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1 Summary

Supervised classification is a part of machine learning that has grown in interest over the last years. In the
literature, there are many proposals for classification paradigms and learning algorithms that can be applied to a
specific classification task. Therefore, an honest classifier evaluation and a fair comparison among classification
models are key points in order to obtain right conclusions about the results achieved as well as to choose the best
model /paradigm to deal with a classification task. However, there are many researchers that focus their work on
proposing new classification algorithms, leaving the honest evaluation of the results aside.

This tutorial aims to offer an overview of honest performance evaluation methodology for classifiers with
detailed information about scores to measure the goodness of classification models, estimation methods and hy-
pothesis tests to carry out as fair comparison as possible among different models. Thus, we provide researcher
with sufficient information to choose the best alternative for each specific problem in order to obtain the fairest
conclusions. Since, there is no single literature source covering all the aspects of the evaluation process, we think
this tutorial may help the research community to have a better understanding of the evaluation methodolo-
gies. Additionally, the tutorial provides some useful guidelines to apply these evaluation methodologies to real
problems.

The tutorial is organized in four parts. In the first part we introduce the classification problem and we motivate
the relevance of a honest evaluation of classification models as well as the model comparison [Hatie et al., 2001,
Michell, 1996]. The second part is devoted to the scores that can be used to measure the goodness of a classifier.
Classification error is the most studied score [Bengio and Grandvalet, 2005, James, 2003, Rodriguez et al., 2010]
and also the most commonly used to evaluate classification models. However there are other scores that
may be of interest in certain application domains [Fawcett, 2006, Hand and Till, 2001, Makhoul et al., 1999,
Saracevic, 1996, van Rijsbergen, 1979]. In this part of the tutorial we analyze the main characteristics and
properties of different scores: classification error, recall, specificity, precision, balanced accuracy, balanced er-
ror, f-score and area under the ROC curve; and different application domains for these scores. The third
part of the tutorial is related to the estimation methods. We present and motivate the problem of estimat-
ing the value of a score for a classifier given a (finite) data set and the bias and variance problem for the
score estimation [Domingos, 2000, Friedman, 1997, Geman et al., 1992, James, 2003, Kohavi and Wolpert, 1996].
Then, we elaborate on different estimation methods such as resubstitution [L. P. Devroye, 1979], hold-out (and
variants) [Larson, 1931, McLachlan, 1992], cross-validation (and variants) [Stone, 1974], bootstrap (and vari-
ants) [Efron and Tibshirani, 1993, Efron and Tibshirani, 1997], their properties and some application domains
[Efron and Tibshirani, 1986, Burman, 1989, Michael R. Chernick, 2008, Kim, 2009, Rodriguez et al., 2010] and
additionally, some problems that can arise when dealing with some special characteristics of the data set
[Braga-Neto and Dougherty, 2004, Isaksson et al., 2008, Ojala and Garriga, 2010].

Finally, the fourth part of the tutorial is dedicated to classifier comparison. In this part we introduce
statistical hypothesis testing and different types of statistical tests such as T-test, 5X2 CV test, Wilcoxon
tests, Man-Whitney test, McNemar’s test, etc. that can be used to compare two classification models using
one or more data sets and Friedman test + post-hoc that can be used to compare multiple classification models
using several data sets [Shaffer, 1995, Dietterich, 1998, Alpaydin, 1999, Nadeau and Bengio, 2003, Demsar, 2006,
Garcia and Herrera, 2008, Garcia et al., 2010]. Additionally, each part of the tutorial presents recommendations
to perform honest classifier evaluation according to specific characteristics of the problem or the data set as well
as general best practices in the use of the presented methodology.
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