of
computers, but with on-chip multiprocessors – in particu-
lar, with a Cell system. The limited memory of the Cell’s
SPEs does not allow us to run a complete EDA (an island)
in each SPE. Therefore, we have to opt for the Manager-
Worker approach. The Manager task will run on the PPE
and the Workers on the SPEs.

The parallel approach has been done starting from a se-
quential version of UMDAc written in C++. Before design-
ing the parallel version for the Cell, we considered interest-
ing, for comparison purposes, to design a parallel version
based on the Posix Threads (pthreads) library [6], that could
be executed on a multi-core personal computer. Also, as
both multi-core Intel-based machines and the Cell include
vector instructions (that can accelerate our application), we
have also evaluated manually vectorized versions of the
codes. Both versions, the Pthread’s one and the Cell’s one,
were developed using the GNU Compilers; more specifi-
cally the version 4.3.2 over the Intel platform and the 4.1.1
one for the Cell.

Following the Manager-Worker scheme, the UMDAc al-
gorithm will be executed by the main thread (Manager), and
when necessary, it will ask the Workers for help. In partic-
ular, workers will collaborate in these phases:

• Learning the probabilistic model: As introduced previ-
ously, UMDAc uses a very simple probabilistic model,
that assumes that there is no relation between the vari-
ables. Therefore, once the population has been se-
lected, the Manager will ask the workers to obtain parts
of the mean and standard deviation –our implementa-
tion assumes normal distributions–, for a subset of the
selected population. Once each Worker has finished,
the Manager creates the main model based on the par-
tial values.

• Sampling and Evaluation: These two steps usually

Pseudo-code for the EDA over the Cell’s PPE.

Step 1. Generate the first populationD0 of M
individuals and evaluate all of them.

Step 2.Repeat at each generationl until
a stopping criterion is fulfilled

Step 3. SelectN individuals (DSe
l) from

theDl population following a
selection method

Step 4. Obtain fromDSe
l ann dimensional

probability model that shows
the interdependencies between
variables

Synchronization via Mailboxes.
Step 5. Ask the SPEs to generateN individuals.
Synchronization via Mailboxes.

Figure 3. Common outline for Parallelized
EDAs over the Cell’s PPE.

come together. That is, based on the model learnt in
the previous step, new individuals will be created and
evaluated. Again, the Manager will ask the workers
to create (and evaluate) a subset of individuals. The
number of individuals to be managed by each worker
can be established statically, or assigned dynamically
using an on-demand scheme. That is, when the evalu-
ation of the individuals takes always the same comput-
ing time, a static assignation can be done. However,
if the time required to evaluate the individual depends
on the values it takes, the on-demand scheme would be
preferable. In our experiments we use static workload
distribution.

For our UMDAc algorithm, the chunks of code that con-
form the kernel to be executed in the SPEs will be the code
to generate individuals, to evaluate them. We will not ex-
ecute the learning phase in the SPU because that would
imply the continuous movement of individual between LS
and main memory to order and reduce the population, and
vice versa. In any case, the amount of code to execute for
each individual in the learning process is little in compari-
son with the amount of time required to send an individual
via DMA.

In the Figures 3 and 4 we can see the pseudo-code for
the parallelized version of the UMDAc executed in the PPE
and in the SPEs. We can compare it with the pseudo-code in
Figure 2 which contains the code of the sequential version.

In order to test the performance of our different imple-
mentations of UMDAc, we used them to solve an artificial
problem, theGriewangkminimization problem [32]. The

Pseudo-code for the EDA over the Cell’s SPEs.

Synchronization via Mailboxes.
Step 1. Transfer this model from the PPE to each SPE.
Step 2. Generate a new populationDl+1 of

M/6 individuals based on the sampling
of the probability distribution
pl(x) learnt in the previous step.
Each individual generated will be transferred
via DMA from the SPE to the PPE.

Synchronization via Mailboxes.

Figure 4. Common outline for Parallelized
EDAs over the Cell’s SPEs.

fitness function is defined as follows:

F (x) = 1 +

n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(
xi√

i

)
(3)

The range of all the variables of the individual is−600 ≤
xi ≤ 600, i = 1, . . . , n, and the fittest individual corre-
sponds to a value of 0, that only can be obtained when all
the variables of the individual are 0. This well-known prob-
lem has been selected to deal with a fitness function that
does not require too much execution time.

6 Measuring the performance of the UMDAc

In order to test the performance of the multi-threaded
version of the code, we completed several experiments on
an Intel Xeon Quad-Core computer. Different individual
sizes were used (ranging from 100 to 3,000 variables), using
a population size of2, 5L, beingL the number of variables
of the individual. Tests were performed with 1-4 threads.
UMDA c was stopped after computing 50 generations. The
results of these experiments are shown in Figure 5.

According to the results, it can be seen that the multi-
threaded version has an adequate behavior from the point of
view of scalability. Therefore, the second step of this work
would be to test the suitability of the Cell for the execution
of this EDA.

We made the same experiments with the Cell version ex-
ecuted over a PS3. In this case, individual sizes range from
100 to 1,800 variables (due to limitations on the SPE’s local
store). The number of threads (running in different SPEs)
was varied from 1 to 6. The rest of the parameters – pop-
ulation size, stopping criterion – were as in the previous
experiments. Results can be seen in Figure 6. Clearly, the
solution scales with the number of SPEs, providing good

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Individual Length

1 thread
2 threads
3 threads
4 threads

Figure 5. Execution times for the Quad-Core
Intel Xeon (using Pthreads).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Individual Length

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

Figure 6. Execution times for the Cell.

performance levels. This is good news because, as reported
in our previous work [7], for the UMDA applied to discrete
domains, the performance of Cell was very poor. Therefore,
we can state that the Cell is a more suitable platform to run
UMDA c (continuous domain, floating-point numbers).

Vector processors give us the possibility to operate over
multiple data elements with a single machine instruction.
As the two platforms used in our experiments integrate
support for vector operations, we decided to modify the
UMDA c implementations to take advantage of this feature.
One of the more expensive parts of the UMDAc is the
sampling and evaluation of new individuals. In the sam-
pling step, an adaptation of the Probabilistic Logic Sam-
pling (PLS) for the continuous domain is used. This tech-
nique needs random values to create new individuals, and
thanks to the vectorization, the process of obtaining these
random values can be done in groups of four. A similar idea
was applied to the evaluation of the individuals, rewriting

the evaluation function to compute the different operations:
square root, cosine, square, etc. in groups of four.

The vectorized version of the Cell implementation was
made using SPU intrinsics [4] and thelibmisc library in-
cluded in the IBM Cell SDK [2], which implements vector-
ized versions of a uniform random number generator. For
the Intel platform, we used SSE intrinsics [3] and imple-
mented our own vectorized version of a linear congruential
generator [26].

We repeated the experiments with the vectorized imple-
mentations of UMDAc. Results are shown in Figures 7
and 8. As we can observe, the acceleration levels obtained
via vectorization are impressive for both platforms. In Fig-
ure 9 we have plotted the scalar/vector acceleration ratio
(speedup) for 1 thread (Xeon) and 1 SPU (Cell) for different
individual sizes. We can see that for the Xeon platform the
maximum speedup is achieved for individuals of size larger
than 300, and that this figure remains stable for longer in-
dividuals. However, for the Cell, a peak is observed for
individuals of size 500, but for larger problems speedup
drops. We need to further explore this issue, but we sus-
pect that the cause is on the bottlenecks in the internal Cell
interconnection network, which saturates when large DMA
transfers occur too often – that is, when the application is
too communication-biased. These issues, such as memory
and communication management, must be carefully studied
when implementing Evolutionary Algorithms in architec-
tures such us Cell or GPUs [23].

When comparing the two platforms, Figure 5 versus Fig-
ure 7, and Figure 6 versus Figure 8, we can observe that,
even using vectorized code, the Xeon Quad-Core is one or-
der of magnitude faster. In the selection of the best platform
we can not forget the cost of each solution. In terms of code
development, the Xeon Quad-Core is an easier platform to
program multi-thread code, but harder at the vectorization
process than the Cell. Also if we compare their prices, the
cheapest Cell platform, the PlayStation 3, is about half price
the Xeon Quad-Core, giving us an enormous computing
power for a budget.

7 Conclusions

In this paper we have evaluated several parallel imple-
mentations of UMDAc on two different platforms: a Quad-
Core Intel Xeon and a Cell (PlayStation 3) system. We have
shown that the well-known Manager-Worker parallelization
scheme can be successfully applied to port our algorithm
to these platforms: in both cases we are capable of exploit-
ing the availability of multiple cores, homogeneous for the
Xeon system, and heterogeneous for the Cell. Additionally,
as all the processors involved in our experiments integrate
support for vector operations, we have tested manually vec-
torized versions of the programs, which were implemented

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Individual Length

1 thread
2 threads
3 threads
4 threads

Figure 7. Execution times for the vectorized
version on the Quad-Core Xeon.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
)

Individual Length

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

Figure 8. Execution times for the vectorized
version on the Cell.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p

e
e
d

U
p

Individual Length

vectorized pthreads
vectorized SPU

Figure 9. Impact of vectorization in the Xeon
Quad-Core and the Cell.

using different repertoires of intrinsics. The vectorizedver-
sions of the programs perform exceedingly well, providing
additional speedups on the 5-9 range (depending on the plat-
form and the problem size).

This experience with the Cell has shown us the difficulty
of develop a solution for this architecture, but also its ca-
pacities when addressing an EDA. Our opinion about this
subject is that, even if the architecture is hard to master,
once the developer has the knowledge about the platform
and having a suitable problem, the task is more affordable,
giving us a powerful machine for a budget.

As a future work, it will be interesting to use different
tools, su h as the IBM CBE Simulator included in the IBM’s
SDK in order to compare and analyze in detail the results
presented in this paper. The use of the simulator can be
very helpful to better understand some particularities of this
architecture, such as, for example, the interconnection net-
work.

Acknowledgements

This work has been supported by the Ministry of Educa-
tion and Science (Spain), grant TIN2007-68023-C02-02, by
Saiotek and Research Groups 2007-2012 (IT-242-07) pro-
grams from the Basque Government, TIN2008-06815-C02-
01 and Consolider Ingenio 2010 - CSD2007-00018 projects
(Spanish Ministry of Science and Innovation) and COM-
BIOMED network in computational biomedicine (Carlos
III Health Institute).

References

[1] Fixstars Corp. home page.
[2] IBM Cell SDK Example Library API Reference.
[3] Intel(R) C++ Compiler Intrinsics Reference.
[4] PPU and SPU C/C++ Language Extension Specification.
[5] W. Bossert. Mathematical optimization: Are there ab-

stract limits on natural selection? In P. S. Moorehead and
M. M. Kaplan, editors,Mathematical Challenges to the Neo-
Darwinian Interpretation of Evolution, pages 35–46. The
Wistar Institute Press, Philadelphia, PA, 1967.

[6] D. R. Butenhof. Programming with POSIX Threads.
Addison–Wesley Professional Computing Series, 1997.

[7] J. M.-A. C. Perez-Miguel and A. Mendiburu. An analysis
of iterated density estimation and sampling in the UMDAc
algorithm. InGECCO ’09: Proceedings of the 2009 confer-
ence on Genetic and evolutionary computation, pages 2491–
2498, New York, NY, USA, 2009. ACM Press.

[8] E. Cant́u-Paz.Efficient and accurate parallel genetic algo-
rithms. Kluwer Academic Publishers, 2000.

[9] L. J. Fogel. Autonomous automata.Industrial Research,
4:14–19, 1962.

[10] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison–Wesley, Reading
MA, 1989.

[11] J. J. Grefenstette. Optimization of control parameters for
Genetic Algorithms.IEEE Transactions on Systems, Man,
and Cybernetics, 16(1):122–128, 1986.

[12] M. Henrion. Propagating uncertainty in Bayesian networks
by probabilistic logic sampling. In R. D. Shachter, T. S.
Levitt, L. N. Kanal, and J. F. Lemmer, editors,UAI, pages
149–163. North-Holland, 1988.

[13] J. H. Holland.Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor, MI, 1992.

[14] IBM. Software Development Kit for Multicore Acceleration.
Programming Tutorial. Version 3.1. 2008.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. J. Shippy. Introduction to the cell multipro-
cessor. IBM Journal of Research and Development, 49(4-
5):589–604, 2005.

[16] J. R. Koza.Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[17] P. Larrãnaga, R. Etxeberria, J. Lozano, and J. Peña. Opti-
mization by learning and simulation of Bayesian and Gaus-
sian networks. Technical Report KZZA-IK-4-99, Depart-
ment of Computer Science and Artificial Intelligence, Uni-
versity of the Basque Country, 1999.

[18] P. Larrãnaga, R. Etxeberria, J. Lozano, and J. Peña. Opti-
mization in continuous domains by learning and simulation
of Gaussian networks. In L. D. Whitley, D. E. Goldberg,
E. Cant́u-Paz, L. Spector, I. C. Parmee, and H. G. Beyer,
editors,GECCO, pages 201–204. Morgan Kaufmann, 2000.

[19] P. Larrãnaga and J. A. Lozano.Estimation of Distribu-
tion Algorithms: A New Tool for Evolutionary Computation.
Kluwer Academic Publishers, 2002.

[20] J. A. Lozano, P. Larrãnaga, I. Inza, and E. Bengoetxea, ed-
itors. Towards a New Evolutionary Computation. Advances
on Estimation of Distribution Algorithms, volume 192 of
Studies in Fuzzines and Soft Computing. Springer, 2005.

[21] A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso. Paral-
lel implementation of EDAs based on probabilistic graphical
models. IEEE Transactions on Evolutionary Computation,
9(4):406–423, 2005.

[22] H. Mühlenbein and G. Paaß. From recombination of genes
to the estimation of distributions I. Binary parameters. In
H. M. Voigt, W. Ebeling, I. Rechenberger, and H. P. Schwe-
fel, editors,PPSN IV, volume 1141 ofLecture Notes in Com-
puter Science, pages 178–187. Springer, 1996.

[23] J. H. O. Garnica, J.L. Risco-Martı́n and J. Lanchares.
Speeding-up resolution of deceptive problems by a parallel
gpu-cpu architecture.WPABA08 (PACT08), 2008.

[24] J. Ocenasek and J. Schwarz. The parallel Bayesian optimiza-
tion algorithm. InProceedings of the European Symposium
on Computational Intelligence, pages 61–67, 2000.

[25] J. Ocenasek and J. Schwarz. The distributed Bayesian opti-
mization algorithm for combinatorial optimization. InEU-
ROGEN - Evolutionary Methods for Design, Optimisation
and Control, CIMNE, pages 115–120, 2001.

[26] S. K. Park and K. W. Miller. Random number generators:
Good ones are hard to find.Commun. ACM, 31(10):1192–
1201, 1988.

[27] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic models.
Computational Optimization and Applications, 21(1):5–20,
2002.

[28] M. Pelikan, K. Sastry, and E. Cantú-Paz.Scalable Optimiza-
tion via Probabilistic Modeling: From Algorithms to Appli-
cations (Studies in Computational Intelligence). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[29] I. Rechenberg.Evolutionsstrategie: Optimierung technis-
cher Systeme nach Prinzipien der biologischen Evolution.
Frommann–Holzboog, Stuttgart, 1973.

[30] B. D. Ripley. Stochastic Simulation. John Wiley and Sons,
1987.

[31] J. Rudin. Accelerating persistent surveillance radar with
the cell broadband engine.Embedded Technology Journal,
2008.

[32] A. A. Törn and A. Zilinskas.Global Optimization, volume
350 ofLecture Notes in Computer Science. Springer, 1989.

[33] A. A. Zhigljavsky. Theory of Global Random Search.
Kluwer Academic Publishers, 1991.

