
Evaluating the Cell Broadband Engine as a Platform to Run
Estimation of Distribution Algorithms

Carlos Perez-Miguel, Jose Miguel-Alonso and Alexander Mendiburu
Department of Computer Architecture and Technology,

The University of the Basque Country
P. Manuel de Lardizabal, 1 (20018) Donostia-San Sebastian, Spain
{carlos.perezm, j.miguel, alexander.mendiburu}@ehu.es

ABSTRACT
Current consumer-grade computers and game devices incor-
porate very powerful processors that can be used to acceler-
ate many classes of scientific codes. However, programming
multi-core chips, hybrid multi-processors or graphical pro-
cessing units is not an easy task for those programmers that
deal mainly with sequential codes. In this paper, we explore
the ability of the Cell Broadband Engine to run a particu-
lar Estimation of Distribution Algorithm. From an initial
sequential version, we develop a multi-threaded one that is
afterwards reworked to run on a Cell. The multi-threaded
version is capable of efficiently use current multi-core chips,
such as those used in desktop PCs. However, the efficiency of
the Cell version is very low. We analyze the causes of these
discouraging results, and provide some clues about the class
of problems that could be efficiently ported to the Cell.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Mathematics
and statistics; G.4 [Mathematical Software]: Parallel and
vector implementations

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Cell Broadband Engine, Estimation of Distribution Algo-
rithms, Parallel programming

1. INTRODUCTION
A current hybrid, on-chip multiprocessor, such as the Cell

Broadband Engine, promises an enormous computing power
(up to 200 GFlops) for a budget. We can find these chips
on game consoles and other consumer devices. At the same
time, the computational power available from desktop PCs
continues growing at an incredible pace, and we should not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$10.00.

forget the number-crunching abilities of graphical processing
units. Users that run scientific codes are willing to take ad-
vantage of this power, but this is not an easy task. Programs
have to be reworked in order to take advantage of parallel
and hybrid processors. These machines require sophisticated
programming models that are not easy for the casual pro-
grammer. Parallelism, a challenge by itself, is not the only
issue. Unfamiliar memory models, limited instruction sets,
explicit communications, etc. combine to make really hard
the effective exploitation of theoretically powerful machines.

Still, users have powerful desktop computers, or depart-
mental servers, with large amounts of memory that can be
used to solve problems of growing complexity. This fact has
encouraged the design and implementation of non-trivial al-
gorithms to solve different kinds of complex optimization
problems. Some of these problems can be solved via an ex-
haustive search over the solution space, but in most cases
this brute force approach is unaffordable. In these situa-
tions, heuristic methods (deterministic or non deterministic)
are often used, which search inside the space of promising so-
lutions. Some heuristic approaches are specifically designed
to find good solutions for a particular problem, but others
are presented as a general framework adaptable to many
different situations. Among this second group (general de-
signs), there is a family of algorithms that has been widely
used in the last decades: Evolutionary Algorithms (EAs).
This family comprises, as main paradigms, Genetic Algo-
rithms (GAs) [11, 13], Evolution Strategies [26], Evolution-
ary Programming [9] and Genetic Programming [16].

Even though processing speeds grow fast, the require-
ments of this class of algorithms grow even faster. No matter
the computing power available, we can always find a harder
problem that cannot run in our machines, or can do so but
takes too long to run.

Complex algorithms could run much faster in current ma-
chines if the implementations are adapted to the system’s
characteristics. That is a fact. Programming to take full
advantage of a parallel, hybrid, machine is a difficult task.
That is another fact. In this paper we report our experiences
porting a particular Estimation of Distribution Algorithm,
which belongs to the class of Evolutionary Algorithms, from
an initial sequential version to a parallelized version capa-
ble of running on a multi-core, symmetric system (such as a
Quad-Core Intel processor). The parallel version was, after-
wards, reworked to run on a multi-core, hybrid system (the
Cell Broadband Engine). The degree of success, in terms
of obtained acceleration, of each of the approaches has been
very different. We discuss the process, and the causes of

Figure 1: Cell Broadband Engine Architecture.

this disparity of results. We also provide some clues about
the kind of program modifications that would be required
to take advantage of a Cell-based system. For the interested
reader, in the literature we can find several references about
accelerating Evolutionary Algorithms on the Cell [4, 29, 2]
and on graphics processing units (GPUs) [10, 30].

The rest of the paper is organized as follows. Section 2 dis-
cusses the architecture of the Cell Broadband Engine, with
special emphasis on those characteristics visible to the pro-
grammer. Section 3 summarizes the main characteristics
of Evolutionary Algorithms and, in particular, the family of
Estimation of Distribution Algorithms. Section 4 introduces
the parallel models commonly used in EAs and analyzes a
sequential implementation of the particular EDA (Univari-
ate Marginal Distribution Algorithm, UMDA), that will be
ported to a multi-core system. Section 5 is devoted to ex-
plain the porting of the parallel UMDA to the Cell, with
an analysis of the obtained results and a discussion of the
suitability of this platform for this class of algorithms. We
end with some conclusions in Section 6.

2. CELL BROADBAND ENGINE
The Cell is a microprocessor system that integrates, into

a single chip, a Power-based processor (Power Processing
Element,PPE), eight vector co-processors (Synergistic Pro-
cessing Elements, SPEs), a memory interface, input/output
interfaces and a high-speed ring that acts as the intercon-
nection fabric for the remaining elements [15] (see Figure 1,
extracted from [27]). A programmer that wants to take full
advantage of a Cell has to deal with two different instruc-
tion sets: one for the PPE and another one for the SPEs.
This usually means using two compilers, and dealing with
different strategies to optimize code running in different pro-
cessors. To mention just an example, the PPE can deal with
vector operations to accelerate parts of the program, but the
SPEs must work with vectors – its efficiency with scalars is
not brilliant.

Another peculiarity of the Cell is its memory organiza-
tion. From a programmer’s point of view, the PPE has full,
direct access to the system’s main memory. However, the
SPEs have direct access only to a very limited sized (256
KB) local store. All the data processed by an SPE has to
be previously transferred to its local store, and the result-
ing data, if required by the PPE or another SPE, hast to
be explicitly transferred too. To that purpose, each SPE
has a companion Memory Flow Controller (MFC) that can
take care of this transfer. A good programmer can man-
age to make an SPE and its MFC work at the same time,

processing pieces of data while transferring new ones. A
careless programmer may try to simultaneously move too
much data trough the interconnection fabric, which would
become a bottleneck because of limited capacity.

Challenges for the programmer are, therefore, manifold:
different instruction sets; real necessity of working with vec-
tor instructions; limited memory size; explicit transfer of
data between different memory blocks, etc. Adaptation of
an application to this architecture is not trivial: a few ap-
plications may have a natural mapping, but most require
exhaustive reworking. A common model for organizing Cell
applications, but by no means the only one, is to use the PPE
as a main processor running most of the application’s logic,
using the SPEs as acceleration co-processors [14]. The most
compute-intensive sections of the originalPPE-only code are
identified, and reworked to make them run in parallel in the
available SPEs. As just mentioned, this is a complex task
that requires careful organization of data structures, data
movement, synchronization, vectorization, etc.

Regarding hardware platforms, IBM sells Cell-based sys-
tems for use as general-purpose systems, but the most pop-
ular, consumer-available platform to get acquaintance with
this processor is Sony’s PlayStation 3 game console. The
PS3 can be easily converted in a GNU/Linux “computer”
with all the necessary toolkits to develop and run Cell ap-
plications, by means of any of the several available Linux dis-
tributions. The main limitation of this platform is that only
six SPEs are available: Sony guarantees just seven working
SPEs (to increase manufacture yield), and one is always re-
served for the operating system. In this work we use a PS3
running Fixstars’ Yellow Dog Linux [1].

3. EVOLUTIONARY ALGORITHMS
The main characteristic of Evolutionary Algorithms is that

they use techniques inspired by the natural evolution of the
species. In nature, species change across time; individuals
evolve, adapting to the characteristics of the environment.
This evolution leads to individuals with better characteris-
tics. This idea can be translated to the world of computa-
tion, using similar concepts:

Individual: Represents a possible solution for the problem
to be solved. Each individual has a set of character-
istics (genes) and a fitness value (based on its genes)
that denotes the quality of the solution it represents.

Population: In order to look for the best solution, a group
of individuals is managed. An initial population is cre-
ated randomly, and will change across time, evolving
towards members with different (and supposedly bet-
ter) characteristics.

Breeding: Several operators can be used to emulate the
breeding process present in nature: mixing different
individuals (crossover) or changing a particular one
(mutation). These operators are used to obtain new
individuals, expected to be better than the previous
ones.

In the last two decades, Genetic Algorithms have been
widely used to solve different problems, improving in many
cases the results obtained by previous approaches. How-
ever, GAs require a large number of parameters (for exam-
ple, those that control the creation of new individuals) that

Pseudo-code for the EDA framework.

Step 1. Generate the first population D0 of M
individuals and evaluate all of them

Step 2. Repeat at each generation l until a stopping
criterion is fulfilled

Step 3. Select N individuals (DSe
l) from the Dl

population following a selection method
Step 4. Induce from DSe

l an n (size of the individual)
dimensional probability model that shows
the interdependencies between variables

Step 5. Generate a new population Dl+1 of M
individuals based on the sampling of the
probability distribution pl(x) learnt
in the previous step

Figure 2: Common outline for all Estimation of Dis-
tribution Algorithms (EDAs).

need to be correctly tuned in order to obtain good results.
Generally, only experienced users can do this correctly and,
moreover, the task of selecting the best choice of values for
all these parameters has been suggested to constitute it-
self an optimization problem [12]. In addition, GAs show a
poor performance in some problems (deceptive and separa-
ble problems) in which the existing crossover and mutation
operators do not guarantee that better individuals will be
obtained changing or combining existing ones.

Some authors [13] have pointed out that making use of the
relations between genes can be useful to drive a more “in-
telligent” search through the solution space. This concept,
together with the limitations of GAs, motivated the creation
of a new type of algorithms grouped under the name of Es-
timation of Distribution Algorithms (EDAs).

EDAs were introduced in the field of Evolutionary Compu-
tation in [21], although similar approaches can be previously
found in [31]. In EDAs there are neither crossover nor muta-
tion operators. Instead, the new population of individuals is
sampled from a probability distribution, which is estimated
from a database that contains the selected individuals from
the current generation. Thus, the interrelations between
the different variables that represent the individuals are ex-
plicitly expressed through the joint probability distribution
associated with the individuals selected at each generation.
A common pseudo-code for all EDAs is described in Fig. 2.

Steps 3, 4 and 5 will be repeated until a certain stop cri-
terion is met (e.g., a maximum number of generations, a
homogeneous population or no improvement after a speci-
fied number of generations). The probabilistic model learnt
at step 4 has a significant influence on the behavior of the
EDA from the point of view of complexity and performance.

For detailed information about the characteristics of EDAs,
and the algorithms that form part of this family, see [17, 24,
18, 25].

4. PARALLEL MODELS FOR EAS
EAs require, in general, long execution times, so, researchers

often apply parallel techniques to reduce running times. These
techniques are also useful to improve accuracy or to manage
larger problems with the same time budget (see [5, 13]).

 0

 10

 20

 30

 40

 50

 60

 70

 80

LearnModel Generation Evaluate Others

%

t
i
m
e

UMDA stages

Figure 3: Principal functions in UMDA.

There are two basic approaches to parallelize EAs: paral-
lelization of program loops, and division of the population
into several independent subpopulations.

In the second approach, known as islands model, the single
population used in sequential algorithms is split into sev-
eral sub-populations (islands). These islands evolve inde-
pendently, and exchange information about their best in-
dividuals with a predefined frequency. These models are
suitable to distributed systems, because each island can be
mapped onto a separate processor, and the amount of com-
munications required between islands is not very large. Sev-
eral works exist about this subject (see for example [28,
3]). In [8] authors proposed several island-based topologies
and made several experiments using different models of mi-
gration between islands for EDAs over a discrete domain.
Experiments proved that these island-based EDAs obtain
better solutions than single-population sequential EDAs, be-
cause of the possibility of searching concurrently over differ-
ent points of the solution space.

A more conservative approach starts with a sequential al-
gorithm like that described in Figure 2, parallelizing parts
of it in order to speed-up the execution time but without
changing the semantics of the algorithm. There exist dif-
ferent proposals for GAs [7] or EDAs [22, 23, 19]. The
most time-consuming portions of the code are identified and
rewritten to take advantage of a parallel computer.

Among the techniques to parallelize the code, or portions
of it, the Master-Worker model is a popular one: a Master
task runs the program, and delegates CPU-intensive parts
to a collection of Worker tasks. Note that, as program se-
mantics is not changed, obtained solutions are not improved.

The selection of the parallelization paradigm has to be
done taking into account the characteristics of the available
computing platform. In this work we will not work with a
cluster of computers, but with on-chip multiprocessors – in
particular, with a Cell system. The limited memory of the
Cell’s SPEs does not allow us to run a complete EDA (an
island) in each SPE. Therefore, we have to opt for the con-
servative approach. We will use a Master-Worker approach
to parallelize our code. When porting it to the Cell, the
Master task will run on the PPE and the Workers on the
SPEs.

4.1 Parallel implementation of UMDA
In this work we focus on the Univariate Marginal Distribu-

tion Algorithm (UMDA), a simple EDA introduced in [20].
It follows the general scheme of EDAs shown in Figure 2.
As explained in the previous section, the complexity of the
probabilistic model learnt at each step has a significant influ-
ence in terms of performance and complexity. UMDA uses
the simplest way to estimate the joint probability distribu-
tion, considering that all the variables are independent. This
model can be expressed as a product of the probabilities of
the variables:

pl(x) = p(x|DSe
l−1) =

nY

i=1

pl(xi) (1)

where each univariate marginal distribution is estimated from
marginal frequencies:

pl(xi) =

PN
j=1 δj(Xi = xi|DSe

l−1)

N
(2)

being

δj(Xi = xi|DSe
l−1) =

1 if in the jth case of DSe

l−1, Xi = xi

0 otherwise
(3)

The parallel approach has been done starting from a se-
quential version made in C++. Before designing the parallel
version for the Cell Broadband Engine, we considered inter-
esting, for comparison purposes, to design a parallel version
based on the Posix Threads (pthreads) library [6], that could
be executed on a multi-core personal computer.

When facing the parallelization of a sequential algorithm,
it is mandatory to obtain execution statistics, identifying
which are the most expensive parts in terms of computation
time. For this purpose, we executed UMDA to solve One-
Max, a well-known problem, that has a very simple objective
function. This problem consists of maximizing:

OneMax(x) =
nX

i=1

xi

where xi ∈ {0, 1}.

That is, the best solution is reached when all the vari-
ables of the individual take value 1. The size of the indi-
vidual is 1,000, the population size (POP SIZE) is 2,500
individuals, and the algorithm was stopped at the 50th gen-
eration. The rest of the parameters are the same for all the
experiments: To learn the model, truncation was used, se-
lecting the best half of the population. At each generation,
POP SIZE new individuals are created, mixed with the
current population, and the best POP SIZE individuals
will be selected to constitute the next generation.

As can be seen in Figure 3, the most time-consuming steps
are the first three. That is, learning the model and, creat-
ing and evaluating the new population. It must be taken
into account that evaluation is problem dependent and few
problems are as simple as the OneMax.

Our parallel approach follows the well-known Manager-
Worker scheme, where the UMDA algorithm will be exe-
cuted by the main thread (Manager), and when necessary,
it will ask the Workers for help. In particular, workers will
collaborate in these phases:

 0

 50

 100

 150

 200

 500 1000 1500 2000 2500 3000 3500 4000

T
i
m
e

(
s
)

Individual Length

Sequential
1 thread

2 threads
3 threads
4 threads

Figure 4: Execution times for sequential and
threaded version.

• Learning the probabilistic model: As introduced pre-
viously, UMDA uses a very simple probabilistic model,
that assumes that there is no relation between the vari-
ables. Therefore, once the population has been se-
lected, the Manager will ask the workers to obtain the
marginal frequencies for a subset of the selected pop-
ulation. Once each Worker has finished, the Manager
creates the main model based on the partial values.

• Sampling and Evaluation: These two steps usually
come together. That is, based on the model learnt in
the previous step, new individuals will be created (and
evaluated). Again, the Manager will ask the workers
to create (and evaluate) a subset of individuals. The
number of individuals to be managed by each worker
can be established statically, or assigned dynamically
using an on-demand scheme. That is, when the evalu-
ation of the individuals takes always the same comput-
ing time, a static assignation can be done. However, if
the time required to evaluate the individual depends
on the values it takes, the on-demand scheme is prefer-
able. In these experiments, a static distribution was
used (evaluation time is constant for OneMax).

In order to test the performance of this multi-threaded
version, we completed several experiments on an Intel Xeon
Quad-Core computer. Different individual sizes were used
(ranging from 10 to 4,000 variables), using a population size
of 2, 5L, being L the number of variables of the individual.
The number of threads was also changed from 1 to 4. UMDA
was stopped after computing 50 generations. The results of
these experiments are shown in Figure 4.

According to the results, it can be seen that the multi-
threaded version has an adequate behavior from the point
of view of scalability. Therefore, the second step of this work
would be to test the suitability of the Cell for the execution
of EDAs.

5. PORTING UMDA TO THE CELL
Once we have the multi-threaded parallel version of UMDA

running on the Quad-Core Xeon symmetric multiprocessor,
we are ready to port it to the Cell. To do so, we have to
rewrite the code to adapt it to the characteristics of this
processor.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

T
i
m
e

(
s
)

Individual Length

Sequential
1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

Figure 5: Execution times for sequential and
threaded version in CBE.

In the rewriting process first, we have to deal with het-
erogeneity: the Master thread will run on the PPE, and
the worker threads will be separate programs that will run
on the SPEs. In the Quad-Core we took advantage of a
large, shared memory space, which simplifies communica-
tion among tasks and avoided explicit data movements. This
memory model is not valid for the Cell. Portions of code
have to be introduced in order to explicitly move data, us-
ing DMA, from the main memory to the SPE’s local store
and vice-versa. This process is costly not only in terms of
programming difficulty, but also in terms of application run-
ning times.

In the previous section we identified those parts to be
delegated to the workers: learning the probability model,
and sampling and evaluation. For the Cell, we will make
the workers deal only with the latter.

Regarding the learning the probability model phase, in
the multi-thread version the manager asks the workers to
obtain the marginal probabilities for a subset of the selected
individuals. In the case of the Cell, in order to complete
this step, it would be necessary to previously send a subset of
selected individuals to each of the SPEs. Taking into account
that the probability model learnt by UMDA is very simple,
it is not worth to complete this step following a parallel
scheme, because the time required by the communication
(send individuals) is notably higher than the time needed to
compute the marginal probabilities.

For the sampling and evaluation phase, we repeat for the
Cell the same scheme used in the multi-thread code. That
is, the manager will ask the workers to create and evalu-
ate a given number of individuals. The workers (executed
in the SPEs), will use a double-buffer technique to create,
evaluate, and send the individuals to the PPE using DMA.
This technique consists on working on an individual while,
in parallel, another one is being transferred to the manager.

In addition to the general design aspects explained for the
two phases of the algorithm, we consider interesting to point
out an important aspect when adapting a code for the Cell
Broadband Engine. Due to the size restrictions in the SPEs
(256KB of memory, for code and data), it is recommendable
to reduce the size of the code as much as possible. In the
following lines, we present some ideas that can help to obtain
a small-sized code:

Flags Size (bytes) Exec. Time (s)
-Os 120,028 247.999
-O0 142,092 252.366
-O1 122,924 247.665
-O2 122,116 248.097
-O3 125,724 248.030

Table 1: Code size and execution times for different
compilation flags. Individual size = 3,000. Six SPEs.

• Optimization flags: The optimization level affects the
size and execution time of the program. In Table 1
we show different optimization options together with
the sizes and execution times for our UMDA imple-
mentation. In this particular case all options result in
very similar execution times but we can notice signifi-
cant differences in the size of the code that runs on the
SPEs. Therefore when preparing code to the SPEs it
is important to choose the right speed/size relation.

• C++ exception handling: this mechanism increases in
about a 10% the code’s size. We can avoid this system
(for well debugged code) using the flag -fno-exceptions.

• Libraries: Is is also important to be careful with the
libraries linked with the SPE code. As there is not
dynamic linking in the SPE, all the libraries must be
linked statically, increasing the final size of the exe-
cutable. For example, using the C++ Standard Tem-
plate Library to manage sets of individuals in a vector
implementing a population object makes code notably
larger in around 70 KB.

In summary, leaving behind these suggestions can result
in a code that does not fit in the SPEs’ Local Stores, or
a code that makes no room for the local structures to be
created. Therefore, this can be an important drawback when
designing and adapting code for the Cell.

5.1 Evaluation and analysis of results in CBE
In Figure 5, the execution time of the sequential UMDA

version (using only the PPE), and the execution times of
the parallel versions (using a different number of SPEs) is
shown. UMDA was executed for the OneMax problem, us-
ing the same parameters selected for the multi-threaded ver-
sion, and changing the size of the individual (number of vari-
ables). It can be seen that the efficiency and scalability of
this parallel version is really poor. In fact, increasing the
number of SPEs does not provide any improvement.

Looking for the reasons for such a bad behavior, it must be
noted that the learning of the model, which requires about
the 47% of the total execution time was not parallelized
(due to the DMA communication overload). Related to this,
the creation of individuals and the posterior evaluation of
the OneMax function is very fast (just an addition of the
values of the variables), and once the individual has been
created, it must be sent to the PPE, which gathers all the
new individuals, creates the next population and continues
with the next step. In Figure 6, a graphical explanation of
this aspect is presented showing the average time to create
and send one individual per SPE. It can be seen that as the
number of used SPEs increases, the communication becomes
more costly, due to contention accessing the Cell’s internal
network.

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

1 2 3 4 5 6

Ti
m

e
(s

)

Number of SPEs

Contention+Synchronisation
Computation

Figure 6: Relation between computation and com-
munication using a different number of SPEs.

for i in 1 to MultiplicativeFactor
Result = Evaluate OneMax()

end for
return Result

Figure 7: Making the evaluation of OneMax more
complex.

5.2 Additional experiments with more complex
evaluation functions

As explained when discussing the implementation of the
learning the probability model step, the communication be-
tween the PPE and the SPEs may become an important bot-
tleneck for Manager-Worker approaches, particularly when
the data movement cost is not amortized with a hard “num-
ber crunching” over that data.

As the evaluation function of the OneMax problem is a
very simple function, we decided to complete an additional
set of experiments introducing a multiplicative factor that
artificially makes the evaluation of the OneMax function
harder (see Figure 7).

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

1 2 4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
(s

)

Multiplicative factor

Contention+Synchronisation
Computation

Figure 8: Computation/communication ratio for dif-
ferent evaluation costs.

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000 60000

S
p
e
e
d
U
p

1
-
6

Evaluation cost

Speedup/Evaluation cost

Figure 9: SpeedUp 1-6 for different evaluation costs.

In Figure 8, the results of these experiments are shown.
Executions were completed using a single SPE, and varying
the multiplicative factor from 1 to 2,048. The figure shows
that, even if the communication time remains constant, the
higher complexity of this new artificial function improves
clearly the computation to communication ratio. Remem-
ber that, when using more that one SPE, DMA is even more
costly, because several concurrent communication have to
share the Cell’s internal interconnection network, see Fig-
ure 6. In Figure 5 we could see that the UMDA on the Cell
running OneMax cannot take advantage of the 6 available
SPEs: the running times are almost the same using 1 or 6
SPEs. The scenario changes drastically when the evaluation
function is costly: communication is no longer a bottleneck,
and workers are busy in parallel doing useful work. The
harder this work, the better our program scales. We can see
this in Figure 9, in which we plot the program speedup (com-
paring execution times for 1 SPE with those for 6 SPEs) for
different values of the multiplicative factor.

6. CONCLUSIONS
The effective utilization of current chip multiprocessors re-

quire careful reworking of applications, or of parts of them.
In some cases, some experience with multi-thread program-
ming is enough to exploit the computer power available from
the chip, as we have shown with the thread-based implemen-
tation for the Quad-Core Xeon. Other platforms, such as
the Cell, require the utilization of a series of programming
artifacts that are hard to handle, and impose some limits
(in terms, for example, of memory size and communication
capacity) that can totally impede the successful implemen-
tation or execution of an application.

In this paper, we have discussed the case of the UMDA
algorithm solving the artificial OneMax problem on the Cell
Bradband Engine. The necessity of working, at each SPE,
with a limited-sized Local Store forces the program to spend
most of its time moving data through a limited-bandwidth
network. Once the data is at the LS, the effort required
by the SPE to process it is too small. The application is
communication-biased and, therefore, cannot fully exploit
the processing power of the SPEs. The main lesson is that
both the algorithm and the problem to solve are too sim-
ple. A harder problem, more computation-biased, would fit
better on the Cell.

Therefore we have demonstrated by means of testing the
Cell implementation of UMDA with artificially large prob-
lems (multiple repetitions of the OneMax problem). For
the future we plan to study the portability of more complex
EDAs, for example those based on Bayesian networks (dis-
crete domains) or those based on Gaussian networks (con-
tinuous domains).

However, we have to take into account that more complex
problems may mean more complex programs, with larger
data structures and more code. And both have to fit into
the LS. Therefore, important programming effort must be
devoted to code data structures compactly, and to write
compact programs. Local memory is a treasure that must
not be wasted.

One might wonder if the effort of porting to the Cell is
worthwhile. The answer is, definitely, yes: if we check the
Top500 list of most powerful computers in the world, we
see that the current “champion” (Roadrunner, #1 in list
11/2008) incorporate Cells as co-processors. Others will
probably follow. We need to be ready to use these chips.

7. ACKNOWLEDGEMENTS
This work has been supported by the Ministry of Educa-

tion and Science (Spain), grant TIN2007-68023-C02-02, by
Saiotek and Research Groups 2007-2012 (IT-242-07) pro-
grams from the Basque Governement, TIN2008-06815-C02-
01 and Consolider Ingenio 2010 - CSD2007-00018 projects
(Spanish Ministry of Science and Innovation) and COM-
BIOMED network in computational biomedicine (Carlos III
Health Institute).

8. REFERENCES
[1] Fixstars Corp. home page.

http://www.fixstars.com/.
[2] GA-CBE home page.

http://ga-cbe.sourceforge.net/.
[3] E. Alba and J. M. Troya. A survey of parallel

distributed Genetic Algorithms. Complex., 4(4):31–52,
1999.

[4] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and
C. D. Antonopoulos. Dynamic multigrain
parallelization on the cell broadband engine. In
PPOPP, pages 90–100, 2007.

[5] W. Bossert. Mathematical optimization: Are there
abstract limits on natural selection? In P. S.
Moorehead and M. M. Kaplan, editors, Mathematical
Challenges to the Neo-Darwinian Interpretation of
Evolution, pages 35–46. The Wistar Institute Press,
Philadelphia, PA, 1967.

[6] D. R. Butenhof. Programming with POSIXÂő Threads.
Addison–Wesley Professional Computing Series, 1997.

[7] E. Cantú-Paz. Efficient and accurate parallel genetic
algorithms. Kluwer Academic Publishers, 2000.

[8] L. De la Ossa, J. A. Gámez, and J. M. Puerta.
Migration of probability models instead of individuals:
An alternative when applying the island model to
EDAs. In X. Yao, E. K. Burke, J. A. Lozano,
J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. E.
Rowe, P. Tiño, A. Kabán, and H. P. Schwefel, editors,
PPSN, volume 3242 of Lecture Notes in Computer
Science, pages 242–252. Springer, 2004.

[9] L. J. Fogel. Autonomous automata. Industrial
Research, 4:14–19, 1962.

[10] K.-L. Fok, T.-T. Wong, and M. L. Wong. Evolutionary
computing on consumer graphics hardware. IEEE
Intelligent Systems, 22(2):69–78, 2007.

[11] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning.
Addison–Wesley, Reading MA, 1989.

[12] J. J. Grefenstette. Optimization of control parameters
for Genetic Algorithms. IEEE Transactions on
Systems, Man, and Cybernetics, 16(1):122–128, 1986.

[13] J. H. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, MI, 1992.

[14] IBM. Software Development Kit for Multicore
Acceleration. Programming Tutorial. Version 3.1.
2008.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. J. Shippy. Introduction to the
cell multiprocessor. IBM Journal of Research and
Development, 49(4-5):589–604, 2005.

[16] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[17] P. Larrañaga and J. A. Lozano. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, 2002.

[18] J. A. Lozano, P. Larrañaga, I. Inza, and
E. Bengoetxea, editors. Towards a New Evolutionary
Computation. Advances on Estimation of Distribution
Algorithms, volume 192 of Studies in Fuzzines and
Soft Computing. Springer, 2005.

[19] A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso.
Parallel implementation of EDAs based on
probabilistic graphical models. IEEE Transactions on
Evolutionary Computation, 9(4):406–423, 2005.

[20] H. Mühlenbein. The equation for response to selection
and its use for prediction. Evolutionary Computation,
5:303–346, 1998.

[21] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions I. Binary
parameters. In H. M. Voigt, W. Ebeling,
I. Rechenberger, and H. P. Schwefel, editors, PPSN
IV, volume 1141 of Lecture Notes in Computer
Science, pages 178–187. Springer, 1996.

[22] J. Ocenasek and J. Schwarz. The parallel Bayesian
optimization algorithm. In Proceedings of the
European Symposium on Computational Intelligence,
pages 61–67, 2000.

[23] J. Ocenasek and J. Schwarz. The distributed Bayesian
optimization algorithm for combinatorial optimization.
In EUROGEN - Evolutionary Methods for Design,
Optimisation and Control, CIMNE, pages 115–120,
2001.

[24] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational Optimization and
Applications, 21(1):5–20, 2002.

[25] M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable
Optimization via Probabilistic Modeling: From
Algorithms to Applications (Studies in Computational

Intelligence). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[26] I. Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann–Holzboog, Stuttgart, 1973.

[27] J. Rudin. Accelerating persistent surveillance radar
with the cell broadband engine. Embedded Technology
Journal, 2008.

[28] L. D. Whitley, S. B. Rana, and R. B. Heckendorn.
Island model genetic algorithms and linearly separable
problems. In D. Corne and J. L. Shapiro, editors,
Evolutionary Computing, AISB Workshop, volume
1305 of Lecture Notes in Computer Science, pages
109–125. Springer, 1997.

[29] A. Wirawan, K. C. Keong, and B. Schmidt. Parallel
dna sequence alignment on the cell broadband engine.
In PPAM, pages 1249–1256, 2007.

[30] M. L. Wong, T.-T. Wong, and K.-L. Fok. Parallel
evolutionary algorithms on graphics processing unit.
In Congress on Evolutionary Computation, pages
2286–2293, 2005.

[31] A. A. Zhigljavsky. Theory of Global Random Search.
Kluwer Academic Publishers, 1991.

