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Summary

The impact of how fisheries are managed is of great importance on biolog-
ical, economic, social and political levels. However, there is still a high un-
certainty about the relationships between climate, fish and management de-
cisions. Many activities are performed in marine science in order to reduce
this uncertainty. This dissertation provides methodological contributions to
several of the activities necessary for fisheries management, with three main
contributions and several related minor contributions.

Firstly, this dissertation deals with the challenge faced by experts when
using supervised classification in order to process the increasing number of
samples (e.g. scanned zooplankton). This challenge consists of a trade-off be-
tween the performance and the number of zooplankton taxa to classify; i.e.
usually the higher the number of classes or taxa, the lower the performance.
The contribution in this domain is a wrapper method where the expert can
evaluate the training set in terms of this trade-off between performance and
the number of taxa to classify. In relation to this topic, other minor contribu-
tions have been accomplished in the classification of phytoplankton, otoliths
and habitats.

Secondly, the problem of robust forecasting in domains of scarce data,
such as fish recruitment forecasting, is dealt with. A methodological pipeline
of machine learning state-of-the-art methods is proposed and its proper appli-
cation is verified. The proposed methodology allows building a probabilistic
model where three levels of anchovy recruitment (low, medium and high) can
be predicted based on a small set of factors. In addition, the methodology al-
lows identifying relevant boundaries of recruitment levels given environmental
factors, as well as a small set of factors that tend to have a low correlation
between them and be highly correlated with the recruitment. Finally, this
work has triggered several collaborations where the modelling is adapted and
combined in an extended framework to deal with the practical necessities of
fisheries management.

Finally, the new machine learning paradigm of multi-dimensional classifiers
is applied to simultaneous multi-species recruitment forecasting in the context
of an ecosystem-based approach to fisheries management. Multi-dimensional
classifiers aim to perform the simultaneous forecasting of several variables,
which suits the need of simultaneously forecasting several fish species that
share ecosystems. The study proposes a set of pre-processing methods adapted
to the multi-dimensional approach by combining them with multi-dimensional
classifiers. The proposed multi-dimensional pre-processing methods are tested
on both synthetic and real domains. In addition, an extensive comparison
among proposed multi-dimensional pre-processing methods is provided, as
well as an analysis of under which circumstances each method can be superior
to the rest.
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Resumen

La gestión de pesqueŕıas tiene un gran impacto a muchos niveles: biológico,
económico, social y poĺıtico. Sin embargo, aun hay mucha incertidumbre so-
bre las relaciones entre el clima, los peces y las decisiones de gestión. Muchas
actividades son realizadas en investigación marina para reducir esta incer-
tidumbre. En esta tesis doctoral varias contribuciones metodoloǵıcas son pre-
sentadas en torno a estas actividades necesarias para la gestión de pesqueŕıas,
con tres contribuciones principales y varias aportaciones adicionales.

En primer lugar, esta tesis se enfrenta al desaf́ıo que se presenta a mu-
chos expertos cuando quieren aplicar clasificación supervisada para procesar
el cada vez mayor numero de muestras biológicas. Este desaf́ıo consiste en en-
contrar un equilibrio entre el número de classes a classificar y el rendimiento
de la clasificación. Normalmente, a un mayor número de clases el rendimiento
es menor. La contribución en este dominio consiste en un método ’wrapper’
donde el experto puede evaluar el conjunto de entrenamiento en base a este
equilibrio entre rendimiento de la clasificación y el número de clases a distin-
guir. Otras contribuciones, relacionadas con este tema, han sido realizadas en
las áreas de clasificación de fitoplancton, otolitos y hábitats.

En segundo lugar, se propone una metodoloǵıa para afrontar el problema
de predecir robustamente en un dominio con pocos datos como es la predicción
del reclutamiento de peces. La metodoloǵıa consiste en la propuesta de un
grupo secuencial de reconocidos métodos provenientes del aprendizaje au-
tomático y como aplicarlos correctamente. Esta metodologá permite aprender
un modelo probabiĺıstico donde tres niveles de reclutamiento (bajo, medio,
alto) se pueden predecir. Además, la metodoloǵıa permite restringir el número
de factores a usar en la predicción que tienden a estar poco correlaciona-
dos entre ellos y muy correlacionados con el reclutamiento simultaneamente
Adicionalmete, permite identificar las fronteras entre los distintos niveles de
reclutamiento dado ese restringido número de factores. Finalmente, este tra-
bajo a dado lugar a varias colaboraciones donde el modelo ha sido adaptado
y combinado con otros según de cara a una mejor gestión de pesqueŕıas.

En tercer lugar, el nuevo paradigma de clasificadores multi-dimensionales
es aplicado a la predicción simultanea de multiples especies de peces en un
contexto de una aproximación ecosistémica a la gestión de pesqueŕıas. Los
clasificadores multi-dimensionales tienen este objetivo de hacer predicción si-
multanea de varias variables objetivo, lo que encaja con el objetivo de clasi-
ficar simultaneamente varias especies de peces que comparten ecosistema. En
esta tesis la adaptación de un grupo de métodos para pre-proceso de los
datos es propuesto considerando el objetivo multi-dimenional y para com-
binarlos con clasificadores multi-dimensionales. Los metodos de pre-proceso
multi-dimensionales propuestos son verificados con datos reales y con datos
artificiales. Además, una extensa comparación de los métodos es realizada, asi
como un análisis de en que circunstancias un método en particular muestra
un comportamiento superior al resto.
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Laburpena

Arrantza kudeaketaren eragina oso garrantzitsua da arlo biologiko, ekonomiko,
sozial nahiz politikoan. Hala ere, klima, arrantza eta kudeaketa erabakien
arteko erlazioenganako zalantza handiak ageri dira. Aipatu zalantzak ar-
gitzeko asmoz hainbat aktibitate burutzen dira itsas zientziaren baliabidee-
tan. Honako tesi honek arrantza kudeaketarako beharrezkoak diren aktibi-
tateentzat hiru ekarpen metodologiko nagusi aurkezten ditu, beste hainbat
elementurekin batera.

Lehenik eta behin, tesi honek lagin kopuru handiak (adibidez, eskanetau-
tako zooplankton laginak) prozesatzeko erabiltzen den sailkapen ikuskatua
aztertzen du. Erronka hau, prozesuaren adierazgarritasun eta sailkatzeko
zooplankton taxoi kopuruaren arteko orekatzean datza; hau da, normalean
gero eta taxoi edo klase kopuru handiagoa izan, are eta txikiagoa izango da
emaitzaren adierazgarritasuna. Gai honen ekarpena hau konpontzen saiatzeko
metodo berri batean datza, non adituak entrenamendu edo Training Set-a
ebaluatu ahal izango duen aurrerago aipatu oreka horren baitan. Gai honekin
erlazionaturik, beste hainbat ekarpen ere egin dira, hala nola, fitoplanktonaren
sailkapenean edota otolito eta habitatetan.

Bigarrenez, arrainen erreklutamenduaren iragarpena bezalako datu ur-
riko domeinuetan iragarpen sendoak egiteko arazoa aztertzen da. Goi mailako
makina-ikasketa arloan ekarpen metodologiko bat egiten da, honen aplikazioaren
egokitzapena egiaztatzen delarik. Proposatu metodologia honek modelo prob-
abilistiko bat eraikitzea baimentzen du, non faktore sorta txiki batean oinar-
riturik antxoaren hiru erreklutamendu maila (baxua, ertaina, altua) iragar-
riak izan daitezken. Honetaz gain, metodologiak erreklutamendu mailen muga
aipagarriak nahiz emandako ingurumen faktoreak identifikatzen laguntzen du,
haien artean korrelazio-maila baxua izanik ere, erreklutamenduarekin estuki
korrelazionaturiko faktore sorta txiki batekin batera. Azkenik, lan honek hain-
bat elkarlan ahalbidetu ditu, non modeloa marko zabal batean moldatua eta
konbinatua izan den arrantza kudeaketarako beharrak asetzeko asmoz.

Hirugarrenez, sailkatzaile multi-dimentsionalek osatzen duten makina-
ikasketa arloko paradigma berria erreklutamendu multi-espezifikoen iragarpene-
tan aplikatua izan da, ekosisteman oinarrituriko arrantza kudeaketaren kon-
textuan. Sailkatzaile multi-dimentsionalek hainbat aldagaien aldi bereko ira-
garpena dute helburu, eta honek ekosistema berean bizi diren hainbat arrain
espezie aldi berean aztertzea eskatzen du. Ikerketa honek hurbilketa multi-
dimentsionalerako aurre-prozesatze metodo sorta bat proposatzen du, metodo
hauek sailkatzaile multi-dimentsionalekin batera konbinatuz. Proposaturiko
aurre-prozesatze metodo multi-dimentsionalak domeinu sintetiko zein erreale-
tan testatuak izan dira. Honetaz gain, proposaturiko aurre-prozesatze metodo
multi-dimentsionalen arteko konparaketa zabala aurkezten da, metodo bakoitza
besteegandik zein egoeratan gailenduko den aztertzeko analisi batekin batera.



IV

Résumé

La gestion des pêches a un grand impact biologique, économique, social et poli-
tique. Cependant, même beaucoup d’incertitudes existent sur les relations en-
tre le climat, des poissons et les décisions de gestion. De nombreuses activités
sont menées en recherche marine pour réduire cette incertitude. Dans cette
thése de doctorat plusieurs contributions méthodologiques sont présentées au-
tour de ces activités nécessaires pour la gestion des pêcheries, avec trois con-
tributions principaux et Plusieurs contributions supplémentaires.

En premier lieu, cette thse est confronté au défi qui se présente a des nom-
breux experts lorsqu’ils veulent appliquer le classement supervise pour traiter
le plus en plus grand nombre d’échantillons biologiques. Ce défi consiste à
trouver un équilibre entre le nombre de classes à classifier et le rendement de
la classification. Normalement, à un plus grand nombre de classes le rende-
ment est plus petit. La contribution dans ce domaine consiste a une méthode
’wrappe’ où l’expert peut évaluer l’ensemble de formations sur la base de cet
équilibre entre le rendement de la classification et le nombre des classes dis-
tinguer. Autres contributions, liées ce point, ont été menées dans les domaines
de classement de phytoplancton, otolithes et habitats.

Deuxiémement, il est proposé une méthodologie pour affronter le probléme
de faire une prédiction robuste dans un domaine avec quelques données
disponibles comme c’est la prédiction du recrutement de poissons. La Method-
ologie consiste la proposition d’un groupe séquentiel de méthodes reconnues
provenantes de l’apprentissage automatique et comment les appliquer cor-
rectement. Un modéle probabilistique permet d’apprendre cette méthodologie
o trois niveaux de recrutement peuvent être prédits. La méthodologie permet
de restreindre le nombre de facteurs à utiliser dans la prédiction qui tendent
à être en rapport entre ceux-ci et trés mis en rapport avec le recrutement
simultanément. Permet d’identifier les frontiéres entre des niveaux distincts
de recrutement qui ont donné ce restreint par un nombre de facteurs. Ce tra-
vail à un lieu donné pour quelque collaboration où le modèle a été adapté et
combiné par les autres selon vis-à-vis une meilleure gestion de pêcheries.

Finalement, le nouveau paradigme de classificateurs multi-dimensionnels
est appliqué à la prédiction simultanée d’espéces multiples de poissons dans
un contexte d’une approche écosystématique la gestion de pcheries. Les clas-
sificateurs multi-dimensionnels ont cet objectif de faire une prédiction si-
multanée de différentes variables, ce qui s’embote avec l’objectif de classer
simultanément quelques espéces de poissons qui partagent un écosystème.
Dans cette thse l’adaptation d’un groupe de méthodes pour pré-processus des
données est proposée en considrant l’objectif multi-dimensionnel d’où on peut
les combiner avec des classificateurs multi-dimensionnels. Les méthodes multi-
dimensionnelles de pré-processus proposées sont vérifiées par des données
réelles et autres artificielles. Une comparaison étendue des mthodes est réalisée,
ainsi que une analyse a toujours des circonstances il y a une méthode qui mon-
tre en particulier un comportement supérieur au reste.
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Introduction

The difficulties for direct observation of biological interactions and mecha-
nisms have pushed marine science towards the development of large bod-
ies of measurements from where the underlying mechanisms can be de-
duced (Duarte, 2007). In fact, major international programs (IGBP, JGOFS,
GLOBEC, ICES and others), engaging thousands of marine scientists through-
out the world over the past decade, have delivered a massive amount of in-
formation on the biogeochemical foundations, functioning and structure of
marine food webs. Parallel technological developments, ranging from satellite
imagery to autonomous underwater vehicles, have increased by orders of mag-
nitude the resolution and amount of data available on relevant properties of
the ocean ecosystem.

The resulting data represent a key resource to explore patterns in the
structure and functioning of the ocean ecosystem that is yet to be fully utilised.
Furthermore, the management of marine exploited resources (e.g. fisheries
management) is also based on the collection of large amounts of data and
the time series of catches and age structure by means of biological samples
collected during oceanographic surveys (Fig. 1.1).

Fig. 1.1. Examples of biological samples collected during oceanographic surveys:
a) anchovy eggs digitalized using Flowcam system; b) otolith, a bone in the head of
a fish whose rings provide knowledge of their age; C) big zooplankton; and d) big
phytoplankton
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Surveys at sea are extremely expensive due to the cost of vessels and
human resources. Therefore, the effort of samples and data collection during
oceanographic surveys is maximized. However, those samples are often only
partially analysed due to the lack of resources for the full analysis of all the
samples collected. This results in a massive increase in the amount of data
available that is costly to process and analyse, making knowledge extraction a
challenge that enhances the use of data mining and semi-automatic techniques.

Bioman survey (Motos, 1996), performed by the marine research institu-
tion AZTI-Tecnalia (http://www.azti.es) every year in May, is an example of
such surveys. Its main objective is to evaluate anchovy biomass using the egg
production method. In this survey the main activity is to count anchovy eggs.
However, many different types of biological samples (anchovy tissues, phyto-
plankton, mesozooplankton), physical (temperature, salinity, vertical struc-
ture) and environmental information are collected, using different kinds of
instruments (e.g. Fig. 1.2).

Fig. 1.2. Flowcam, instrument used for phytoplankton digitalization during oceano-
graphic surveys or in laboratories. It is composed of a water plumb, a plastic pipe
where the sample goes through and where a digital camera takes several photos
per second of the particles in the water sample. Those particles often have sizes
inferior to one millimeter. They are later counted and classified using supervised
classification methods.
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The aim of collecting these samples and environmental data is to improve
the knowledge of oceanic ecosystems. One of the main uses of that knowledge is
fisheries management (Motos and Wilson, 2006). Fisheries management deals
with the control of the exploitation of fish species of commercial interest. One
important aspect for fisheries management is the amount of new fish that
enter the fishery each year (recruitment).

Actually in short lived species such as anchovy, recruitment determines
the abundance of the population (Ibaibarriaga et al., 2008). Recruitment is
dependent on the size of the parental population (number of eggs produced)
(Ibaibarriaga et al., 2010), but mainly on the survival of those eggs depend-
ing on the environmental conditions (temperature, transport, predation, food)
(Ricker, 1954; Cushing, 1982; De Oliveira et al., 2005). Therefore, the abil-
ity of processing massive amounts of samples, such as zooplankton (Zarauz
et al., 2008; Irigoien et al., 2009), fitoplankton (Zarauz et al., 2009; Denis
et al., 2009), eggs and larvaes (Motos, 1996; Ibaibarriaga et al., 2010), otolith
(Ascoreca et al., 2008) and others, is crucial to understand some of those
dependencies and relationships.

In addition, by definition, recruitment can only be measured once the
individuals have entered the fishery. Being able to forecast the strength of
the oncoming recruitment based on the size of the parental stock and the
environmental variables would allow for a much better management of the
fisheries, in particular for short lived species (Myers et al., 1995). Fisheries
management can benefit of machine learning techniques that are especialized
in dealing with uncertainty (Fernandes et al., 2010c).

In this dissertation several data domains related with the activities needed
for fisheries management are addressed. These activities can be grouped in two
categories from a data analysis point of view. Firstly, the activities related with
the processing of samples deal with massive amounts of data. Secondly, envi-
ronmental relationships with fish recruitment are difficult to identify due to
the sparse data available (yearly averages). In addition, the available factors
have a high level of noise since they are often collected by indirect measure-
ments or they are just estimations. Therefore, recruitment forecast is a difficult
problem since it shows sparse data and high uncertainty.

The objectives of this dissertation are to apply supervised classification
techniques to these two groups of data analysis activities that are involved in
the process of reducing uncertainty for improvement of fisheries management.
Its aim is to improve semi-automatic processing of samples and the learning
of robust recruitment forecasting models. The objective has not been just
to apply available machine learning methods without adapting them to the
domain. Therefore, these problems have been analysed to detect weaknesses
in previous approaches that can be solved with methodological contributions.
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1.1 Contributions of the dissertation

The contributions of this dissertation are both in the methodologies and their
applications. The objective has been to develop novel classification method-
ologies specially designed for a set of marine science domains. These contribu-
tions are presented as three groups of work (Fernandes et al., 2009c, 2010c,b).
A brief explanation of each one is given in the following paragraphs. Section
1.2 includes the full thesis overview, pointing to the particular chapters and
sections where each item is presented and discussed.

A. Optimizing the number of classes in zooplankton classification

Zooplankton biomass and abundance estimation, based on surveys or time-
series, is carried out routinely in marine research facilities (Irigoien et al., 2002,
2004). The analysis of those samples is costly in time (Boyra and Arregi, 2005).
Therefore, automated or semi-automated image analysis processes, combined
with machine learning techniques for the identification of plankton, have been
proposed to assist in sample analysis (Culverhouse et al., 1996, 2003; Grosjean
et al., 2004).

A difficulty in automated plankton recognition and classification systems
is the selection of the number of classes (Hu and Davis, 2006; Fernandes
et al., 2009c). This selection can be defined as a balance between the number
of classes identified (zooplankton taxa) and performance (accuracy; correctly
classified individuals) (Fernandes et al., 2009c).

A method is proposed to evaluate the impact of the number of selected
classes, in terms of classification performance (Fernandes et al., 2009c). On the
basis of a dataset of expert labelled zooplankton images, a machine learning
method suggests groupings of classes that improve the performance of the
automated classification. The end-user can accept or reject these mergers of
classes depending on their ecological value and the objectives of the research.

This method allows both objectives to be balanced: a) maximization of the
number of classes; and b) performance, guided by the end-user. This study
allowed processing thousands of images that led to another important biolog-
ical contribution (Irigoien et al., 2009).

B. Fish recruitment forecasting using robust supervised classification methods

Many studies have been undertaken on the environmental and climatic fac-
tors that influence recruitment of different fish species (Ricker, 1954; Cushing,
1982; Myers et al., 1995). The interactions are complex and often non-linear;
such that, frequently, the different factors are difficult to disentangle (Myers
et al., 1995; Schirripa and Colbert, 2006; Planque and Buffaz, 2008).
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The main difficulty in this domain is to learn a reliable model due to the
sparse and noisy nature of the available data (Schirripa and Colbert, 2006). In
management context, the accuracy of the forecast has important consequences
and, to be useful, the manager needs to know the risk that is being taken. As
a result, the objective of this study has been to build a robust classifier for
fish recruitment forecast associated to its risk or uncertainty.

The proposed methodology consists of a pipeline of methods (Fernandes
et al., 2010c): a novel semi-automated recruitment discretization method (dis-
cretization of the class variable); factors supervised discretization; multivari-
ate and non-redundant feature selection; and a final naive Bayes classifier.
Bayesian network classifiers such as naive Bayes, have the advantage that
they not only provide forecasts, but also the estimated probability of each pos-
sible outcome. The robustness of the results at all these steps is addressed, to
ensure overall robustness and to reduce forecasting uncertainty. The method-
ology allows to build a robust model (stable to changes on the available data),
where the error is distributed along the recruitment levels.

A short lived species (anchovy) and medium life-span species (hake, which
is suspected to be a predator of anchovy) in the Bay of Biscay are used as ap-
plication examples. Two interval recruitment discretizations accomplish 70%
accuracy and Brier score of around 0.20 for both anchovy and hake recruit-
ment. In comparison, three intervals recruitment discretizations accomplish
50% accuracy and Brier scores of around 0.30 for anchovy recruitment, but
0.40 for hake recruitment. These statistics are the result of validating not only
the classifier, but also the previous steps, as a whole methodology.

C. Multiple fish species recruitment forecasting by means of multi-dimensional
classification methods

A multi-species approach to fisheries management requires a full under-
standing of the interactions between species in order to improve recruitment
forecasting of each of these interrelated species (Hollowed et al., 2000; Edwards
et al., 2004). Recent advances in Bayesian network classifiers aim the learning
of classification models where there are several correlated target variables to
be forecasted simultaneously (van der Gaag and de Waal, 2006; de Waal and
van der Gaag, 2007). These are known as multi-dimensional Bayesian network
classifiers (MDBNs).

Pre-processing steps are critical for the posterior learning of the model
in domains with sparse and noisy data, such as recruitment forecasting. In
the present study, a set of ’state-of-the-art’ uni-dimensional pre-processing
methods, within the categories of missing data imputation, feature discretiza-
tion and feature subset selection, are adapted to be used with MDBNs for
multi-dimensional domains.

A framework that includes the proposed multi-dimensional supervised pre-
processing methods, coupled with a MDBN classifier, is tested on synthetic
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datasets. This allows to identify by means of a meta-learning process not only
the methods with superior behaviour, but also the circumstances under which
a method can have a superior behaviour. Finally, proposals and adaptations
of performance measures for the multi-dimensional approach are performed
for the measures accuracy and Brier score.

The conclusions reached are used to apply the approach in recruitment
forecasting of several fish species in the ecosystem of the Bay of Biscay for
fisheries management. The results show how this approach allows to improve
not only the forecasts of each species, but also the forecast of all the species
simultaneously.

1.2 Overview of the dissertation

This dissertation is divided into seven chapters, which are organized into three
main parts: I) Introduction; II) advanced applications of supervised classifica-
tion in marine science; and, III) conclusions and future work. The first part
consists of three chapters. The first chapter is an introduction to the disser-
tation where the reader can find a synthesis of the contributions and how the
dissertation is structured. Chapter 2 introduces biological domains of high
interest (mainly for fisheries management) where supervised classification can
be applied. The main challenges from both points of view, data analysis and
biological implications, are described. In addition, biological concepts that are
used throughout the dissertation and how the disciplines of marine science and
machine learning interact among them are presented. Finally, Chapter 3 is de-
voted to explaining the classification tasks in machine learning that are later
applied in Part II, focussing on supervised classification, data pre-processing
and model building validation.

Part II is dedicated to the application of supervised classification methods
to marine science problems related with fisheries management and how these
problems have been formulated considering the particular characteristics of
each domain:

• Chapter 4 proposes a wrapper method for helping experts in deciding the
number of classes or taxa in zooplankton classification.

• Chapter 5 presents a supervised classification application to single fish
species recruitment forecasting. In this study, a whole robust methodol-
ogy is proposed, which includes recruitment levels definition, data pre-
processing, learning a classifier and honest validation.

• In Chapter 6, the simultaneous multiple fish species recruitment forecast-
ing by means of the multi-dimensional classification approach is presented.
In this chapter, a set of ’state-of-the-art’ uni-dimensional pre-processing
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methods, within the categories of missing data imputation, feature dis-
cretization and feature subset selection, are adapted to be used for multi-
dimensional classifiers. These proposed methods are tested with synthetic
datasets and in a set of real domains of fish recruitment.

Part III concludes the dissertation with Chapter 7. This chapter presents
some general conclusions, the list of publications and proposals for future
work.





2

Data analysis challenges in marine science

This dissertation lays its foundation in the crossroads between computer sci-
ence and ecology, particularly in the area of marine ecology and fisheries
management. A bridge between both sciences, where they meet together and
collaborate (Irigoien, 2006).

In this chapter, a range of problems common in marine science which can
be approached by means of supervised classification are presented. This is not
an exhaustive list since computer science and, more specifically, supervised
classification could be applied in almost any domain where data is gathered.
The focus of this review is on some problems that are related to fish ecology,
as well as fisheries and ecosystems management.

In next section, an introduction to current fisheries management is pro-
vided, with examples of the Bay of Biscay. In following sections, a set of com-
mon activities that involve data analysis in marine science with fisheries and
ecosystems management purposes are presented. These activities have been
identified during the author’s PhD in the context of the work that is performed
in the marine science research facility AZTI-Tecnalia (http://www.azti.es).
Finally, in the last section a general overview of the general approaches for
analysing data in marine science is presented. These approaches can be com-
pared with the supervised classification approaches presented in next chapter.

2.1 Fisheries management

The main objective of fisheries management is to accomplish a sustainable
exploitation combining long term protection of the resource and economic
benefit. Actually, modern fisheries management is often referred to as a gov-
ernmental system of appropriate management rules based on defined objec-
tives and a mix of management means to implement the rules, which are put
in place by a system of monitoring control and surveillance (e.g. 2.1).

As an example, Figure 2.1 shows the flow of advice in TAC (Total Allow-
able Catch) establishment for some fish stocks in Europe. The stock is esti-
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Fig. 2.1. Diagram of current flow of information and advice in European countries
for fisheries management decision making.

mated by research institutions, which is evaluated by the International Council
for the Exploration of the Sea (ICES), taking into account mainly biologi-
cal considerations. The ICES working groups provide their recommendations
for revision the Scientific, Technical and Economic Committee for Fisheries
(STECF) of the European Commission. STECF usually revise the advice con-
sidering additional socio-economic considerations providing the TAC advice
to European Union Commission. Finally, European fisheries ministers council
decides the TAC to be enforced (Villasante et al., 2010).

In practice, the evaluation of stock is an estimate of the actual popula-
tion. However, fisheries advice has to be given on the projected answer of the
population to the fishing pressure. This pressure, together with the actual
population, needs to consider new fish entering the fishery (recruitment) and
natural mortality (Fig. 2.2) in order to give management advice.

In the actual management system, the ’knowledge base’ is oriented towards
resource sustainability. Key scientific organisations give formal scientific ad-
vice with no economic or social considerations included (Fig. 2.2). However, in
its later stages, the decision-making process tends to be highly influenced by
economic, social and political considerations (Fig. 2.1). In practice, this has
meant that, although long-term sustainability has always been an objective of
managers worldwide, a focus on yield optimisation and short-term considera-
tions have determined decision-making outcomes, leading to overexploitation
(Worm et al., 2009). In addition, the knowledge base within this system is
opaque to the industry and other stakeholders: they do not participate in it
and the interpretation of outcomes is divergent among the different partici-
pants. All this reduces the reliability of the system, weakens the legitimacy
of scientific advice and of the management system as a whole, and increases
non-compliance with regulations, which, in turn, has a deteriorating effect on
the quality of the information base for the generation of knowledge (Motos
and Wilson, 2006).

Nevertheless, research institutions carry out intensive research in order to
give better scientific advice. Within this context, it is widely accepted that
the exploitation of the sea, together with environmental change, is causing
substantial alteration in the marine ecosystem (Anderson et al., 2008). These
changes are taking place at a pace that overcomes the ability to manage
living resources, as they challenge the capacity of scientists to generate the
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Fig. 2.2. A simplified diagram of knowledge and information acquisition flow for
stock estimation with fisheries management advice purposes.

necessary knowledge for effective management. On a global level, the focus
on objectives relating to sustainability, long-term yield and maintenance of
ecosystem health are widely accepted worldwide.

Indeed, there are many other relationships that have to be understood
in order to improve the estimation and advice (Fig. 2.1 base on (Maury,
2010)) for accomplishing the needed multidisciplinary perspective of fisheries
management (Motos and Wilson, 2006). The spatial and temporal scales of
ocean and fish processes are different and their relationship has to be under-
stood. Nutrients, primary production (plankton), currents and fish are linked
in complex ways. Species interactions, especially predation, are also difficult
to evaluate. Climate change and its effects on marine systems is an issue of
major concern that needs to be addressed.

Therefore, the study of all these factors is the aim of the so-called fish-
eries oceanography, which aims to explain the super-abundance and collapse
of certain fish species (Harrison and Parsons, 2000). Within this context, this
dissertation aims to provide methodologies based on the supervised classi-
fication paradigm, which can help to resolve these needs of knowledge and
information with fisheries management purposes.
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Fig. 2.3. Network of relationships in marine ecosystems. The figure illustrates the
effect of atmospheric forcing, both in terms of modifying planktonic production
and food fields for fish, as well as the effect of fisheries modifying the trophic links
between species.

2.1.1 Ecosystem-based management

Ecosystem-based management is an environmental management approach
that recognizes the full array of interactions within an ecosystem, including
humans, rather than considering single issues, species, or ecosystem services
in isolation (Christensen et al., 1996; McLeod and Leslie, 2009). The tradi-
tional approach to fisheries science and management has been to focus on
a single species. This can be contrasted with the ecosystem-based approach
where other species and the environment are considered.

2.1.2 Water quality directives

On October 23rd 2000, the European Parliament and the Council of the Eu-
ropean Union approved the Directive 2000/60/CE, commonly known as the
Water Framework Directive (WFD). The WFD constitutes a milestone in the
history of environmental policies in Europe, as it changed the way in which
the quality of aquatic systems was being monitored and regulated. For the
first time, the management measures have a marked marine focus and an
integrative point of view. The WFD is important for fisheries management
because it goes a step further from ecosystem-based fisheries management.
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Ecosystem-based fisheries management focuses on considering the ecosystem
of commercial fish species, whereas the WFD has a broader scope of managing
the ’health’ of full ecosystems.

The implementation of the WFD sets up a challenge in research and envi-
ronmental policies to all the Member States. The final objective of the WFD
is to achieve at least ’good ecological status’ by 2015 in all European wa-
ter bodies. This ’ecological status’ has to be assessed based on biological,
physico-chemical and hydromorphological elements. Two of the biological ele-
ments addressed by the WFD are benthic macroinvertebrates and macroalgae.
Each Member State has to select existing tools or develop new ones for the
assessment of each of the elements considered by the WFD. Within this con-
text the use of supervised classification methods can be useful to help experts
to develop tools that allow them to establish the ’rules’ or ’parameters’ for
managing and assessing the quality of water.

As an example, in 2000, AZTI-Tecnalia (Borja et al., 2000) developed a
new tool, based on soft-bottom macrobenthic communities, for the marine
environmental quality assessment. This tool, named AMBI (AZTI’s Marine
Biotic Index), offers a ’pollution or disturbance classification’ of a particular
site, representing the benthic community ’health’ (Grall and Glémarec, 1997).
The AMBI is based on previous ecological models, such as those of Glémarec
and Hily (1981) and Hily (1984). The theoretical basis is that of the ecolog-
ical adaptive strategies (MacArthur and Wilson, 1967; Pianka, 1970; Gray
et al., 1979) and the ecological succession in stressed environments (Bellan,
1967; Pearson and Rosenberg, 1978). Hence, the species are classified into
five ecological groups (EG). The most novel contribution of the AMBI was
the formula permitting the derivation of a series of continuous values (Borja
et al., 2000).

2.2 Activities and data domains in fisheries research

One of the limitations being faced by the ecosystem approach is the need
for additional information. The need for information involves different activi-
ties to provide the required data as well as transform it into information and
knowledge. These activities include different domains where supervised classi-
fication methods can be applied. In this chapter, a set of this type of domains
is introduced. The domains where the author has accomplished contributions
are described in more detail (mainly plankton classification and fish recruit-
ment forecasting); whereas, in the rest of the domains only a short description
is provided. The described domains have been grouped in one of four general
activities, which correspond with the two subsections of this section. This tax-
onomy is based on the author’s work during the last years of the PhD research
in AZTI-Tecnalia:
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• Samples classification: Massive amounts of different kinds of samples have
to be processed and classified in a short period of time. The most recent
approaches combine image analysis and supervised classification methods.

• Fish recruitment forecasting modelling: to be able to forecast the new fish
entering the fishery (recruitment) is crucial to be able to perform resources
management.

2.2.1 Samples classification

During oceanographic surveys, most information on physical processes is pro-
vided by instruments which allow quick acquisition and storage of data, and
subsequently a rapid analysis of the main physical variables. In contrast,
chemical and biological studies normally require a collection of water sam-
ples, processing them and, in most cases, further analysis in the laboratory.
This samples processing is crucial in order to have the necessary information
for fisheries management advice (Fig. 2.4).

Population state
estimation

Food web limitations

Phitoplankton

Zooplankton

Age distribution

Otoliths

Daily production method

Eggs

Oocytes

Fig. 2.4. A simplified diagram of samples processing needs for fish stock estimation
with fisheries management advice purposes.

This situation often means that there is a long lag between physical and
biological oceanographic results and consequently, a delay in obtaining in-
tegrated conclusions. In addition, these samples are frequently not analysed
completely and many remain unprocessed due to the economic and human
cost and the time required to extract useful data (Boyra and Arregi, 2005).
Therefore, there is the need to classify massive amounts of biological samples
with limited resources. These samples belong to a wide range of types such as
gonad oocyte, fish eggs, otolites, phytoplankton or zooplankton among others.
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2.2.1.1 Zooplankton

Zooplankton plays a key role in the transference of primary production (phyto-
plancton) to fish. Therefore, the study of zooplankton abundance and biomass
distribution is important in order to understand marine ecosystems (Irigoien
et al., 2002, 2004). Although a routine activity in many laboratories, the
amount of samples still presents a practical challenge to marine scientists.

Furthermore, the temporal and spatial sampling scales required to under-
stand the zooplankton distribution (Mackas, 1984; Steele, 1989) are incompat-
ible with the laborious sample analysis using a microscope. To some extent the
lack of sample analysis capability has been resolved using simplified measure-
ments such as Chla, total biovolume, biomass or more sophisticated systems
providing size and number of particles (e.g. the Optical Plankton Counter).
However, all these methods have a common problem: they lack the ability to
distinguish between different functional groups of plankton that are known to
have a very different role in the ecosystem (e.g. diatoms vs flagellates, marine
snow, or copepods vs appendicularia). It is becoming obvious that even proper
carbon flux modelisation requires of information on functional groups that is
not provided by bulk measurements (Le Quéré et al., 2005).

Therefore, sample analysis is crucial for the understanding of links between
fish and ecosystem productivity, in particular plankton samples (Shumway,
1990; Legendre et al., 1991; Longhurst, 1991; Banse, 1995). As an example of
one of the difficulties to define the spawning habitat of small pelagics or to
understand the variations on biomass (regime shifts) is the lack of appropriate
biological information on the prey field for the adult fishes and their offspring.
When the physical proxies (temperature and salinity) usually measured during
the surveys fail to properly forecast the high production areas, the ability to
understand the choice of the spawning habitat is severely limited. Even when
the physical proxies are appropriate, they only forecast primary production,
which is not necessarily a good factor for the prey field of zooplanktivorous
fish. As mentioned earlier, this problem is not restricted to fisheries: knowledge
of the factors affecting the distribution of zooplankton is very limited because
the difficulties to sample zooplankton with the relevant spatial (mesoscales)
and taxonomical resolutions.

Traditionally, plankton have been collected from water samples by filtering
or using nets (Wiebe and Benfield, 2003). Zooplankton samples are often
digitalized for permanent storage in this format, reducing the storage space
needed for conventional plankton samples and preventing the possibility of
loss of samples due to the deterioration in the preservative (Alcaraz et al.,
2003).

In recent years several in situ and laboratory imaging systems have been
developed. These systems are capable of obtaining relatively good resolution
images at high collection rates that would, in theory, allow to quantify the
distribution of taxonomically well resolved groups in the appropriate spatial
and temporal scales. These imaging systems (Fig. 2.5) can be classified in
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the categories of scanner based (Samson et al., 2001; Grosjean et al., 2004;
Irigoien et al., 2005), photographic camera based (Sieracki et al., 1998; Luo
et al., 2005; Bachiller et al., 2010), video camera based systems (Davis et al.,
1992, 2005; Olson and Sosik, 2007) and holographic systems (Loomis et al.,
2007; Dominguez-Caballero et al., 2007; Davis, 2008). Exhaustive reviews of
such systems can be consulted in Culverhouse et al. (2006); Benfield et al.
(2007); Sieracki et al. (2010).

Fig. 2.5. Examples of laboratory imaging systems for zooplankton digitalization.
From left to right: samples prepared to be digitalized in plastic cells; simple scanner
based system composed of a scanner and a computer; and, photographic camera
based system composed of a camera, a robust support with metrics, a led ilumination
system and a computer.

These systems have been confronted with a new problem, the huge amount
of information (images) produced, which is impossible to analyse manually.
Image analysis offers an advantage over other methods of counting or sizing:
the images can be used for automated species identification using different
recognition systems to identify major groups at least (Gaston and O’Neill,
2004; Grosjean et al., 2004). Some of those have been applied to zooplankton
with success (Culverhouse et al., 1996, 2003; Grosjean et al., 2004). Further-
more, the monitoring of plankton in this way allows analysis without physical
contact, avoiding any likelihood of damage to fragile plankton organisms, such
as gelatinous zooplankton (Benfield et al., 2007).

In the case of zooplankton, samples can be stained before scanning for 24
hours with Eosin or Rose Bengal. This process enhances contrast since the
former dye stains cytoplasm and muscle protein selectively and the latter has
an affinity for lipids (Sheehan and Hrapchak, 1980; Boyra and Arregi, 2005).
This staining process can reduce the number of artifact particles between
50% and 75% (unpublished data for Bachiller (2008)), facilitating the task of
categorizing the different zooplankton taxa (Fig. 2.6).
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Fig. 2.6. Example of several zooplankton species digitalized by a digital photogra-
phy camera. From left to right biggest species to smallest: Copepoda Calanus sp.,
Zoea larva, Furcilia larva, Gastropod, Cirripedia nauplius, Euterpina acutifrons,
Bivalve, Oncaea sp., Euphausiid nauplius.

Previous to the counting and classification, the Image Analysis process
discriminates each object included in the sample from the background by the
binarization of the original image (Fig. 2.7). The application of grey levels and
colour thresholds determines the minimum levels for a pixel to be considered as
a candidate particle for counting. Threshold values must be revised depending
on each device and the software used. The minimum and maximum area
(expressed as number of pixels) which should be considered to be processed,
as well as the pixels per mm calibration, should be also indicated. Therefore,
the establishment of correct values for these parameters is important to obtain
satisfactory results. It is also recommended avoiding any pre-processing of
images in the digitalization of the samples in order to work with the raw
image.

Once the binary images have been obtained, a fixed series of characteristics
related to morphological attributes of each particle in the sample is measured,
such as the perimeter, area, maximum and minimum diameter and the Equiv-
alent Circular Diameter (ECD). The implementation of different algorithms
on these attributes allows other secondary characteristics to be calculated,
including the roundness, fractal dimension, elongation and compactness (Fer-
nandes et al., 2009c).

After the different particles have been separated into unique images (vi-
gnettes), experts classify a subset of those vignettes of organisms into classes
that can be morphotypes and/or taxonomic categories. This set of expert-
classified images forms a training set against which classification algorithms
can be developed and tested. A full classification framework (e.g. Zooimage:
http://www.sciviews.org/zooimage/ ) must include a number of elements: the
training set; image analysis methods such as image correction, segmentation
and feature extraction (Liu and Motoda, 1998); and a classification algorithm,
such as neural network, support vector machine, or decision tree; or an en-
semble of algorithms (Sieracki et al., 2010).

The state-of-the art reveals that for automated image classifiers from 10 to
30 classes, the recognition accuracy is over 70% (Blaschko et al., 2005). This is
approaching the level of agreement among human experts (Culverhouse et al.,
2003; Bell and Hopcroft, 2008; Gislason and Silva, 2009). Bias due to errors
in classification can be statistically corrected if the prior probabilities of the
occurrences of the types are known (Solow et al., 2001). A carefully collected
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Fig. 2.7. Image analysis process in zooplankton samples: A) original color image;
B) image transformed to gray scale; C) image binarized for silhouette identification;
and, D) silhouette of images to produce measurements of features

expert-derived training set can provide these prior probabilities. Misclassi-
fication may also be reduced by considering results from multiple classifier
approaches (Hu and Davis, 2006), or optimizing class selection (Fernandes
et al., 2009c). However, more work on handling the errors in classification,
and on tools and protocols for creating appropriate and unbiased training
sets is needed.

An important issue is the availability of public datasets. Indeed, a classifier
cannot be better than the dataset used to train it (Irigoien et al., 2005). These
datasets must be provided by the taxonomists, but statistical help is required
to establish procedures that both quantify and minimize inevitable errors.

Continued work to identify features and create improved classification al-
gorithms is needed in this field. It has been suggested that a community effort
of open source software development is the best way to make progress in
this area (RAPID: Research of Automated Plankton Identification (Benfield
et al., 2007)). Examples of such software development are the Plankton Anal-
ysis System (PAS) and the Plankton Interactive Classification Tool (PICT)
being developed at the University of Massachusetts Amherst (Mattar et al.,
2009). PAS is a web-application that provides the functionality for experts
to upload their images and algorithms, process images, hand-label exemplars,
train classifiers and use those classifiers to automatically label new images.
Zoo/PhytoImage software has been successfully employed in a number of stud-
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ies (Zarauz et al., 2008; Bell and Hopcroft, 2008; Irigoien et al., 2009) as tools
for automatic identification of scanned meso and macrozooplankton images.

Finally, another problem is that usually the datasets are imbalanced (Jap-
kowicz and Stephen, 2002). The class imbalance problem corresponds to classi-
fication domains for which one class is represented by a notably larger number
of instances than other classes. A common practice for dealing with imbal-
anced data sets is to rebalance them artificially (Provost, 2000). This has
been called ’upsampling’ (replicating cases from the minority) (Zarauz et al.,
2008) and ’downsampling’ (ignoring cases from the majority) (Grosjean et al.,
2004). However, in some domains it has been demonstrated that upsampling
or downsampling does not solve the problem (Provost, 2000; Drummond and
Holte, 2000). The reason is that these techniques can show an improvement
of the estimated performance that might not be real. This is difficult to verify
since the real distribution at sea is unknown. One approach to validate esti-
mations from automatic classification is comparing them with manual clas-
sification and counting (Bell and Hopcroft, 2008), which also has a degree
of error (Culverhouse et al., 2003), or with some type of control artificially
introduced in the samples such as control beads (Bachiller et al., 2010).

In conclusion, there has been a lot of effort in improving the devices to
acquire more and better quality data. However there is the need to improve
the posterior steps of data analysing in order to get the most from it and to
ensure that the conclusions extracted are valid.

2.2.1.2 Phytoplankton

Traditional phytoplankton surveys have been limited by the laborious and
time-consuming nature of sampling and analysis similarly to the zooplankton
problematic. Such a problem of sampling planktonic organisms at the rele-
vant scales has hampered the understanding of control mechanisms in marine
systems (Duarte, 2007).

The field of phytoplankton research has benefited from the presence of
photosynthetic pigments, which has permitted the use of colour and fluo-
rescence to study the distribution with high spatial resolution (by means of
satellite imaging methods, in situ fluorescence measurements, etc), and with
some taxonomic differentiation methods (high performance liquid chromatog-
raphy). However, to fully understand the ecosystem, information is needed on
the distribution of prey and predators: relative abundances, size distribution,
overlapping, etc.

Until recently, obtaining high-resolution distribution of heterotrophs reg-
ularly at sea was not possible. However, within the last few decades, new
image analysis systems have been developed for rapid and high-resolution
data acquisition. These systems are designed for studying a broad range of
sizes (Ashjian et al., 2001; Davis et al., 2004; See et al., 2005) and constitute a
powerful alternative to the traditional manual treatment of plankton samples.
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At present, automatic sampling methods still lack taxonomic detail (Hu
and Davis, 2006). Nevertheless, recent studies have demonstrated the power
of machine learning and data mining technique used to classify field-collected
organisms of different taxa (Culverhouse et al., 2003; Blaschko et al., 2005)
in achieving good accuracy levels in terms of abundance and biomass of ma-
jor taxonomic groups (Culverhouse et al., 2003, 2006). These systems do not
have the resolving power to identify plankton to the level of species and life
stage, but can provide important information on coarse taxonomic composi-
tion (Davis et al., 2005). Recent studies start to accomplish taxonomic compo-
sition by means of image analysis and supervised classification (Zarauz et al.,
2009).

2.2.2 Fish recruitment forecasting

Early on in fisheries research, recruitment was identified as a key element in
management, i.e. the amount of fish that enters the population each year. As
a result, recruitment and the factors determining it have been the subject of
intense research (Ricker, 1954; Cushing, 1982; Myers et al., 1995). A problem
is that data about some of the factors that can be controlling recruitment
directly (e.g. food availability, larval growth) may be more laborious to obtain
than the recruitment estimate itself. In addition, the interactions between
population dynamics and different environmental factors are complex and
often non-linear, making it difficult to produce robust predictions. Within this
context, recruitment forecast is a problem of high uncertainty (Mantyniemi
et al., 2009).

Based on a simplified approach, fisheries management has been moving to-
wards the use of environmental relationships using oceanographic data, since
environmental factors are collected routinely (Bartolino et al., 2008; Borja
et al., 2008). Therefore, such research has evolved from considering only the
biomass of spawners, to also including environmental factors that can mod-
ulate recruitment (Schirripa and Colbert, 2006; Planque and Buffaz, 2008).
Therefore, it is well accepted that environmental conditions and climate play
an important role in the recruitment of fish (Cushing, 1982; Baumgartner
et al., 1992; Bakun, 1996; Alheit and Hagen, 1997; Brunel and Boucher, 2007;
Borja et al., 2008). In this field, a large number of studies have been under-
taken, using different techniques, to consider such environmental information
to forecast recruitment (Chen and Ware, 1999; Bailey et al., 2005; Dreyfus-
León and Chen, 2007; Dreyfus-León and Schweigert, 2008; MacKenzie et al.,
2008; Ruiz et al., 2009).

Nevertheless, the problem remains difficult because the mechanisms be-
hind such relationships are often poorly understood; this, in turn, makes it
difficult to determine the forecast estimation robustness, leading to the failure
of some proposed relationships, methods and performance estimations, when
new data become available (Myers et al., 1995). Such failures may be related
to new controls, which were not considered previously (Myers et al., 1995;
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Planque and Buffaz, 2008), or to limitations in the available data (Schirripa
and Colbert, 2006). The main limitation to achieve good forecasts, from a
data analysis perspective, is the sparse and ’noisy’ nature of the available
data (Francis, 2006) and the need to estimate the risk or uncertainty of that
prediction. Probabilistic classification models offer the possibility to estab-
lish the uncertainty associated with a prediction (Friedman et al., 1997), in
addition to the model performance estimation.

Many studies have addressed recruitment forecasting by selecting the fea-
tures and learning a model for each species in isolation. Most mono-species
approaches have used regression methods (Ricker, 1954; Beverton and Holt,
1957; Schirripa and Colbert, 2006; Planque and Buffaz, 2008) and Bayesian
statistics (McAllister and Ianelli, 1997; Meyer and Millar, 1999; Newman et al.,
2006; Ibaibarriaga et al., 2008). The importance of modelling entire ecosys-
tems, rather than single species, is leading to multi-species management ap-
proaches that take into account interactions between species (Edwards et al.,
2004; Fernandes et al., 2010b). Some of these interactions are due to compe-
tition for food and space, as well as predation between species (Ragozin and
Brown Jr, 1985; Leggett and Deblois, 1994; Fortier and Villeneuve, 1996).
There is a broad set of models of different categories that are based on this
multi-species management approach as summarized in (Hollowed et al., 2000).
However, these models require an expert to specify all the characteristics and
the relationships that are relevant, which are often unknown. This leads to
complex models, which are often impossible to parameterise with sparse and
noisy data (Botsford et al., 1997; Fulton et al., 2003; Essington, 2001).

Previous supervised classification studies for recruitment forecasting have
accomplished good forecast rates for Pacific herring recruitment using ge-
netic algorithms to produce prediction rules (Dreyfus-León and Chen, 2007;
Dreyfus-León and Schweigert, 2008). However, probabilistic models are not
used in these studies; and therefore, predictions are provided without esti-
mations of their likelihood. In addition, these studies assume that experts
already know the best set of factors for recruitment prediction. This assump-
tion is not necessarily true for many species; rather, it often happens that
predictive environmental variables are proxies for unknown processes, or that
new data provide better explanatory variables. In this dissertation, the most
appropriate and smallest set of factors is considered to remain unknown, al-
though there is a large group of good ’candidates’ proposed by experts (Jin,
2009). Therefore, the ’best’ factor set identification is part of the proposed
methodology (Saeys et al., 2007).

2.3 Data analysis in marine science

Marine science is a science trying to answer difficult questions with limited
resources. In practice, one has to apply a data exploration, check assumptions,
validate the models, perhaps apply a series of methods, and most importantly,
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interpret the results in terms of the underlying biological questions being
investigated and the limitations of the collected data (Zuur et al., 2007).

The biological question aids in deciding on the type of analysis. In addition,
the quality of the data (number of variables, how many observations, search
for linear or non-linear relationships) decides the specific method, which can
only be addressed by a detailed data exploration. Therefore, data exploration
is the first step in a data analysis procedure in marine science (Fig. 2.8).

Hypotesis
Data
acquisition

Data
exploration

Outliers

Transformation

Standarization

Modelling

Descriptive

Predictive

Fig. 2.8. Example of a common pipeline of data analysis in many marine science
research works.

The data exploration step allows to decide the appropriate modelling
method and whether other pre-processing methods have to be applied. In
this sense there is a wide range of data exploration techniques (Montgomery
and Peck, 1992; Crawley, 2002; Fox, 2002; Quinn and Keough, 2002), where
some of the most useful are (Tague, 2005; Zuur et al., 2007):

• Boxplots and variants (Chambers, 1983) allow to find relationships be-
tween variables.

• Dotplots (Cleveland, 1984) are useful to identify outliers and homogeneity.
• Histograms show the centre and distribution of the data and give an indi-

cation of normality.
• The Quantile-Quantile plot (Wilk and Gnanadesikan, 1968) is a graphical

tool used to determine whether the data follows a particular distribution.
• The Scatterplot or scattergraph allows to detect relationships between pairs

of variables.
• The pairplot, or scatterplot matrix shows multiple pair-wise scatterplots in

one graph and can be used to detect relationships between variables and
to detect collinearity.

• The coplot is a conditional scatterplot showing the relationship between
two variables for different values of a third variable or even a fourth vari-
able.

• Lattice graphs show relationships between two variables which are condi-
tioned on nominal variables, with the advantage over coplots of being able
to work with larger numbers of panels. However, they have the disadvan-
tage that the conditional factor must be nominal.
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• Design and interaction plots visualise differences in mean values of the
target variable for different levels of the nominal variables and interactions
between attribute variables.

Another important step is outlier identification. An outlier is a data point
that, because of its extreme value compared to the rest of the dataset, might
incorrectly influence an analysis. For example, Principal Component Anal-
ysis (PCA) depends on linear relationships between variables, and outliers
may cause non-significant regression parameters and mislead the analysis.
The outlier identification prompts to check the original data to find errors in
data entry or whether there was some data recording failure. However, often
there is no data error, just the result of variability (Irigoien, 2006). In these
cases, outliers can be often dealt with by applying a data transformation such
as squared root transformation.

Most transformations of the variables do not influence the results when
some techniques, such as classification trees or probabilistic graphical models,
are applied. Whereas, for others, such as regression based techniques, ap-
plying the proper transformation can be crucial. The transformation to be
applied is often selected based on the experience of data analysts or using the
Mosteller and Tukey’s bulging rule (Mosteller and Tukey, 1968; Fox, 2002)
or by automatic transformation selection (Montgomery and Peck, 1992; Fox,
2002). Similarly, if the variables being compared are from widely different
scales, such as comparing the growth rates of small fish species against large
fish species, then standardisation (converting all variables to the same scale)
might be necessary depending on the modelling approach selected (Zuur et al.,
2007).

Once the data is prepared, often regression is applied, particularly, if there
is sparse data or as an approach to describe the data with continuous or dis-
crete target variables. However, sometimes there is no target variable and the
goal is to identify relationships in data. If there is enough data and the rela-
tionships are really linear it is also possible to make predictions using basic
regression models. However, there are often complex non-linear relationships
between physical and biological processes. In the following paragraphs a gen-
eral overview of different modelling approaches used in marine science and
environmental modelling are summarized (Guisan and Zimmermann, 2000;
O’Brien et al., 2004; O’Brien, 2004; Guisan and Thuiller, 2005; ?).

New statistical methods have been developed to model spatial and tempo-
ral dependence based on regression such as generalized linear models (GLMs)
or generalized additive models (GAMs). GLMs and GAMs were first devel-
oped in the 60s and have since been used extensively in marine science re-
search (Guisan et al., 2002; Guisan and Thuiller, 2005). GLMs are extensions
of linear models, allowing for non-linearity and non-constant variance struc-
tures in data. GAMs (Hastie and Tibshirani, 1990) are a further extension of
GLMs, where the only underlying assumption is that the functions are addi-
tive and the components are smooth (Guisan et al., 2002; Zuur et al., 2007).
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Through the use of spline functions, GAMs allow the data to accommodate
the shape of the response curves to almost any functional form. These models
are particularly useful in marine modelling because underlying data is usually
highly nonlinear and may take on many different distribution forms. More-
over, GAMs are able to handle multi-collinearity between variables (Yee and
Mitchell, 1991), and to minimize the effects of extreme observations (Wood,
2008). Because of all this, GAMs have demonstrated a great ability to model
complex non-linear relationships between variables, and so have been applied
in many fields of marine research, both for terrestrial (Guisan and Zimmer-
mann, 2000) and marine systems (Augustin et al., 1998; Beare et al., 2000;
Stratoudakis et al., 2003; Planque et al., 2007).

These methods are well suited to marine presence/absence (or true/false)
data, in particular where little is known about the relationship between fac-
tors and species presence. However, in essence, GLM and GAM are extensions
of regression and therefore face many of the same issues regarding their ap-
plicability, mainly in domains where it is necessary to manage uncertainty.

Logistic regression (Hosmer and Lemeshow, 1989) is another popular tech-
nique in habitat modelling and is capable of producing good results, providing
a number of assumptions are met. Logistic regression is useful for predicting
a binary response from either continuous or categorical factors. Although lo-
gistic regression is a robust method, it needs relatively large datasets.

Artificial neural networks (ANNs) (McCulloch and Pitts, 1943b) are an
artificial intelligence technique based on a representation of the neural inter-
actions in the human brain. Information is passed through a number of nodes,
resulting in values or classifications. In domains with sparseness of data and
the requirement of being able to incorporate expert knowledge, ANN is a less
promising method. In addition, in most domains of marine science the model
must display low structural complexity and must be easy to communicate and
to implement spatially (O’Brien et al., 2004), which often does not suit the
black box approach of ANNs.

In classification and regression decision trees (CART) (Breiman et al.,
1984) a decision is taken at each node in the tree depending on the observation
value, and with leaves of the tree representing resulting classifications. The
amount of data required to specify robust trees is a drawback in the case
of many marine science applications. However, the fact that expert opinion
can be incorporated relatively easily is beneficial. In addition, trees can be
easily interpreted for biological meaning. It is not clear, however, how to deal
effectively with uncertainty in decision trees. CART could be a useful tool for
organising data and incorporating expert knowledge.

Fuzzy logic (Zadeh, 1965) seeks to relax the crisp and deterministic clas-
sifications imposed by Boolean logic. Fuzzy membership generalises Boolean
logic by assigning the value 1 to the state ’true’, 0 to the state ’false’ and
allowing values between these two numbers. The many uncertainties, both
in geographical and attribute space, could be addressed using fuzzy classifi-
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cation. This allows for classifications of ’marginally suitable’, in addition to
classifications of ’not suitable and ’suitable’.

Often in marine science both, Bayesian statistics (Laplace, 1912) and
Bayesian networks (Pearl, 1985), are called Bayesian methods. Both paradigms
are based on the Bayes rule. However, Bayesian networks do not necessar-
ily imply a commitment to Bayesian statistics. Indeed, it is common to use
frequentists methods to estimate their parameters (although Bayesian statis-
tics can be also used). Bayesian methods provide a ’formalism for reasoning
under conditions of uncertainty, with degrees of belief coded as numerical pa-
rameters, which are then combined according to rules of probability theory’
(Pearl, 1988). A simple Bayesian model defines prior and conditional probabil-
ity distributions for each node and then uses combination rules to propagate
conditional probability distributions through the network. The probability
distributions may be derived from data, set by experts or defined from a com-
bination of data and expert opinion. This process of combining probabilities
produces conditional probabilities for each possible outcome.

Most statistical techniques are unworkable in this situation, with too many
assumptions needing to be made in order to perform any analysis. Bayesian
modelling techniques provide a simple yet robust way of managing uncertainty
explicitly in the form of probabilities. The advantages of Bayesian Networks
over GLMs or GAMs applied to marine modelling can be observed in O’Brien
et al. (2004).

As an example of the applications of those techniques the book of Zuur
et al. (2007) can be consulted. The works Guisan and Zimmermann (2000) or
Guisan et al. (2002) are also a good general introduction in the application of
those techniques to different biological domains and they provide comparison
with other modelling approaches. Some other recent applications to the field
of plankton are Zarauz et al. (2007) and Zarauz et al. (2008). In the field of
fish species distribution Planque et al. (2007) can be consulted.

In some scientific fields, it is the general belief that it is needed to formu-
late a hypothesis in advance and specify every step of the statistical analysis
before starting. Although it is agreed that there must be always at least some
intuition behind an analysis, deciding on the statistical methods before seeing
the data is unrealistic in most environmental studies (Graham et al., 2004;
Zuur et al., 2007). Even in the early stages of a marine experiment, survey or
monitoring programme, it is highly likely that the generated data are so noisy
that the pre-specified method ends up unsuitable, forcing the exploration of
other alternatives. Another vision has no initial hypothesis formulated and
the space of possible hypothesis is explored, as is performed in data mining
approaches. However, there is often sparse data available which needs the
application of robust machine learning techniques in order to extract valid
conclusions.
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Supervised classification

In the previous section several marine science domains where machine learning
can be applied have been presented. Within the context of the presented
domains, in this section, several concepts belonging or related with supervised
classification are presented. However, these introduction of these concepts is
limited to what is necessary in order to understand the contributions of the
author to these domains in following chapters (see Part II).

3.1 Introduction

Artificial intelligence, machine learning and data mining are branches of com-
puter science closely related between them and with statistics and mathemat-
ics. Their aim is to allow computers to perform complex tasks that involve
learning or reacting to data in an ’intelligent’ way. Three main types of task
could be differentiated in machine learning:

1. Supervised classification: An expert labels a set of data (training-set) in
a limited number of groups (classes or labels). Labelled data (e.g. Table
3.1) is used to learn a model (classifier) in order to classify new unseen
data in the defined groups (Duda et al., 2001; Alpaydin, 2004; Bishop,
2006).

2. Unsupervised classification: There is no expert labelling provided and
groups or labels are created searching for similarities in data by means
of automatic methods (Forgy, 1965; Jardine and Sibson, 1971; Dempster
et al., 1977; Bezdek, 1981). The hope is to discover unknown, but useful,
patterns in data (Jain et al., 1999).

3. Semi-supervised classification: In many domains, there is a small amount
of labelled data and a large amount of unlabelled data (Blum and Mitchell,
1998; Zhu, 2006; Chapelle et al., 2006; Calvo et al., 2007). This approach
aims to take advantage of both, labelled and unlabelled data. The aim is
to learn a classification model in domains where it is hard to get labelled
data or it is too expensive.
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Table 3.1. Example of zooplankton images dataset for supervised classification. The
first four features are morphological, extracted by means of image analysis: minor,
the smallest axis of the ellipsis containing the individual; area, the surface area
occupied by the individual; ECD, Equivalent circular diameter; mean of the grey
scale of the pixels of the individual image. The next two features are environmental
measurements at the collection time of the samples: salinity and temperature. The
final column shows the zooplankton taxa of that individual labelled by an expert
(class variable).

Minor Area ECD Mean Salinity Temperature Class

0.6282 156.5 0.79 15.4 34.6 16.6 Copepod

0.4797 106.3 0.82 41.6 35.8 17 Copepod

0.4629 101.5 0.7 40.3 35.1 16.5 Euphausid

0.164 171.2 1.51 2.7 35.9 16.2 Artifact

1.3975 96.9 1.59 42.1 34.6 16.6 Decapoda

0.3765 105.5 0.63 38.4 35.3 15.9 Copepoda

0.5354 106.1 0.89 41.4 35.4 15 Copepoda

... ... ... ... ... ... ...

Informally, supervised classification can be understood as learning to dis-
tinguish concepts from experience (Pérez, 2010), e.g. learning to distinguish
different species of plankton from the characteristics extracted from their im-
age (Fernandes et al., 2009c). Usually, the experience is represented by a set of
examples (instances, cases, individuals or samples) of the given concepts, e.g.
the available collection of characteristics extracted from images of different
types of plankton. In this example, a case or instance contains the features,
variables or factors extracted from an individual specimen image as well as a
special variable that contains the label or assigned classification to that spec-
imen. This target variable is usually called class variable or class. A set of
instances (or dataset) permits to learn a classifier, that is a function which
assigns a class label to an unlabelled case described in terms of its features.

The objective of supervised classification consists of building a classifier
from training data S, with N cases (Table 3.2), in order to classify the value
of a single target variable or class variable C, given the set of factor or feature
variables X = (X1, · · · , Xn) of an unseen unlabelled case x = (x1, · · · , xn).
As an example, in fish recruitment, (C) represents recruitment of a fish species
to be forecasted and (X1, · · · , Xn) represents the set of factors (climatic, bi-
ological and others) or features.

In this work, the term ’forecasting’ is used instead of ’predicting’, since
the verb ’to predict’ has the connotation of ’guessing’, although the terms
’forecasting’ or ’diagnosing’ would be more appropriate becouse they that have
the meaning of ’determining from evidence’. Similarly, the terms ’features’ or
’factors’ are used instead of terms suchs as ’predictors’.

In order to learn a classification model, it is often necessary to perform
a set of previous pre-processing tasks to prepare the data for model learning
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Table 3.2. Data matrix of a supervised classification problem.

X1 ... Xn C

Instance 1 x1
1 ... x1

n c1

Instance 2 x2
1 ... x2

n c2

Instance 3 x3
1 ... x3

n c3

... ...

Instance N xN
1 ... xN

n cN

(pre-processing). These tasks can be crucial in certain domains such as those
with sparse data. Some examples are data cleaning, missing data imputation,
discretization or feature subset selection. Some machine learning concepts are
defined in the following sections in order to understand the contributions of
the author in Part II:

• Firstly, the process of data analysis common in supervised classification is
introduced, which can be compared with the process common in marine
science data analysis previously presented (Chapter 2).

• Secondly, the concept of supervised classification is introduced.
• Thirdly, filter pre-processing methods are presented. Most of them are

based on uncertainty reduction, therefore, an introduction to some con-
cepts of information theory is needed. The methods are in the areas of
missing data imputation, discretization and feature subset selection.

• Fourthly, Bayesian network classifiers are presented as a modelling ap-
proach to deal with needs identified in the domains of the previous chapter
(high uncertainty). The Markov blanket concept of a Bayesian network is
also presented.

• Fifthly, the need for assessing the performance of applying a method, or
group of methods (pipeline), and techniques to accomplish it are intro-
duced. In addition, the need to evaluate not only methods alone, but full
pipelines of the methods is addressed as well as the issue of the statistical
comparison of methods.

• Finally, the previous concepts are presented for the multiple class variables
approach (multi-dimensional).

3.2 The process of data mining

The process of data mining consists of several steps, from data collection to
learning a final model and the interpretation of results. The first step, the data
collection, often implies other areas of expertise. The whole process does not
just consists of learning a model from the collected data (Fig. 3.1). In most
cases, real-domain collected datasets are often not directly suitable for model



32 3 Supervised classification

induction, they contain noise and missing feature values, and therefore a sig-
nificant pre-processing effort is required (Zhang et al., 2003). In particular,
in certain domains such as those that manage annual climatic and environ-
mental variables, data are sparse and difficult to manage. In these domains,
appropriate data pre-processing can dramatically condition the final model
and its performance (Fernandes et al., 2010c; Uusitalo, 2007). In particular,
when the pre-processing method uses the value of the class variable. They
are known as supervised pre-processing methods (Dougherty et al., 1995; Kot-
siantis et al., 2006). Finally, it is also needed to estimate the goodness of the
model building process (pre-processing and classification model) in order to
assess its usefulness, power and reliability.

Data
compilation

Data
pre-processing

Clustering

Classification

Fig. 3.1. Example of a common data analysis flow.

Within this context, a pipeline that includes an ordered set of pre-
processing supervised methods before learning the final classifier is common
(Fig. 3.2) in supervised classification tasks. A pipeline common in the litera-
ture (Dougherty et al., 1995; Kotsiantis et al., 2006; Fernandes et al., 2010c),
which is going to be recurrent in this manuscript, is formed by the following
steps: 1) missing data imputation; 2) feature discretization; 3) feature subset
selection; and 4) classifier learning. However, these and other additional steps
can be present, depending on specific necessities and characteristics of each
domain.

Missing data
imputation

Discretization
Feature
selection

Classifier
learning

Fig. 3.2. Model building pipeline.

In the next section a formal definition of supervised classification is pro-
vided. Then, information theory concepts, that are needed to understand later
explained pre-processing methods, are described.

3.3 Supervised pre-processing methods

Many supervised machine learning models require a previous data pre-processing
step. There are algorithms that can not be applied in the presence of missing
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data. Other algorithms require discrete data. There is a broad set of pre-
processing methods. In this dissertation, the focus is on the missing data
imputation of continuous variables, discretization and the feature selection.
Pre-processing methods can be classified by taking into account whether or
not they use the posterior classification learning algorithm. While wrapper
methods make use of the classification algorithm (Kohavi and John, 1997),
filter methods (Saeys et al., 2007) use metrics based on intrinsic data charac-
teristics. In addition, filter methods are usually faster than wrapper methods
(Amaldi and Kann, 1998; Inza et al., 2000) using metrics such as uncertainty
reduction (Ben-Bassat, 1982; Fayyad and Irani, 1993; Cover and Thomas,
2006) or correlation measures (Hall, 2000).

Therefore, the use of filter methods for pre-processing tasks is preferred in
this dissertation, except in tasks involving the definiton of the class variable
where wrapper approaches have been used. In addition, methods based on
entropy (uncertainty) reduction from information theory are selected due to
the high uncertainty nature of the domains dealt with in this dissertation.
Consequently, in the following sections an introduction to some concepts of
information theory is needed, prior to introducing methods in the areas of su-
pervised missing data imputation, discretization and feature subset selection.

3.3.1 Information theory in supervised pre-processing

Information theory (IT) (Cover and Thomas, 2006) is a branch of applied
mathematics and electrical engineering involving the quantification of infor-
mation. IT permits to measure the uncertainty and dependence between vari-
ables. Those measures allow an appropriate framework for the development of
machine learning methods, based on dealing with uncertainty (Jakulin, 2005).
Therefore, the formulation of several measures from information theory is pro-
vided. The formulations are limited to discrete or case of categorical variables,
since this is the common use across this dissertation. However, further infor-
mation for those measures calculation for both type of variables, discrete and
continuous, can be consulted in Pérez (2010).

Entropy:

The entropy of a random variable C quantifies its uncertainty. It measures
the number of bits needed to code the variable. The lower the uncertainty,
the lower the number of bits needed to code it.

H(C) = −
∑
c

p(c)log2p(c)

Conditional entropy:

Conditional entropy quantifies the remaining uncertainty of a variable C
given that another variable X is known:
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H(C|X) = H(C,X)−H(C)

H(C,X) = −
∑
c,x

p(c, x) log p(c, x)

As an example, the difference between the entropy of a variable C and
the entropy after an additional variable is provided X (conditional entropy)
is behind one popular discretization method (Fayyad and Irani, 1993). This
method aims to find cut-off points of X that minimize the uncertainty of C
(or maximize the dependence between C and X), which is quite intuitive and
useful for later expert interpretation. Note: If H(C|X) is 0, it means that
there is complete dependence between C and X; and therefore, C can always
be forecasted if X is known.

Mutual information (MI):

Mutual information quantifies the mutual dependence of two variables
(Shannon and Weaver, 1963) based on the previously explained concepts of
entropy and conditional entropy.

MI(C,X) = H(C)−H(C|X)

Several variations on mutual information have been proposed to suit var-
ious needs such as normalized variants.

Symmetrical uncertainty score (SUS):

SUS is a normalized variant of mutual information that has been used for
ranking pairs of variables (Hall, 1999), providing measures of MI between 0
and 1 that are easier to be interpreted by experts than the non-normalized
variants.

SUS = 2
MI(C,X)

H(C) +H(Y )

As an example, SUS is behind one popular feature selection method, cor-
relation based feature subset selection (CFS), that has an interesting formula-
tion (Hall and Smith, 1997; Hall, 2000). In the formulation of this method the
space of possible feature subsets is explored. Subsets are given a merit where
dependences between features and the class are prized, whereas dependences
between selected features are penalized, being those dependences measured
by means of SUS between pairs of variables. This formulation also provides a
high degree of interpretability for experts.

K-way interaction:

Previous concepts measure the uncertainty in a variable or pair of vari-
ables. However, it is possible to measure a higher order interaction between
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more than two variables. This can be done by means of the k-way interaction
measure (Jakulin, 2005). Mutual information is a special case when there are
only two variables.

I(X1; ...;Xk) = −
∑

Y ⊆X

(−1)k−|Y |H(Y )

Figure 3.3, adapted from Pérez et al. (2006), summarizes the relationship
of the measures that have been introduced.

H(X1)

H(C)

H(X2)

U : H(C|X1)

U : H(C|X2)

U : MI(C,X1)

U : MI(C,X2)

: I(C,X1, X2)

Fig. 3.3. Graphical representation of several information theory uncertainty mea-
sures

3.3.2 Supervised missing data imputation

In many domains, not all the feature values are known for all the cases (Batista
and Monard, 2003). This raises problems in order to apply many methods that
can not be applied in the presence of these missing values. There is a broad
range of methods that can be applied to impute missing values (Kononenko
et al., 1984; Smith et al., 1996; Allison, 2001; Delavallade and Dang, 2007).
However, in this dissertation the CMean method (CM) has been selected given
its simplicity and effectiveness in a broad set of domains (Kononenko et al.,
1984; Little and Rubin, 2002; Delavallade and Dang, 2007). In this method,
given a missing value in an instance of a feature, it is filled with its mean
(continuous variables) or its mode (discrete variables), considering only the
instances that present the same class variable label as the instance with the
missing value. In this dissertation the missing imputation is performed over
continuous variables:

xki =
1

Nc

∑
Nc

xi
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where i is the feature index and k the instance number of the missing value.
The subset of instances where the class label is the same as in the missing
instance is denoted by Nc.

3.3.3 Supervised discretization

Supervised discretization of features implies the transformation of continu-
ous variables into categorical variables, taking into account the class values.
In some context, it presents several advantages over the use of the original
continuous values (Fernandes et al., 2010c): a reduction in time to induce a
classifier (Fayyad and Irani, 1993; Dougherty et al., 1995); an enhanced ca-
pability to interpret the model outputs and structure (Geurts and Wehenkel,
2000); and an improvement in classification performance (Dougherty et al.,
1995; John and Langley, 1995; Blanco et al., 2003).

As a supervised discretization technique, the state-of-the-art Fayyad and
Irani’s Multi-Interval Discretization (MID) method (Fayyad and Irani, 1993)
has been selected. It searches recursively, in each feature, for a set of cut-off
points that reduces the class entropy. This method firstly searches for the
cut-off point of the given feature Xi that minimizes the conditional entropy
H(C|Xi) of the class variable C. In following recursive searches, the method
repeats the process on both sides of the previous selected cut-off point. The
process is stopped if the gain in entropy reduction H(C)−H(C|Xi) is below
a Minimum Description Length (MDL) criterion (Rissanen, 1978):

gain >
1

N
(log2(N − 1) +∆)

∆ = log2(3r − 2)− [rH(S)− r1H(Sleft)− r2H(Sright)]

where r is the number of class values present in the full training data S and r1,
r2 are the number of class values in each resultant data subset after applying
a cut-off point (Sleft, Sright).

3.3.4 Supervised feature subset selection

Feature subset selection (FSS) (Yu and Liu, 2004; Saeys et al., 2007; Guyon
et al., 2007) is the process of reducing the number of features before learning
a classifier. It has three main advantages; 1) improvement of classifier perfor-
mance; 2) provision of more cost-effective features; 3) a better understanding
of the underlying processes that generated the data.

The popular multivariate Correlation-based Feature subset Selection (CFS)
method (Hall and Smith, 1997; Hall, 2000) has been selected in this work as
a prior step to classifier learning. CFS is based upon an intuitive formulation,
the assumption that a good subset of factors is one that is highly correlated
with the class and, at the same time, the features have low correlation between
them (Fig. 3.4).
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SST_4311 AMO Anch_SSB AMO

CLI2 AMO CLI2 TURB_4502

Low recruitment
Medium recruitment
High recruitment

Low High Low High Low High Low High

Low High Low High Low High Low High

CLI2

Turb_4502

AMO

Anch_SSB

SST_4311

Factor SUS

0.58

0.47

0.42

0.38

0.37

Fig. 3.4. CFS formulation searches for subsets of variables that complement each
other given a target variable. This allows to reduce the number of redundant vari-
ables in the subset. Colors in the figure represents the data distribution of the
recruitment levels or classes, and the ranking in the right the correlation of each
variable with recruitment by means of SUS score. The discriminative power of each
variable in relation with these classes can be observed. The first pair of variables
(SST and AMO) has the same discriminative power and is redundant. The second
pair has higher discriminative power since Anch SSB allows to discriminate high
recruitment level of Hake species and AMO allows to discriminate low recruitment.
The third pair is even better because it is able to discriminate all the high recruit-
ments. The final pair its the most discriminative since it also allows to discriminate
the medium recruitment.

CFS gives a merit to each feature subset (X1, ..., Xz), where the correlation
of each feature (in the subset) with the class is viewed positively (numerator),
whilst correlation between pairs of features (in the subset) is penalised (de-
nominator):

Merit(X1, ..., Xz) =
z · tCX√

z + z(z − 1)tXX

where {X1, ..., Xz} ⊆ {X1, ..., Xn} being z the number of features in the
subset, tCX the average class-feature correlation and tXX the average feature-
feature correlation of the features included in the subset. Correlation between
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two variables is calculated by means of the previously exposed SUS (Hall,
1999).

3.4 Bayesian network classifiers

The kind of practical problems that are addressed in this dissertation need
statistical approaches that are characterized by having an explicit underlying
probability model, which provides a probability that an instance belongs to
each class, rather than simply a classification.

One modelling paradigm based on probability theory and graph theory
(Buntine, 1991; Jordan, 1998) is the Probabilistic graphical models (PGMs)
paradigm (Pearl, 1988; Whittaker, 2009; Thompson, 1992; Lauritzen, 1996;
Castillo et al., 1997). PGMs include the particular cases of Bayesian net-
works (BNs) (Jensen and Nielsen, 2001; Neapolitan, 2003; Korb and Nichol-
son, 2004), that are a paradigm suitable to deal with uncertainty, providing
an intuitive interface to data. Bayesian network models can be used to solve
both, supervised classification (Friedman et al., 1997; Larrañaga et al., 2005)
and clustering problems (Cheeseman and Stutz, 1996).

3.4.1 Bayesian networks

There are many paradigms that have been proposed to the induction of mod-
els from labelled data. For example, classification trees (Breiman et al., 1984;
Quinlan, 1993), where a set of questions are applied hierarchically; the k-
nearest neighbour classifier searches the database for the most similar k in-
stances in order to classify (Fix and Hodges, 1951); the neural network clas-
sifier is based on artificial neural networks (McCulloch and Pitts, 1943a),
which attempt to mimic the human brain; or, the support vector machine
(Vapnik, 2000) based on the transformation of the feature space into a higher
dimensional space where the different classes can be separated by simple
hyperplanes. However, Bayesian networks have the advantage of being eas-
ier to interpret and extract knowledge than other supervised classification
paradigms such as neural networks (Sebastiani et al., 2005; Correa et al.,
2009). However, in domains such as fish recruitment, probabilistic classifiers
have a useful property for management decision making (Fernandes et al.,
2010c). In addition to the forecasting, they also provide the probability of
each possible outcome. They have the advantage of being easier to interpret
and extract knowledge than other paradigms, due to their graphical repre-
sentation and their principled probabilistic foundations in domains of high
uncertainty. This makes them an adequate framework for the necessities of
modelling for fisheries management.

Bayesian networks are composed of a graphical representation (structure)
where each node corresponds to a variable and arcs (or lack of arcs) rep-
resent conditional independence assumptions. In addition to their graphical
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representation, they have associated a set of parameters (Jensen and Jensen,
1996; Castillo et al., 1997). Therefore, Bayesian networks learning consists of
structure and parameter learning. This structure and its parameters can be
specified by experts, learned from data or built by combining both (expert
knowledge and data learning) (Heckerman et al., 1995).

Plenty of literature about structure learning of graphical models (Calvo,
2008) is available, such as those based on dependency detection algorithms
(Chow and Liu, 1968; Schwarz, 1978; Herskovits and Cooper, 1990; Spirtes
and Glymour, 1991; Geiger, 1992). However, since the search for the best
structure is an NP-hard problem (Chickering et al., 1994; Chickering, 1996),
heuristic search methods are often required to obtain structures in a reason-
able time. Some of the main approaches are: Greedy search (Buntine, 1991;
Cooper and Herskovits, 1992); simulated annealing (Chickering et al., 1995);
tabu search (Bouckaert, 1995); genetic algorithms (Holland, 1992; Larrañaga
et al., 1996; Etxeberria et al., 1997; Fogel, 2006); estimation of distribution
algorithms (Blanco et al., 2003); Markov chain Monte Carlo (Isaacson and
Madsen, 1985; Taylor and Karlin, 1998; Myers et al., 1999; Ross, 2007); vari-
able neighbourhood search (De Campos and Puerta, 2001) or; ant colony
optimisation (De Campos et al., 2002). Many works about parameter learn-
ing have been proposed (Spiegelhalter and Lauritzen, 1990; Heckerman, 1995;
Bernardo and Smith, 2001; MacKay, 2003).

In this dissertation, the focus is concentrated on Bayesian network clas-
sifiers (BNCs), which are a particular kind of Bayesian network. BNCs and
their advantages are explained in the next section. In addition, the property
Markov blanket of a Bayesian network is also described.

3.4.2 Bayesian network classifiers

Bayesian network classifiers (BNCs) are a subset of the Bayesian networks
(Larrañaga et al., 2005) which focus their learning on a target (or class) vari-
able (Fig. 3.5). In BNCs, the class variable is the parent of all the features and
the number of parents each feature can have is limited. These strong indepen-
dence assumptions restrict their structure complexity. This has the advantage
of allowing efficient and robust learning of structure and parameters. In par-
ticular, if there is sparse data available.

As an example, a naive Bayes classifier does not allow relationships be-
tween features (Minsky, 1961) and Tree Augmented Naive Bayes (TAN) only
permits one feature parent (Sahami, 1996). The generalization of both BNCs
is k-dBN, where k is the maximum number of feature parents that are allowed
(Friedman et al., 1997). A more flexible representation consists of a ’forest’ of
tree structures (FAN) rather than a single tree structure (Lucas, 2004).

The naive Bayes classifier (Minsky, 1961; Cestnik et al., 1987; Nilsson,
1965; Langley et al., 1992; Duda et al., 2001), one of the most simple Bayesian
network models for classification (Larrañaga et al., 2005), has been selected
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Fig. 3.5. Examples of Bayesian network classifier structures

to be applied in this thesis contribution; this is due to its competitive perfor-
mance, as it works well in many complex real-world problems (Domingos and
Pazzani, 1997; Zhang, 2004). Naive Bayes assumes that, given the class vari-
able, all of the factors are independent (Fig. 3.5). This assumption implies that
a naive Bayes classifier requires the specification of a small number of parame-
ters. This leads to robust models and parameter estimation when sparse train-
ing data available (Occam’s razor principle; (Domingos, 1999)) as it is common
in many marine science problems. Furthermore, it is a computationally-fast
model to be learnt (a time complexity of O(Nz)), where N is the number
of training examples and z is the number of selected factors), which is ade-
quate for wrapper approaches that use the induction algorithm in their search
process (Saeys et al., 2007).

3.4.3 Markov blanket

In a Bayesian network, the Markov blanket (MB) of a node or variable (Pearl,
1988) includes the set of nodes composed by its parents, children and the
parents of all of its children. Therefore, the Markov blanket of a variable (X)
is the smallest set (MB(X)) containing all variables carrying information
about X, where the provided information can not be increased by adding any
other variable (Peña et al., 2007; Pellet and Elisseeff, 2008). This means that
the variables of the ’Markov blanket’ are the only knowledge base needed to
forecast the behaviour of the target variable.

As an example, the MB of the recruitment consists of the variables that
shield the recruitment from the remaining variables in a Bayesian Network
structure, i.e. by those variables that, once their value is known, the rest of
the variables do not influence the recruitment forecast.

The MB can be used as a feature selection method. The MB concept can
be also used as a post-feature selection process for reducing a large number
of variables after a feature selection process (Fernandes et al., 2010a,b).

3.5 Assessing and comparing classification methods

An important issue to consider is the robust estimation of model performance
in order to estimate the uncertainty of its classification or forecasts and to be
able to compare different methodologies or classifiers (Bouckaert and Frank,
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2004; Dem̌sar, 2006; Garćıa and Herrera, 2008). One common way of assessing
the performance of a model consists of comparing its forecasts with available
training data. However, a model can easily over-fit the data. This is particu-
larly important if non-parametric and/or optimization methods are used. In
addition, there is often other criteria for selecting a particular method, such
as interpretability, instead of only performance measures (Alpaydin, 2004).

An additional way of assessing the performance of a model is to check its
generalization or forecasting power, i.e. to check how well it behaves forecast-
ing new unseen data. The proper estimation of model performance has been
the subject of intensive research (Stone, 1974; Rodŕıguez et al., 2010).

Therefore, in the following sections several performance measures are pre-
sented as well as methods for estimating them robustly. In addition, the issues
of comparing methods, meta-learning from the comparison results, and the
need to evaluate full pipelines of methods are also addressed.

3.5.1 Classification performance measures

Most performance measures for assessing the quality of classification models
are based on the confusion matrix. A confusion matrix is a table where the
observed counts for each group are presented in the rows, while the model
classification is given in the columns (Table 3.3). While a large number of
scores are proposed in the literature, in this section, only performance mea-
sures used in this dissertation are presented using the example of a boolean
class variable.

Table 3.3. Confusion matrix for a boolean class variable

Predicted
class

yes no

true positive false negative

yes (TP) (FN)

Actual
class

no false positive true negative

(FP) (TN)

Accuracy:

Accuracy (Acc), or percent of correctly classified cases is the probability
that the model correctly classifies a new instance. Accuracy measures model
performance considering only the class value with the highest probability (0-1
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loss measure), without considering each of the a posteriori probability values
estimated for each class value.

Accuracy is measured between 0% and 100%, where the highest values
indicate the best results. Accuracy is used as the main metric in machine
learning because it is a simple way of assessing performance (Pazzani, 1996;
Kohavi and John, 1997). The definition of accuracy based on the confusion
matrix (Table 3.3) is given by:

Acc =
TP + TN

N

where N is the number of cases or instances.
However, accuracy can be high in datasets where the values of the class

variable are not balanced, i.e. one class contains most of the data. Using a
model that classifies all the cases within this class (accuracy paradox), the ac-
curacy of the classifier is high, but the model is not useful. For this reason, it
must be complemented with other performance measures that consider error
distribution between all class values such as true positive rate or false positive
rate.

True positive rate (TPR):

TPR is the rate of instances that has been correctly classified for a spe-
cific class value, i.e. the ratio of positive cases that are correctly classified as
positive:

TPR =
TP

TP + FN

It is also known as recall, sensitivity or hit rate.

False positive rate (FPR):

FPR is the rate of instances that are incorrectly classified for a specific
class value, i.e. the ratio of negative cases that have been classified as positive:

FPR =
FP

FP + TN

Percent reduction in error (PRE):

The relevance of a performance gain between two methods (or before and
after a change in data) can be hard to understand. For example, a 2% accuracy
gain of an already highly accurate classifier (e.g. 90%), is not the same as with
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a low starting accuracy (e.g. 50%). This can be measured using the Percent
Reduction in Error (PRE) (Hagle and Glen, 1992):

PRE = 100 · EB − EA
EB

where EB is the error in the first method (Error Before) and EA is in the
second method (Error After).

Brier score (BS):

Brier score considers the estimated ’a posteriori’ probabilities for each
possible outcome (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005).
The Brier score for a class variable with r values is given by:

1

N

N∑
k=1

r∑
l=1

(pkl − ykl )2

where N is the number of cases and pkl is the forecasted probability for the lth

class value for the kth case. The ykl value is 1 if l is the observed (correct) value
of the class and 0 otherwise. In domains such as recruitment forecasting for
fisheries management, the additional information provided by using the Brier
score is valuable information for the decision-making process (Fernandes et al.,
2010c).

The lower the value of BS (between 0 and 2), the better the classifier.
However, in this dissertation the BS is divided by 2 in order to have it in the
range 0 to 1, which is easier to interpret (Fernandes et al., 2010c). In addition,
since it is a measure whose values are difficult to interprete by users, in Table
3.4 a reference based on the author’s experience in the recruitment domain is
provided (Fernandes et al., 2009b).

Table 3.4. Proposed interpretation of Brier score levels for end-users

Level Interpretation

> 0.35 Insufficient

≤ 0.35 Acceptable

≤ 0.30 Adequate

≤ 0.20 Superior

< 0.10 Excellent

3.5.2 Performance estimation methods

In order to establish the expected error, the classifier performance has to be
assessed; this is accomplished by dividing the user-labelled dataset into two
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parts: training and evaluation. Depending upon the selected evaluation tech-
nique, this demarcation can be undertaken once or several times, with differ-
ent data sampling techniques (Rodŕıguez et al., 2010; Fernandes et al., 2010c).

Hold-out:

One of the simplest approaches consists of leaving part of the data for
learning the model, with the remainder used for validation (Larson, 1931).
However, the estimated performance can be sensitive to changes in data par-
tition, especially in small datasets (Rodŕıguez et al., 2010).

K-fold cross-validation:

The sensibility to the data partition can be addressed by data partition
into k folds: each fold is left out of the model learning process and used as
a test set, repeatedly, k times. The estimated performance is the average of
k learned models (Lachenbruch and Mickey, 1968; Stone, 1974; Geisser, 1975).

Repeated k-fold cross-validation:

Such validation processes may be repeated using different partitions of the
data, with the results being averaged to ensure replicability. As an example,
which has been extensely used during this dissertation, the 10 times-repeated
5-fold cross-validation (Bouckaert and Frank, 2004) has been coupled with
the statistical test corrected paired t-test (Nadeau and Bengio, 2003).

Leaving one out cross-validation (LOOCV):

The extreme data partition is to split the data into as many folds as pos-
sible, leaving one data instance per fold (Mosteller and Tukey, 1968). This
method has the advantage of leaving a large part of the data for learning, but
associates a high variance to the reported performance.

Bootstrapping:

High variance can be avoided using re-sampling, with replacement, where
the data is re-sampled and the probability of data duplication is considered
in the performance estimation (Efron, 1979). However, this approach is com-
putationally expensive.

All approaches have advantages and disadvantages; as such, they must be
selected depending upon the data characteristics and validation objectives.
However, in general, stratified 5-fold or 10-fold cross-validation or its repeated
version (n-times repeated k-fold cross-validation) stands up as a method that
shows a good trade off between robust error estimation and computational



3.5 Assessing and comparing classification methods 45

time (Bouckaert and Frank, 2004; Rodŕıguez et al., 2010). The stratification
implies that the folds contain approximately the same proportion of class
values as the original dataset. Finally, the n-repeated k-fold cross-validation
consists of repeating n times the cross-validation with different data random-
izations. The repeated cross-validation allows avoiding results dependent on
data partition, leading to more robust results comparisons using statistical
tests; as well as reporting more stable and robust performances by means of
averaging the repeats.

Finally, the presented methods are used for error evaluation. However, the
same methods can also be used for parameter estimation in order to get a
more stable model parameter as used in Schirripa and Colbert (2006) or for
more stable feature selection (Francis, 2006; Fernandes et al., 2010c).

3.5.3 The comparison of methods

The choice of which specific learning algorithm should be used is not trivial. In
order to accomplish this selection one needs to compare learning algorithms
given a dataset in order to assess which algorithm has superior behaviour.
However, the issue can be broader, such is the case of comparing multiple
algorithms over multiple datasets. In this section, the methodologies used for
methods comparison in this dissertation are presented.

3.5.3.1 Comparing multiple classifiers over one dataset

A common method for comparing algorithms is to perform statistical compar-
isons of the performance measures of trained classifiers on specific datasets
(Kotsiantis, 2007). If there are sufficient data, a number of training sets of
size N can be sampled, both learning algorithms can be applied to each of
them, and the difference in accuracy for each pair of classifiers on a large test
set can be estimated.

The next step is to perform a statistical test (e.g. paired t-test) to check
the null hypothesis that the mean difference between the classifiers is zero.
This test can produce two types of errors. Type I error is the probability
that the test rejects the null hypothesis incorrectly (i.e. it finds a significant
difference although there is none). Type II error is the probability that the
null hypothesis is not rejected, when there actually is a difference. The test’s
Type I error will be close to the chosen significance level.

In practice, however, there is only one dataset of size N and all estimates
must be obtained from this single dataset. Different training sets are obtained
by subsampling, and the instances not sampled for training are used for test-
ing. Unfortunately this violates the independence assumption necessary for
proper significance testing. The consequence of this is that Type I errors ex-
ceed the significance level.

Several heuristic versions of the t-test have been developed to alleviate
this problem (Dietterich, 1998; Nadeau and Bengio, 2003). Ideally, it would
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be desirable for the outcome of the test to be independent of the particu-
lar partitioning resulting from the randomization process, because this would
make it much easier to replicate experimental results published in the litera-
ture. However, in practice there is always certain sensitivity to the partitioning
used. To measure replicability we need to repeat the same test several times on
the same data with different random partitions (usually, 5 or 10 repetitions)
and count how often the outcome is the same (Bouckaert, 2003; Bouckaert
and Frank, 2004).

In this manuscript the corrected paired t-test (Nadeau and Bengio, 2003))
is applied in results from 10-times 5-fold cross-validation. This test is conser-
vative and can result in higher p-values than other less strict tests (e.g. paired
t-test).

3.5.3.2 Comparing multiple classifiers over multiple datasets

The comparison of multiple classifiers, or methodologies, can be performed by
means of the revised Friedman plus Shaffer’s static post-hoc test, proposed by
Garćıa and Herrera (2008) for comparison of multiple methods over multiple
datasets. These statistical test results can be represented by means of critical
difference diagrams (Dem̌sar, 2006), which show the average ranks of the
performance of each method across all the domains in a numbered line. If
there is not a statistically significant difference between two methods, they
are connected in the diagram by a straight line.

As an example, in Figure 6.5, NI and CMindiv methods are connected since
they show no significant difference in performance; whereas these methods are
unconnected to CMcart , showing a statistically significant difference at the
specified levels.

Fig. 3.6. Critical difference diagrams for three missing data imputation methods
in synthetic datasets in terms of a performance measure (e.g. accuracy). Methods
that do not show a significant difference are connected in the diagram.

3.5.3.3 Meta-learning from performance results

A key question when dealing with classification is not whether a learning algo-
rithm is superior to others, but under which conditions a particular method
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can significantly outperform others on a given application problem. Meta-
learning is moving in this direction, trying to find functions that map datasets
to algorithm performance (Kalousis et al., 2004).

Meta-learning uses a set of attributes, called meta-attributes, to represent
the characteristics of learning tasks, and searches for the correlations between
these attributes and the performance of learning algorithms. As an example,
characteristics of learning tasks are: the number of instances, the proportion of
categorical attributes, the proportion of missing values, the entropy of classes
and others (Brazdil et al., 2003; Fernandes et al., 2010b).

3.5.4 Pipeline performance evaluation

As already introduced, often pipelines of supervised methods are applied to
data. In order to avoid model over-fitting and provide an honest validation,
the entire pipeline has to be included in the validation scheme (Reunanen,
2003; Statnikov et al., 2005). This means that the data partition, in folds, is
performed before the application of the first step of the pipeline. Therefore,
not only the classification model, but also all the pipeline is validated. In
order to validate a proposed pipeline in this dissertation, a 10 times repeated
5-fold cross-validation (10x5cv) schema has been selected as recommended in
(Bouckaert and Frank, 2004; Rodŕıguez et al., 2010).
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Fig. 3.7. Example of a validation scheme for a pipeline that contains only filter
methods

As an example, in Figure 5.4 a pipeline is validated, which is composed
of a feature discretization step, a feature selection step and a naive Bayes
classifier.
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However, this process can be more complex if there is a wrapper step, i.e.
a step that uses a model to perform its task, with the necessity of perfor-
mance evaluation in the process. In this case, this pipeline contains a loop
of validation for the wrapper method (Fig. 3.7), which is part of the model
building. If such a pipeline is validated, the data partition (inner loop) for
the wrapper process is performed inside an outer loop of validation for the
pipeline evaluation. Therefore, the inner loop only has access to the subset of
data provided by the outer loop. Such a pipeline is used in Fernandes et al.
(2010c).
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Fig. 3.8. Example of a validation scheme for a pipeline that contains a wrapper
step

3.6 Multiple class variables classification
(multi-dimensional)

In this section, the supevised classification framework for multi-dimensional
(Mul-D) domain is introduced and the case of the naive Bayes classifier, gen-
eralized to the simultaneous prediction of multiple class variables is also de-
scribed. In addition, the currently available performance measures are also
introduced.
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3.6.1 Multi-dimensional supervised classification

The objective of multi-dimensional supervised classification (Mul-D) (van der
Gaag and de Waal, 2006; de Waal and van der Gaag, 2007; Rodŕıguez and
Lozano, 2008) consists of building a classifier from training data S, with N
cases (Table 3.5), in order to forecast the value of a vector of m class vari-
ables C = (C1, · · · , Cm), instead of just one single class variable, given the
vector of feature variables X = (X1, · · · , Xn) of an unseen unlabelled case
x = (x1, · · · , xn). As an example, in fish recruitment, (C1, · · · , Cm) could
represent different fish species recruitment to be forecasted and (X1, · · · , Xn)
represents the factor set (climatic, biological and others) or features. This
approach profits from the class-variables that can be related between them.
Therefore, simultaneous forecasting of all class variables can accomplish better
results than by separate forecasting. In addition, it would be often desirable
to model them together for the interpretation of experts, instead of modelling
each species in separate models (Uni-D).

Table 3.5. Data matrix of a multi-dimensional supervised classification problem.

X1 ... Xn C1 ... Cm

Instance 1 x1
1 ... x1

n c11 ... c1m
Instance 2 x2

1 ... x2
n c21 ... c2m

Instance 3 x3
1 ... x3

n c31 ... c3m
... ... ...

Instance N xN
1 ... xN

n cN1 ... cNm

3.6.2 Multi-dimensional naive Bayes classifier

The choice of naive Bayes is mainly motivated by the fact that naive Bayes
for one class variable problems, or uni-dimensional (Uni-D) classification, has
outperformed other more complex paradigms within the fish recruitment fore-
casting domain (Fernandes et al., 2010c), where data is usually scarce.

In the previously introduced uni-dimensional naive Bayes classifier (UDnB),
the joint distribution p(x, c) can be expressed as:

p(x1, · · · , xn, c) = p(c)

n∏
i=1

p(xi|c)

In a multi-dimensional naive Bayes classifier (MDnB), the class variables
are the parents of all the features, the classes have no parents and the features
have no other feature as a parent (Fig. 3.9). In the case of a MDnB, the joint
probability distribution p(x, c) is given by:
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p(X1, · · · , Xn, C1, · · · , Cm) =

m∏
j=1

p(cj)

n∏
i=1

p(xi|c1, ..., cm)

In order to classify a case x = (x1, · · · , xn) into a vector of class vari-
ables c = (c1, · · · , cm), the joint classification rule (Rodŕıguez and Lozano,
2008, 2010), which returns the most probable value for each class variable
simultaneously, has been selected:

(ĉ1, · · · , ĉm) = argmaxc1,··· ,cm {p(c1, · · · , cm|x1, · · · , xn)}

Fig. 3.9. Examples of uni-dimensional (Uni-D) and multi-dimensional classifiers
(Mul-D).

3.6.3 Multi-dimensional performance measures

There are few performance measures in the literature specific for this multi-
dimensional approach. To the best of our knowledge there is the so-called
joint accuracy (Rodŕıguez and Lozano, 2010) proposed in (van der Gaag
and de Waal, 2006). This is where a case is classified correctly, if all the
class variables are labelled correctly simultaneously. The author proposal and
adaptation of performance measures for the multi-dimensional approach are
presented in Part II.

Finally, the uni-dimensional classification approach is assumed throughout
the dissertation. Otherwise it is explicitly specified that a multi-dimensional
domain or framework is being described.
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This second part of the dissertation shows the author contributions to
the application of supervised classification methods to marine science prob-
lems related with fisheries management and how these problems have been
formulated considering the particular characteristics of each domain:

• Chapter 4 proposes a wrapper method for helping experts in deciding the
number of classes or taxa in zooplankton classification.

• Chapter 5 presents a supervised classification application to single fish
species recruitment forecasting with the following objectives; a) forecasts
with its uncertainty associated; b) forecasts and scenarios easy to interpret;
c) search for recruitment and factors boundaries that can be interpreted;
d) high factors stability; e) Error balanced through all recruitment levels
and; f) robust error estimation.

• In Chapter 6, the simultaneously multiple fish species recruitment forecast-
ing by means of the multi-dimensional classification approach is presented.
In this chapter, a set of ’state-of-the-art’ uni-dimensional pre-processing
methods, within the categories of missing data imputation, feature dis-
cretization and feature subset selection, are adapted to be used for multi-
dimensional classifiers. Those proposed methods are tested with synthetic
datasets and the real domain of fish recruitment.

In order to ensure reproducibility of methods and results (Buckheit and
Donoho, 1995; Barnes, 2010), the used datasets and Java implementations of
the methods used in this dissertation are available from the ISG group web-
page (www.sc.ehu.es/ccwbayes/members/jafernandes/ ). The computers used
in the experiments consists of a simple dual core processor 2.0 GHz with 4GB
of RAM memory or lower hardware configuration.
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Optimizing the number of classes in
zooplankton classification

4.1 Introduction

Zooplankton biomass and abundance estimation by size spectrum or taxa (e.g.
Fig. 4.1) is carried out routinely in marine research. Zooplankton plays a key
role in the transference of primary production to fish and it is important to
understand marine ecosystems (Irigoien et al., 2002, 2004).

However, the analysis of plankton samples is costly in experts time. There-
fore, machine-learning techniques for the identification of plankton, combined
with automated or semi-automated image analysis processes for feature ex-
traction (e.g. Table 4.1), have been proposed to assist in sample analysis.

However, a difficulty in automated plankton recognition and classification
systems is the selection of the number of classes or taxa. The end-user wants
the maximum number of taxonomical detail as well as the minimum recogni-
tion error. Therefore, a methodology that allows the end-user to find a good
trade-off between classification performance and taxa detail is needed.

A method that combines human knowledge with machine-learning tech-
niques is proposed (Fernandes et al., 2009c), in order to allow the end-user to
have help in the labelling of zooplankton images.

The aim is to maximize both the performance of the classifier and the num-
ber of classes while maintaining the meaningful information for the end-user.
In the proposed method, a machine-learning method provides the results of
performance and the number of classes, whereas the end-user provides the eco-
logically meaningful information and the initial maximum number of classes.

4.2 Zooplankton datasets

The method has been applied to three different example datasets (Table 4.2).
A high resolution (2400dpi) public dataset (Tulear 04 dataset) available

at the ZooImage webpage (www.sciviews.org/zooimage) has been selected in
order to permit reproducibility (Fig. 4.2).
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Fig. 4.1. Images representative of each taxa presented in a dataset from the Bioman
oceanographic surveys (98-06; at 600dpi). A: Chaetognaths. B: Doliolids. C: Arti-
facts from scanning process. D: Small marine snow. E: Euphausiids. F: Polychaeta.
G: Appendicularia. H: Small zooplankton. I: Fish larvae. J: Large copepoda. K:
Polychaeta larvae. L: Round zooplankton. M: Gelatinous. N: Fish. O: Decapod lar-
vae type I. P: Decapod larvae type I. Q: Salps. R: Crustacean others. S: Medium
copepoda. T: Stained jelly. U: Siphonophora. V: Marine snow. W: Small copepoda.
X: Multiple copepoda.

In addition, two datasets from bioman oceanographic surveys are used.
Bioman 98-06 dataset has been established with zooplankton samples scanned
at 600 dpi; Bioman 07 dataset with 2400 dpi images. Both datasets have
been built from samples obtained in the Bay of Biscay preserved in 4% borax
buffered formalin, then stained with eosin. Eosin staining avoids the imaging of
inorganic debris in the image analysis step through image filters. This staining
process can reduce the number of artifact particles between a 50% and a 75%
(unpublished data for Bachiller (2008)). All the datasets were analyzed using
ZooImage framework. However, any methodology, framework or tools for data
acquisition and processing preferred by the expert can be used.

The variables considered were those routinely extracted by ZooImage, to-
gether with a limited number of environmental variables for Bioman 98-06
dataset (Table 4.1). Expert taxonomists labelled the images of each dataset
with the aim of achieving the maximum number of classes possible. In
Tulear 04 dataset, 1639 individuals were classified into 37 classes. For the
Bioman 98-06 dataset, 17803 individuals were classified into 24 classes. For
Bioman 07 dataset, 6724 were classified into 30 classes (Table 4.2, Fig. 4.2
and 4.1).

The datasets are used for illustration purposes; the method can be applied
to datasets obtained with any other methodology.
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Table 4.1. Individual features: Morphological and image measurements extracted
by ZooImage, using the image analysis software, ImageJ. Environmental features
collected during the survey can be added.

Feature Description

ZooImage (ImageJ) features

ECD Equivalent circular diameter

Area Surface area

Mean Mean of the gray scale of the pixels

Skew The third-order moment, about the mean of the gray scale

Kurt The fourth-order moment, about the mean of the gray scale

Std. dev. Standard deviation of the gray scale of the pixels

Mode Mode of the gray scale of the pixels

Median Median of the gray scale of the pixels

Min. Minimum of the gray scale of the pixels

Max. Maximum of the gray scale of the pixels

IntDen Sum of the gray values of the pixels

XM Coordinate horizontal of the gray scale center of the pixels

YM Coordinate vertical of the gray scale center of the pixels

Perim. Perimeter

Width Width of the rectangle, containing the individual

Height Height of the rectangle, containing the individual

Major Longest axis of the ellipsis, containing the individual

Minor Smallest axis of the ellipsis, containing the individual

Circ. Circularity

Feret Diameter of longest distance between the two points of the individual

Environmental features

Temperature Surface temperature

Salinity Salinity of the sample

Depth Depth of the sample

Latitude Latitude of the sample

Longitude Longitude of the sample

4.3 Method for optimizing the number of classes and
classification performance

The methodology proposed consists of three steps, as outlined below.

1. The end-user distributes the extracted images of individuals into all the
groups, which can be visually identified (i.e. labeling). A classifier is
trained with this dataset and the corresponding estimated performance
is used as a starting point.

2. All possible mergers of two classes into a single class are evaluated. For
each pair of classes, a new dataset is constructed, in which the two classes
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Table 4.2. Number of individuals per class in the three used datasets before any
merger.

First dataset: Tulear 2004 Second dataset: Bioman 1998-2006 Third dataset: Bioman 2007

# of individuals Classes # of individuals Classes # of individuals Classes

27 Bubble 467 Artifact 110 Artifact

50 Scratch 482 Small marine snow 97 Small marine snow

50 Shadow 1136 Marine snow 97 Medium marine snow

50 Debris 2228 Small copepoda 49 Large marine snow

50 Diatom 2063 Medium copepoda 198 Small copepoda

50 Fiber 2361 Large copepoda 207 Copepoda multiple

50 Marine snow 871 Multiple copepoda 2288 Calanoida

50 Other phytoplankton 1838 Euphasiacea 1189 Cyclopoida oncaea

50 Calanoida dorsal I 208 Decapoda larvae I 110 Cyclopoida corycaeaus

49 Calanoida dorsal II 122 Decapoda larvae II 548 Cyclopoida oithona sp

50 Calanoida dorsal III 279 Polychaeta 86 Cyclopoida oithona nana

50 Calanoida lateral 12 Polychaeta larvae I 168 Harpaticoida microsetella

50 Eucalanidae 31 Amphipoda 208 Harpaticoida euterpina

39 Temoridae 209 Appendicularia 174 Appendicularia

50 Oithonidae 1123 Chaetognatha 115 Chaetognatha

39 Miraciidae 107 Doliolida 12 Euphausiacea

50 Corycaeidae 202 Siphonophorae 32 Decapoda larvae

50 Oncaeidae 57 Hydroidomedusae 244 Cladocera

50 Poicilo lateral 160 Stained jelly (rests) 28 Nematoda

8 Sapphirinidae 17 Cephelopoda larvae 250 Doliolid

50 Annelida 48 Pisces 20 Siphonophora

22 Cirripeda 200 Pisces larvae 84 Hydroidomedusae

50 Cladocera 3043 Zooplankton small 142 Bivalvia larvae

26 Decapoda miscellaneous 539 Round zooplankton 18 Gastropoda

50 Decapoda zoea dorsal 58 Pteropoda

50 Decapoda zoea lateral 32 Polychaeta

50 Malacotraca bulky 52 Copepoda egg I

50 Elongated malacostraca 46 Copepoda egg II

21 Malacostraca larvae 16 Fish Egg

22 Cnidaria 16 Diatom

37 Appendicularia

50 Chaetognatha

50 Elongated egg

49 Round egg

50 Protista

50 Gastropoda

50 Pisces

1639 37 17803 24 6694 30

are merged into a unique class, whereas the remainder are left unchanged.
A classifier is constructed from this new dataset and its performance is
evaluated. The possible mergers are ranked, based on their estimated per-
formance (e.g. accuracy, but other can be used). Optionally, the confusion
matrix (CM) can be used to reduce the number of mergers to be eval-
uated using the classes with more misclassified individuals counts above
a certain threshold (e.g. mean of non-zero misclassified in the CM; Ta-
ble 4.3). This option significantly reduces computation time. Step 2 is
automatically performed by a computer program (Fig. 4.3), which out-
puts a ranking (Table 4.5) with all possible mergers of two classes and
their associated statistics (see below). The method implementation uses
Weka API algorithms to perform these steps (Witten and Frank, 2005).
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Fig. 4.2. Images representative of each taxa presented in the original Tulear 04
dataset (scanned at 2400dpi). Bubble (A), Scratch (B), Shadow (C), Debris (D),
Diatom (E), Fiber (F), Marine snow (G), Other phytoplankton (H), Calanoida dor-
sal I (I), Calanoida dorsal II (J), Calanoida dorsal III (K), Calanoida lateral (L),
Eucalanidae (M), Temoridae (N), Oithonidae (O), Miraciidae (P), Corycaeidae (Q),
Oncaeidae (R), Poicilo lateral (S), Sapphirinidae (T), Annelida (U), Cirripeda (V),
Cladocera (W), Decapoda miscelaneus (X), Decapoda zoea dorsal (Y), Decapoda
zoea lateral (Z), Malacostracea bulky (AA), Elongated malacostraca (AB), Mala-
costraca larvae (AC), Cnidaria (AD), Appendicularia (AE), Chaetognatha (AF),
Elongated egg (AG), Round egg (AH), Protista (AI), Gastropoda (AJ), Pisces (AK).

In order to ensure reproducibility (Buckheit and Donoho, 1995), a Java
implementation of the method is available from the ISG group webpage
(www.sc.ehu.es/ccwbayes/members/jafernandes/ ).

3. The end-user evaluates the ranking of mergers and decides which spe-
cific mergers to accept considering not only the performance that can be
achieved, but also the ecological value of the new merged class and the
objective of the research study. A new classifier, with end-user selected
mergers, is trained and evaluated. This new classifier can be compared
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with those learned in the first step and in previous iterations. The end-
user can perform steps 2 and 3, repeatedly.

While User does not end mergers evaluation
Build classifier before mergers
Evaluate classifier
Calculate metrics (accuracy, ...)
Save classifier metrics in mergers ranking
For all i ∈ CLASS 1, CLASS 2, ..., CLASS n− 1

For all j ∈ CLASS i + 1, ..., CLASS n
If ((CM) and (CLASS i and CLASS j in CM list)) or (not CM) then

Reset dataset to original without mergers
Merge CLASS i and CLASS j in dataset
Build classifier with merged dataset
Evaluate classifier
Calculate metrics (accuracy, ...)
Save classifier metrics in mergers ranking

End if
End for

End for
Perform user selected mergers

End while

Fig. 4.3. Pseudocode used to describe the method. Pseudocode is not language-
programming dependent; and it omits programming details that are not relevant to
specify the method. CM represents if the use of confusion matrix has been selected
or not.

The method proposed relates to optimizing the number of classes (class
selection) and the classification performance. Therefore, it can be applied to
data from any source and classified with different methods as long as they
are classified into different classes that can be grouped without losing all the
information (e.g. grouping different taxonomic levels). The method could be
run ’manually’ but the expert would be confronted with hundreds of mergers
to explore without previous knowledge of the potential accuracy gain. Any
merger does not lead to an accuracy gain; in fact, there is a high rate of
mergers that decrease performance (Table 4.4). Automation and ranking of
the results leave only a limited number of mergers, with the highest accuracy,
for the end-user to analyze; as opposed to the end-user manual ’trial and error’
exploration without previous knowledge of the potential performance gain.

The method is independent of any specific machine learning paradigm
for classification or evaluation as well as any specific performance metric. The
end-user can select different classification paradigms and performance metrics
taking into account the specific requirements of the study being undertaken
(e.g. taxonomic groups, compared with ecological impact). In our examples,
a Tree Augmented Naive Bayes classifier (TAN) was used for classification
(Friedman et al., 1997). The TAN classifier is used for a faster mergers eval-
uation. It shows a good performance record, lying close to Random Forest.
Random Forest proved to be a good classification algorithm for zooplankton
(Grosjean et al., 2004).
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Table 4.3. Confusion matrix of the classifier before mergers evaluation for Tulear 04
dataset. The main diagonal in the centre represents the correctly classified individu-
als. The rest of the cells are the misclassified individuals. Columns show the classifier
classification and rows show the user labelled class present in the dataset. The se-
lected mergers by the end-user are displayed in gray.
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Table 4.4. For each iteration, several statistics are presented after performing
the end-user selected mergers. ’Before’ represents accuracies before performing any
merge. The number of evaluated mergers is represented by ’#Mergers’. Accuracy is
the overall accuracy after performing selected mergers. The ’p-values’ are the result
of performing an statistical comparison (corrected paired t-test) between datasets
with different number of classes. E.g. the ’p-value original’ refers to the comprarison
with the original dataset before any merger; whereas the ’p-value previous’ refers to
the comparison with the resulting dataset of the previous iteration. The same with
PRE score that is provided, for both, in relation with the previous iteration dataset
and in relation with the original. ’Mergers↓’ is the rate of mergers that instead of
improving accuracy reduces it. ’CPU-time’ is the computer time to evaluate the
mergers. ’CM’ corresponds to statistics when using the confusion matrix to reduce
the mergers to be evaluated.

Merger evaluation Tulear 04 Bioman 98-06 Bioman 07

Before Accuracy (%) 64.7 85.7 82

After fist iteration Accuracy (%) 68.3 87.3 82.1

P-value original 0.585 0.078 0.976

PRE original (%) 10.2 4.7 0.6

#Mergers selected 4 5 4

#Mergers evaluated 666 276 435

Mergers↓ (%) 78.3 21.4 91

CPU-time 3:01:39 0:32:34 1:30:47

CPU-time CM 0:17:37 0:16:07 0:17:31

#Mergers evaluated CM 58 29 33

After second iteration Accuracy (%) 70.9 88.8 -

P-value previous 0.542 0.7 -

P-value original 0.395 0.006 -

PRE previous (%) 8.2 4.6 -

PRE original (%) 17.6 9 -

#Mergers selected 4 1 -

#Mergers evaluated 628 190 -

Mergers↓ (%) 74.7 63.7 -

CPU-time 1:57:40 0:17:45 -

After third iteration Accuracy (%) 73 - -

P-value previous 0.514 - -

P-value original 0.179 - -

PRE previous (%) 7.2 - -

PRE original (%) 23.5 - -

#Mergers selected 2 - -

Mergers↓ (%) 69 - -

CPU-time 1:41:29 - -

After fourth iteration Accuracy (%) 73.9 - -

P-value previous 0.426 - -

P-value original 0.699 - -

PRE previous (%) 3.3 - -

PRE original (%) 26.1 - -

#Mergers selected 1 - -

Mergers↓ (%) 16.9 - -

CPU-time 1:01:32 - -

After fifth iteration Accuracy (%) 74 - -

P-value previous 0.679 - -

P-value original 0.398 - -

PRE previous (%) 0.4 - -

PRE original (%) 26.3 - -

#Mergers selected 1 - -

Mergers↓ (%) 20.4 - -

CPU-time 0:40:37 - -



4.3 Method for optimizing the number of classes and classification performance 63

Table 4.5. Ranking of mergers with the highest accuracies for Tulear 04 dataset,
at the first iteration. In each row, the accuracy, the PRE, the classes to be merged
and the user-decision are given.
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In terms of validation, 5-fold cross-validation has been considered sufficient
to suggest the mergers (Kohavi, 1995; Rodŕıguez et al., 2010).In order to assess
the classifier performance, several measures are used in addition to accuracy;
percent reduction in error (PRE), true positive per class (TP), false posi-
tive per class (FP). In addition, the statistical corrected paired t-test (Nadeau
and Bengio, 2003) to asses if differences in performance are statistically sig-
nificant is used. While the corrected paired t-test shows interesting properties
with respect to its non-corrected version (e.g. overlap between training folds is
taken into account), it shows a more conservative behaviour (higher p-values).
Accuracy, overall correctly classified instances, is used as the main metric be-
cause it is a simple way of assessing performance (Pazzani, 1996; Kohavi and
John, 1997). However, the end-user can define other metrics depending on
the study objectives. Finally, the relevance of a performance gain can be hard
to understand. For example, a 2% accuracy gain on an already high accu-
racy scenario (e.g. 90%) is not the same as with a low accuracy (e.g. 50%).
This relevance can be measured using the PRE score (Hagle and Glen, 1992).
PRE = (100 · (EB−EA)/EB), where EB is error before mergers and EA er-
ror after mergers. TP is the proportion of individuals that have been correctly
classified as belonging to a class. Similarly, FP is the proportion of individu-
als that not being of a certain class are incorrectly classified as being part of it.

4.4 Application examples

The evaluation of the new classifiers with class mergers is shown in Tables 4.4
and 4.6. In Tulear 04 dataset, 64.7% accuracy was obtained with the initial 37
classes. Out of 666 possible two-class mergers considered, 145 (21.7%) showed
an improvement in accuracy. The list of the mergers, which resulted in the
highest improvement in accuracy, was evaluated by a end-user who accepted
five mergers (Fig. 4.4). Several iterations were performed until there were no
further mergers accepted by the user. After the third iteration, there was an
8.3% accuracy gain, a PRE of 23.5%. However, the improvement in accuracy
may not be significant enough (p<0.20). In Bioman 98-06 dataset, there is a
3.1% accuracy gain after two iterations, a PRE of 9%, with differences that
are statistically significant (p<0.05). In Bioman 07 dataset, there is a small
accuracy gain of only 0.1% and the new classifier is not significantly different
from the previous one (p>0.05).

4.5 Discussion

The proposed method consists of a semi-automated process of possible merg-
ers, which can balance both objectives, i.e. the maximization of the number of
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Fig. 4.4. Graphical representation of accepted class mergers in Tulear 04 dataset by
the end-user for each iteration. Accepted mergers are represented by straight lines;
whereas, in doted lines, some machine proposed mergers rejected by the end-user
are shown.

classes and the performance. The exhaustive study of all possible class com-
binations is computationally unfeasible, i.e. not only the merge of classes in
pairs, but also in triplets, quads and others. As an example, the number of
possible combinations for Tulear 04 dataset (37 classes) is 3.74409 · 1043. The
total number of class mergers to be evaluated (two-classes mergers + three-
classes mergers + four-classes mergers + · · · + (n − 1)-classes mergers) can
be calculated by means of Stirling numbers of second kind (Abramowitz and
Stegun, 1964):

X =

(
n∑

k=0

S(n, k)

)
− 2

(excluding ’not performing any merger’ and ’merging in a unique class’). In
this expression, X is the number of possible combinations, n is the number of
classes to consider for possible mergers and S(n, k) is broken down as
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S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

This number of combinations could be reduced if only two-class mergers
were evaluated in each iteration and the process performed repeatedly:

3∑
k=n

(
k

2

)
=

(
n

2

)
+

(
n− 1

2

)
+

(
n− 2

2

)
+ · · ·+

(
3

2

)
As an example, the number of possible two-class mergers, evaluated in the

first iteration in Tulear 04 dataset, is 666. If only one merger is performed,
the next iteration evaluates 630 mergers. However, if the end-user decides to
perform four mergers, this results in 33 taxa or classes in the next merging
iteration, with 528 possible mergers to evaluate. In spite of this reduction
in the number of evaluations, it remains a computationally expensive task
(hours of CPU-time for Tulear 04 dataset first iteration, Table 4.4) that can
be reduced using the confusion matrix to find a good set of merger candidates
instead of trying all two-class mergers (<20 min of CPU-time, Table 4.4).

Occasionally, more than one merger per iteration could lead to a lower
accuracy. However, this has never been observed during these experiments
and several mergers per iteration are selected by the user to speed up the
process.

The proposed method presents a number of benefits: (i) the end-user has
a framework within which to accomplish a ’trade-off’ between the number of
classes and performance; (ii) the absence of monotonicity between the number
of classes and accuracy can result in improved performance for more detailed
datasets. (iii) the user can avoid testing mergers that actually decrease per-
formance.

The particular objectives of each end-user’s study have an impact on the
decision of accepting or rejecting mergers. However, the end-user faces the
question of whether the accuracy gains obtained after merging classes are rel-
evant or not. The proposed metrics (accuracy, PRE, TP, FP and the p-value)
should help in taking such decisions and to evaluate classifiers effectiveness.
The following example using Tulear 04 dataset illustrates a possible use of
these metrics (Table ): the accuracy gain is not significant after the third
iteration, so the end-user could make use of the classifier obtained at that
step. However, the TP rate of Oithonidae and Miraciidae improves with the
classifier obtained after the fifth iteration (Table 4.6). If these classes were
important for the end-users research, the decision would be to select the clas-
sifier obtained after the fifth iteration. Most of merged classes in all datasets
present significant improvements in TP and FP with little variations in the
rest of the classes.
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Table 4.6. Classifier overall accuracy (correctly classified), TP rates and FP rates,
per class in each classifier (generated after ’end-user’ selected mergers, in each iter-
ation) for Tulear 04 dataset. For a given class value, TP rate is the percentage of
individuals classified in a class by the classifier, which belong to that class in the
training set. FP is the percentage of individuals classified as belonging to a class
when they are not. TP and FP experiment low variation in classes not being merged
and high improvement in most of the merged classes.

Before mergers After iteration 1 After iteration 2 After iteration 3 After iteration 4 After iteration 5

Accuracy 0.647 0.683 0.697 0.73 0.739 0.74
PRE - 0.102 0.142 0.235 0.261 0.263

Classes TP FP TP FP TP FP TP FP TP FP TP FP

Bubble 0.593 0 0.556 0.002 0.63 0.001 0.63 0.003 0.593 0.003 0.481 0
Scratch 0.94 0.001 0.96 0.002 0.96 0.001 0.96 0.002 0.94 0.001 0.95 0.001
Shadow 0.94 0.004 0.86 0.002 0.9 0.001 0.84 0.001
Debris 0.48 0.009 0.54 0.006 0.54 0.009 0.56 0.006 0.52 0.006 0.52 0.009
Diatom 0.86 0.003 0.86 0.003 0.88 0.004 0.86 0.003 0.88 0.004 0.88 0.004
Fiber 0.8 0.006 0.82 0.008 0.71 0.022 0.73 0.025 0.75 0.022 0.77 0.025

Other phytoplankton 0.58 0.01 0.52 0.01
Marine snow 0.3 0.02 0.28 0.014 0.3 0.013 0.24 0.013 0.28 0.013 0.26 0.013

Calanoida dorsal I 0.48 0.022 0.36 0.022 0.41 0.038 0.813 0.069 0.816 0.064 0.806 0.066
Calanoida lateral 0.24 0.021 0.18 0.012

Calanoida dorsal II 0.449 0.023 0.408 0.021 0.648 0.026
Temoridae 0.179 0.013 0.282 0.014

Calanoida dorsal III 0.68 0.009 0.86 0.024 0.87 0.021
Eucalanidae 0.8 0.015
Oithonidae 0.8 0.012 0.72 0.011 0.6 0.01 0.48 0.008 0.62 0.006 0.73 0.006
Miraciidae 0.974 0.002 0.923 0.002 0.897 0.001 0.897 0.003 0.846 0.001

Corycaeidae 0.36 0.014 0.847 0.052 0.813 0.044 0.8 0.056 0.827 0.058 0.807 0.054
Oncaeidae 0.58 0.023

Poicilo lateral 0.36 0.021
Sapphirinidae 0 0 0 0 0 0.001 0 0 0 0 0 0

Annelida 0.48 0.009 0.54 0.006 0.5 0.005 0.5 0.006 0.5 0.006 0.5 0.006
Cirripeda 0.227 0.004 0.318 0.005 0.273 0.006 0.273 0.003 0.227 0.003 0.318 0.004
Cladocera 0.82 0.004 0.86 0.006 0.82 0.004 0.84 0.004 0.84 0.004 0.84 0.004

Decapoda miscellaneous 0.423 0.01 0.539 0.025 0.651 0.034 0.651 0.03 0.667 0.03 0.659 0.029
Decapoda zoea lateral 0.54 0.012
Decapoda zoea dorsal 0.6 0.011 0.56 0.009
Malacostraca bulky 0.76 0.02 0.76 0.016 0.74 0.014 0.7 0.014 0.76 0.014 0.78 0.015

Elongated malacostraca 0.88 0.008 0.9 0.008 0.92 0.006 0.9 0.004 0.9 0.005 0.9 0.004
Malacostraca larvae 0.048 0.002 0.095 0.001 0 0.001 0.095 0.001 0 0.001 0.095 0.001

Cnidaria 0.636 0.003 0.591 0.005 0.636 0.004 0.591 0.006 0.545 0.005 0.591 0.006
Appendicularia 0.568 0.007 0.514 0.009 0.514 0.006 0.514 0.009 0.514 0.009 0.514 0.006
Chaetognatha 0.96 0.004 0.92 0.004 0.94 0.004 0.94 0.004 0.96 0.004 0.92 0.003
Elongated egg 0.96 0.003 0.98 0.004 0.98 0.003 0.98 0.004 0.96 0.003 0.96 0.003

Round egg 0.776 0.004 0.755 0.004 0.755 0.004 0.755 0.003 0.776 0.003 0.776 0.003
Gastropoda 0.88 0.004 0.84 0.004 0.86 0.004 0.88 0.003 0.86 0.004 0.88 0.004

Protista 0.94 0.007 0.94 0.005 0.94 0.006 0.94 0.005 0.92 0.004 0.96 0.005
Pisces 0.74 0.021 0.7 0.015 0.6 0.014 0.56 0.013 0.52 0.011 0.56 0.012

4.6 Conclusions and suggestions for future work

The proposed method allows to reduce the end-users uncertainty with respect
to training-set elaboration, by providing guidance to balance the number of
classes and the classification performance. The end-user can initially sepa-
rate all the identifiable groups, check the mergers decision in terms of au-
tomatic classification and then evaluate the proposed changes according to
performance (accuracy, PRE, TP, FP or significance of the improvements)
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and the research objectives. Lastly, the method is independent of any specific
machine learning technique, but simple techniques are selected and a code im-
plementation is provided. Future work will focus on the automation of mergers
exploration and on the unbalanced nature of zooplankton datasets.
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Advances in fish recruitment forecasting by
means of supervised classification

Improving the ability to forecast fish recruitment is a key element in fisheries
management. However, the interactions between population dynamics and
different environmental factors are complex and often non-linear, making it
difficult to produce robust forecast (Uriarte et al., 2002).

Machine learning techniques (in particular, supervised classification meth-
ods) have been proposed as useful tools to overcome such difficulties (Dreyfus-
León and Chen, 2007; Dreyfus-León and Schweigert, 2008). However, several
methodological issues have been rised by fisheries experts mainly due to the
sparse data available which lead to unstable results (Allain et al., 2001; Uusi-
talo, 2007).

In this study, a methodology is proposed (Fernandes et al., 2010c) to build
a robust classifier for fish recruitment forecast with sparse and noisy data.

The methodology consists of 4 steps: 1) a semi-automated recruitment dis-
cretization method; 2) a supervised discretization of factors; 3) a multivariate
and non-redundant factors selection; and 4) learning a probabilistic classifier.

In terms of fisheries management, the estimated classifier performance has
important consequences and, to be useful, the manager needs to know the
risk that is being taken when using this estimation. In addition, probabilistic
classifiers such as naive Bayes have the advantage that, in addition to the
forecast, the estimated probability of each recruitment level is provided.

Anchovy (Engraulis encrasicolus) and hake (Merluccius merluccius) re-
cruitments are used as application examples in this study. ’Two-intervals’
recruitment discretization accomplishes 70% accuracy rate and Brier scores
of around 0.10, for both anchovy and hake recruitment. In comparison, ’three-
intervals’ recruitment discretization accomplishes 50% accuracy rate; and
Brier scores of around 0.25 for anchovy and 0.30 for hake recruitment. These
statistics are the result of validating not only the classifier, but also the previ-
ous steps, as a whole methodology (Reunanen, 2003; Statnikov et al., 2005).

The principal objective of this study is to propose a machine learning based
framework, to perform a probabilistic forecast of recruitment with techniques
and results that are robust and useful for management decisions (providing
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stable and replicable performance estimations, as well as forecast uncertainty
estimates).

The proposed methodology is a pipeline of state-of-the-art machine-
learning methodologies, addressing several critical steps: recruitment and fore-
cast discretization; factors selection; performance estimation and final model
learning.

There are two main potential end-users of this methodology: 1) the scien-
tist who could use the methodology as a data mining tool to find out variables
that might affect recruitment and investigate related hypotheses and; 2) the
fisheries manager that might have a tool to evaluate risks for the fishery.

In order to be able to use probabilistic classification models, the target
variable has to be discretized (Torgo and Gama, 1997; Frank et al., 2000;
Revoredo and Zaverucha, 2004), i.e. the regression problem has to be trans-
formed into a classification problem. As an example, in marine science fish
recruitment values are often discretized using equal width (Dreyfus-León and
Chen, 2007), or equal frequency.

Nevertheless, these methods produce artificial boundaries, which do not
have any biological or management meaning. Therefore, the discretization is
undertaken often on the basis of fisheries experts suggestions.

However, sometimes insufficient information about the effects on the model
performance is available for setting these boundaries (Uusitalo, 2007). As re-
cruitment boundary decisions affect dramatically the final model and the con-
sequent results (Uusitalo, 2007), in the proposed methodology a recruitment
discretization method is included (class discretization in data mining litera-
ture).

The proposed approach considers the number of intervals, the domain sig-
nificance of the cut-off points and the balance of the number of instances
within each interval. All of these are critical issues identified in Uusitalo
(2007), which must be addressed in order to ensure robustness and usabil-
ity of the final model.

5.1 Methods

5.1.1 Application examples

The method has been applied to two species of commercial interest in the Bay
of Biscay: anchovy (Engraulis encrasicolus) and hake (Merluccius merluccius).

These are two cases where stock-recruitment relationships are poor factors
of recruitment (Fig. 5.1.1), where research on climate-recruitment relation-
ships has been undertaken.

Anchovy recruitment and climate have been the subject of intensive studies
(Motos et al., 1996; Bellier et al., 2007; Allain et al., 2007; Borja et al., 2008;
Planque and Buffaz, 2008). Hake recruitment relationship with climate and
spawning stock biomass (SSB), which has been associated with temperature
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Fig. 5.1. Relationships between spawning stock biomass and recruitment, for an-
chovy in the Bay of Biscay and for the northern hake stock. The solid black line
indicates the adjustment of a Ricker model. The dotted lines shows the cut-off points
suggested by the model, for recruitment discretization. The elliptic selections are ex-
amples of why SSB is inefficient in discriminating recruitment.

in other studies (McFarlane et al., 2000; Bartolino et al., 2008), is the subject
of ongoing research (Meiners, 2007).
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5.1.2 Data sources

The target variables to forecast are the Anchovy Recruitment Index long
time-series (ARI; Borja et al. (1996)), Anchovy Recruitment (AR; Uriarte
et al. (2008b)) and the Hake Recruitment (HR; Uriarte et al. (2008a)). The
datasets are the result of working groups of the International Council for the
Exploration of the Sea (ICES).

In the case of anchovy, ARI is a recruitment index time-series (1967-2005;
39 years, Fig. 5.2) established from the percentage of age 1 in the landings, but
where there is not spawning stock biomass estimations for the period 1967-
1987. AR in the Bay of Biscay is available only from 1987 to the present (21
years) from a two-stage biomass dynamic model (Ibaibarriaga et al., 2008).

Fig. 5.2. Anchovy recruitment index (ARI) time-series for the period 1967–2005,
compared to its selected factors time-series: (a) ARI different time-series compo-
nents: trend, periodicity and noise; (b) the 6-year running mean of the CLI1 and
ARI periodic component comparison; (c) UIBs 4502 and ARI; (d) TURB 4502 and
ARI; (e) V 4503 and ARI time-series.

The AR is somewhat short time-series for data mining studies. However,
the proposed methodology has been also applied to this short recruitment
time-series, to evaluate the role of the spawning stock biomass (SSB). Finally,
The HR time-series consists of 29 years of data (1978-2006).

In addition to SSB, a set of environmental variables made available by the
experts are used (Table 5.1).

The main dataset of environmental variables used in this study has been
obtained from the 2007 Workshop on ’Long-term Variability in SW Europe’
(ICES, 2007). The compiled variables consist of global climatic and physical
oceanographic indices, proposed by experts researching these species.

Climatic indices for the Atlantic region were represented by the key modes
of large-scale atmospheric circulation over the northern hemisphere (Barnston
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Table 5.1. Sets of variables considered for each specie recruitment forecast. Many
variables considered for hake recruitment have not been considered for anchovy,
since there is no anchovy presence in the areas where those variables are measured.

Factors or features Anchovy Hake

1. Global climatic indices:

NAO, EA, WP, EP NP, PNA, EA WR, SCA, TNH, POL, PT, NAO DM,
√ √

NAO m, At global and At NH.

2. Global climatic indices from PCA analysis:

CLI1, CLI2 and CLI3.
√ √

3. Physical oceanographic indices:

AMO, SSTP, RFG, SSTSS, POLE, UIs 4311, Uim 4311, TPEA, SST 4503,
√ √

SST 4311, TAIR 4311, U 4503, V 4503, U 4311, V 4311, NWPw, NWPs,

SOFWE, SUFWE, HSFWE, SONFWE, UILm 4502, UIBm 4502, UIBs 4502,

TURB 4502, HF 4503, LHF 4503, ZMF 4503 and MMF 4503.

4. Other climatic indices:

TempAnomGlobal (hadsst2), TempAnomNH (hadsst2), Natlantic.average,
√ √

AMO (unsmoothed), WinterNAO.NOAA,

SpringEA.NOAA and Central England temperature.

5. Solar activity:

Sunspot and AA index.
√ √

6. Regional temperature indices:

TempAnom: A (4045N 5-0W), B (40-45N 10-5W), C (4550N 50W), D (45-50N
√

10-5W), E (45-50N 15–10W), F (50-55N 0-5E), G (5055N 5-0W), H (50-55N

10-5W), I (50-55N 10-5W), J (55-60N 5-10E), K (55-60N 0-5E), L (55-60N 5-0W),

M (55-60N 10-5W), N (55-60N 15-10W), O (60-65N 0-5E) and P (60-65N 0-5E).

7. Local wind indices:

E-W (46.5N 4.5W), N-S (46.5N 4.5W), E-W (48.5N 9.5W), N-S (48.5N 9.5W),
√

E-W (50.5N 7.5W), N-S(50.5N 7.5W), E-W (53.5N 12.5W), N-S (53.5N 12.5W),

E-W (57.5N 8.5W), N-S (57.5N 8.5W), E-W (61.5N 4.5W), N-S (61.5N 4.5W),

E-W (58.5N 1.5E) and N-S (58.5N 1.5W).

and Livezey, 1987). Six indices were selected for analysis: North Atlantic Oscil-
lation (NAO); East Atlantic pattern (EA); East Atlantic/Western Russia pat-
tern (EA/WR); Scandinavia pattern (SCA); Tropical/Northern Hemisphere
pattern (TNH); and Polar/Eurasia pattern (POL).

These indices, covering the period 1950-2006, were obtained from the US
National Oceanic and Atmospheric Administration (NOAA) Climate Predic-
tion Center (www.cpc.ncep.noaa.gov). De-trended series of climate variables
were analysed using principal component analysis, to extract the main pat-
terns of variability, following Varimax rotation. Subsequently, climatic vari-
ability was represented by the first three principal components, accounting for
up to 63.8% of the total variance. However, the first two components (CLI1
and CLI2) accounted for only 22.3 and 22.1% of the variance, respectively;
this indicates that none of the climatic indices were prevalent (see details in
Bode et al. (2006)).

In addition to the afore mentioned dataset, other climatic indices have
been added: winter (Dec-March) mean NAO index, since it shows its max-
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imum fluctuations over this season; spring (March-July) mean EA pattern,
coinciding with the anchovy spawning period in the Bay of Biscay (Borja
et al., 1996, 1998, 2008); and ’global’ mean temperature values for the whole
North Atlantic and the northern hemisphere.

Two solar indices have been also considered (www.ngdc.noaa.gov): annual
number of Sunspots; and Sun geomagnetic activity (AA index).

In the case of hake, some additional variables have been considered to rep-
resent the whole distribution area: Sea Surface Temperature (SST) anomalies,
obtained from the hadSST2 dataset (Rayner et al., 2006), on a 5x5 grid-box
basis over the northern hake distribution area; and vectorial data of wind,
in particular, east-west (u) and north-south (v) geostrophic wind components
obtained from NOAA (Fleet Numerical Oceanographic 8, www.pfeg.noaa.gov),
from which vectorial wind data can be estimated (Table 5.1).

5.1.3 Model-building

The proposed methodology consists of performing supervised factors dis-
cretization, followed by a supervised factors selection (in a leaving one out
cross-validation scheme) and finally learning a naive Bayes classifier.

The approach can be applied to a dataset where the values of the re-
cruitment have been discretized by the end-user (Fig. 5.3), or the recruitment
discretization (class discretization) can be part of the proposed model-building
process (Fig. 5.4), in a bootstrap scheme.

Finally, the whole methodology (pipeline of supervised classification meth-
ods) is validated by means of 10 times-repeated 5-fold cross-validation (10x5cv;
Fig. 5.3 and 5.4).

Recruitment semi-automated discretization (class discretization):

A semi-automated recruitment discretization methodology is proposed, in
order to establish optimal cut-off point sets for recruitment. In the proposed
semi-automated discretization method, a ranking of cut-off point sets is com-
piled with their associated estimated performance measures.

This ranking is presented to the fisheries expert, who has to select the final
cut-off point set to be adopted (Table 5.3), who selectes the cut-off point sets
that are useful for management or knowledge extraction.

The performance of each cut-off point set is estimated using 100 re-
sampling sets in a 0.632bootstrap schema (Efron, 1979) over the full model-
building proposed schema: supervised factors discretization, factors selection
and a naive Bayes classifier (model-building; Fig. 5.3). In the present study,
two criteria for the cut-off point set selection are investigated: fixing the ob-
jectives in the maximization of the mean of true positive rate (max mean tp);
or in the maximization the accuracy (max accuracy).

Finally, the method can evaluate all recruitment cut-off point set combi-
nations, or the cut-off point set candidates can be restricted. I.e., the expert
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Fig. 5.3. Validation scheme for an end-user defined recruitment discretization. The
’model-building’ consists of: the supervised discretization of factors; a multivariate
factors selection, ’in a leaving one out’ validation scheme (CFS with LOOCV); and
learning a naive Bayes classifier. A 10x5cv validation scheme is used, in order to
estimate the performance of this methodology. For a honest validation every step
in ’model-building’ only uses training data and the validation is performed using
unseen test data.

Table 5.2. List of recruitment cut-off point sets proposed by the discretization
algorithm presented to the end-user for anchovy recruitment. (Note: the table shows
only a part of the whole list of cut-off point sets proposed by the algorithm). The
ranking can be composed of hundreds or thousands of possible cut-off point sets.
The end-user selected cut-off point sets are shaded and the maximum performance
scores are in bold. ’St.’ is the abbreviature for stability of the CFS feature selection
method, which counts the number of times that the subset of features is selected.

Anchovy recruitment index discretization in 3 bin

Wrapper max mean TP or max accuracy (100 bootstrapps)

CutPoint1 CutPoint2 #Inst1 #Inst2 #Inst3 TP1 TP2 TP3 TPmean Acc. CFS st. CFS selected subset

1200 3250 10.4 10.2 6.4 0.81 0.7 0.81 0.77 77.4 34 POL; CLI1; V 4503; UIBs 4502

1500 3250 12.3 8.2 6.4 0.87 0.73 0.7 0.76 80.2 29 POL; CLI1; TURB 4502

1050 2550 9.4 9.1 8.6 0.83 0.75 0.71 0.76 76.6 20 PT; CLI1; NAO DM; PEA

1100 3250 9.9 10.7 6.4 0.79 0.72 0.75 0.76 75.7 34 POL; CLI1; UIBs 4502

1100 3150 9.9 10.1 7.1 0.86 0.74 0.64 0.75 76.1 19 UIs 4311; V 4503; UIBs 4502; AA Index

can limit the cut-off point sets evaluated to those that have a minimum num-
ber of instances per interval by setting a threshold. Yang and Webb (2009)
propose the use of a threshold equal to the square root of the total number of
instances, in order to establish a minimum number of instances in each factor
interval,. Although suggested in the factors discretization literature, it is ex-
tended here to the proposed recruitment discretization method. As a result,
the problem of the imbalance in the number of instances in each recruitment
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Fig. 5.4. Example of a validation scheme for a pipeline that contains a wrapper
step

Table 5.3. List of recruitment cut-off point sets proposed by the discretization
algorithm presented to the end-user for anchovy recruitment. (Note: the table shows
only a part of the whole list of cut-off point sets proposed by the algorithm). The
ranking can be composed of hundreds or thousands of possible cut-off point sets.
The end-user selected cut-off point sets are shaded and the maximum performance
scores are in bold. ’St.’ is the abbreviature for stability of the CFS feature selection
method, which counts the number of times that the subset of features is selected.

Anchovy recruitment index discretization in 3 bin

Wrapper max mean TP or max accuracy (100 bootstrapps)

CutPoint1 CutPoint2 #Inst1 #Inst2 #Inst3 TP1 TP2 TP3 TPmean Acc. CFS st. CFS selected subset

1200 3250 10.4 10.2 6.4 0.81 0.7 0.81 0.77 77.4 34 POL; CLI1; V 4503; UIBs 4502

1500 3250 12.3 8.2 6.4 0.87 0.73 0.7 0.76 80.2 29 POL; CLI1; TURB 4502

1050 2550 9.4 9.1 8.6 0.83 0.75 0.71 0.76 76.6 20 PT; CLI1; NAO DM; PEA

1100 3250 9.9 10.7 6.4 0.79 0.72 0.75 0.76 75.7 34 POL; CLI1; UIBs 4502

1100 3150 9.9 10.1 7.1 0.86 0.74 0.64 0.75 76.1 19 UIs 4311; V 4503; UIBs 4502; AA Index

interval is avoided, whilst CPU-time is reduced.

Factors supervised discretization:

The variables (factors) have been discretized using the state-of-the-art
Fayyad and Irani’s MDL Multi Interval Discretization (MID) method (Fayyad
and Irani, 1993). This approach is a supervised method that searches for cut-
off point sets, minimising the recruitment entropy given each factor (condi-
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tional entropy). Entropy is a measure of uncertainty (Shannon and Weaver,
1963), whilst the conditional entropy quantifies the discrimination power of
a factor, in relation to recruitment. The lower the conditional entropy the
better the discrimination power of a factor (lower uncertainty).

In addition, the Fayyad and Irani’s method has a Minimum Description
Length (MDL) penalisation criterion, to avoid selecting a large number of in-
tervals. The method can discard variables, setting a unique interval for all its
values, when there is ’no-discretization’ that reduces significantly the uncer-
tainty of the recruitment value. These variables are removed for subsequent
analysis.

Factors selection:

The multivariate Correlation-based Feature Selection (CFS) method has
been adopted as a prior step to classifier learning (Hall and Smith, 1997; Hall,
2000). The CFS formulation is based upon the assumption that a good subset
of factors (features in the data mining literature) is the one where each of its
factors is highly correlated with the recruitment; and at the same time, the
factors have low correlation between them. CFS searches for a subset of fac-
tors that is relevant for the recruitment, where the factors are non-redundant
between them or this redundancy is minimal. CFS gives a merit to each fac-
tor set, where the correlation of each factor (in the set) with the recruitment
is viewed positively (numerator), whilst correlation between factors (in the
subset) is penalised (denominator):

Merit(X1, ..., Xz) =
z · tCX√

z + z(z − 1)tXX

where k is the number of factors in the subset, tCX is the average recruitment-
factor correlation and tXX is the average factor-factor correlation. Correlation
between two variables is calculated by means of the classical Symmetrical
Uncertainty Score (SUS), bounded between 0 and 1 (Hall, 1999).

In addition to the results of CFS, a univariate ranking between each fac-
tor and recruitment using the non-parametric Symmetrical Uncertainty Score
(Hall, 1999) has been calculated. The univariate ranking is not part of the
proposed methodology, but can be of interest for the expert; this is performed
in order to examine variables that are highly correlated with the recruitment,
that could have not been selected in the described multivariate factors selec-
tion.

Finally, the most repeated subset of variables selected by CFS in a ’leaving
one out cross-validation scheme’ (LOOCV) is more robust than performing
CFS directly on all the data (Francis, 2006). In this way, the most selected
factor subset in the LOOCV scheme is considered as the most stable sub-
set, ensuring a more robust set of variables. This stability is needed in this
kind of research where data is costly to collect and selected variables have
important biological meaning (Kalousis et al., 2005, 2007; Kuncheva, 2007).
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However, the fisheries expert has the final decision on which set of variables
is selected for building the final model, from the suggested ranking provided
by the cross-validated CFS (Table 5.4).

Supervised classification model:

Bayesian networks have the advantage of being easier to interpret and
extract knowledge than other supervised classification models such as ’Neural
networks’ (Correa et al., 2009), due to their graphical representation and their
principled probabilistic foundations in domains of high uncertainty (Sebastiani
et al., 2005). Naive Bayes (Duda and Hart, 1973; Langley et al., 1992), one
of the simplest Bayesian network model for classification (Larrañaga et al.,
2005), has been selected; this is due to its competitive performance, as it
works well in many complex real-world problems (Domingos and Pazzani,
1997; Zhang, 2004). Naive Bayes assumes that, given the recruitment or class
variable, all of the factors are independent. This assumption implies that a
naive Bayes classifier requires the specification of a small number of param-
eters. Further, it is a computationally-fast model to be learnt (a time com-
plexity of O(nk), where n is the number of training examples and k is the
number of selected factors). This is adequate for wrapper approaches that use
the induction algorithm in their search process (Saeys et al., 2007).

Another advantage of the naive Bayes classifier (and probabilistic models,
in general) is that not only id gives a forecast, but also the estimated prob-
ability associated with each possible outcome. Such information is crucial
for management decision-making and is used for the Brier score performance
measure (see below).

The most common measure of performance estimation in classification is
accuracy, it measures the ratio of correct forecasts. However, accuracy ratio
could be improved easily by using classifiers where the recruitment intervals
are not balanced, i.e. one interval contains most of the data, then classifying
all the cases within this interval (accuracy paradox). This leads to classifiers
with high accuracy, but not useful models.

For this reason, it must be complemented with other performance mea-
sures that consider error distribution between all recruitment intervals, such
as true positive rate (TP). TP is the rate of correctly classified cases for each
recruitment interval, i.e. correct forecasts of recruitment in each interval to the
total number of cases in each interval. Finally, the Brier score measure (Brier,
1950; van der Gaag and Renooij, 2001; Yeung et al., 2005) was calculated, as a
complement to the ’accuracy’ and the ’true positive rate per class’. Brier score
for a set of events and their outcomes is the average deviation between the
forecasted probabilities; thus, a lower score represents higher performance.
Brier score can be considered as a calibration metric, which takes into ac-
count ’a posteriori’ the probabilities assigned by the classifier to each possible
outcome:
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Table 5.4. Ranking of factors subsets selected with CFS multivariate factors subset
selection method, using the leaving one out validation scheme (LOOCV) applied
to anchovy and hake recruitment time-series, discretized at 3 intervals. Notes: (i)
stability is the number of times that each subset of factors has been selected in
the LOOCV process; (ii) the stability (’St.’) of each variable set is being evaluated,
instead of each variable stability itself; (iii) the end-user selected factors sets are
shaded.
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Fig. 5.5. Different ARI scenarios for 3 levels of recruitment, by the end-user dis-
cretization (first column) and by max mean tp ARI discretization (second column).
Both figures enclosed in the first row show the ’a priori’ probabilities of recruitment
and factors. The figures enclosed in the second to fourth rows show the scenarios for
low, medium and high recruitment. The figures enclosed in the last row shows the
forecast for year 2008. In the left, the forecast provided by the evidence of upwelling
(UIBs 4502) greater than 1000 and turbulence (TURB 4502) less than 140 for the
expert recruitment discretization. In the right, the forecast provided by the evidence
of upwelling greater than 925 or wind (V 4503) less than -1 for the max mean tp
discretization strategy. The thickness of the arc is proportional to the strength of
the probabilistic relationship it represents.
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where N is the number of cases, r is the number of class values, and pkl is the
forecasted probability for the lth class value for the kth case. The ykl value is
1 if l is the observed (correct) value of the class and 0 otherwise.

5.1.4 Methodology validation

A global and robust validation procedure is necessary, in order to establish the
reliability of the methodology and final forecasts, as well as for comparison
of classifiers (Bouckaert and Frank, 2004). Honest performance estimation
requires the separation into training and test data, as a prior step to all the
model-building, not just before classifier learning (Reunanen, 2003; Statnikov
et al., 2005). Test instances must be retained totally unseen, whilst only the
training data are used in all of the steps (supervised discretization, factor
selection and model learning).

This approach permits the avoidance of over-fitting, that leads to over-
optimistic and unstable performance estimations. In order to obtain robust
estimations, a 10 times repeated 5-fold cross-validation (10x5cv; Fig. 5.3)
scheme has been used, as recommended in Bouckaert and Frank (2004). In
addition, the proposed wrapper recruitment discretization is guided by per-
formance measurements. Thus, an inner loop with 100 re-sampling sets in
a 0.632bootstrap schema (different from the outer loop) for calculating this
performance is necessary (see Table 5.3). In order to ensure honest valida-
tion, the test data in the outer loop (Fig. 5.3) is not used in the inner loop
(model-building in a bootstrapping scheme), where the discretization is being
validated.

All of the above steps have been implemented using Weka API machine-
learning software (Witten and Frank, 2005). Reproducibility is ensured by a
Java programming language implementation of all the methodology, available
from the ISG group webpage (www.sc.ehu.es/ccwbayes/members/jafernandes
or at www.azti.es). In addition, Matlab (www.mathworks.com) and R (www.r-
project.org) has been used for time-series analysis (Fig. 5.2). Finally, Bayesia
software (www.bayesia.com) has been used for the visualization of the naive
Bayes classifier (Fig. 5.5).

5.2 Results

Discretization:

Table 5.3 presents an example of the Anchovy Recruitment Index (ARI)
discretization cut-off points proposed by the method together with their es-
timated performance and selected factors. Tables 5.5 and 5.6 present the dif-
ferent metrics used to evaluate the cut-off points, established using different
validation methods for different recruitment discretization strategies.
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Table 5.5. Performance evaluation of discretization methods, for different number
of anchovy recruitment index intervals (bins). Notes: (i) several performance estima-
tions are presented, to illustrate the differences in reported accuracies, depending
upon the validation scheme; (ii) the scheme used in this work is 10 times 5-fold
cross-validation (10x5cv); (iii) ’best 5cv’ is the accuracy that would be reported, if
the best repeat, is selected. ’Best fold’ represents the best accuracy of a single fold in
a specific cross-validation repeat (a 80-20% hold-out); (iv) true positive rates (TP)
are followed by the recruitment cut-off point sets and the number of instances in
each interval; (v) the classifiers that have been considered, as useful candidates to
be used as the final classifier, are shaded.
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The fisheries expert considered that three intervals (low, medium and high
recruitment) were the most useful for management purposes and proposed
1500 and 3000 as cut-off points for ARI (Table 5.5) together with 170000
and 220000 for hake recruitment(HR; Table 5.6). The max mean tp recruit-
ment discretization method has suggested similar cut-off point sets: 1200 and
3250 for ARI (Table 5.5); and for HR, 170000 and 213000 (Table 5.5). The
expert ARI discretization does not accomplish significantly higher accuracy
(47.4%) compared to the max mean tp discretization (44.9%; p>0.05, cor-
rected paired t-test ; Table 5.5). Expert boundaries show a lower Brier score
(0.16) performance than max mean tp (0.24). However, the true positive dis-
tribution between the different intervals defined by the expert is imbalanced.
Therefore, the classifier using expert boundaries shows a good forecasting be-
haviour in low recruitments (75.6%), but a poor behaviour for the rest of
recruitments levels (medium 24.3% and high 28.1%). The max mean tp dis-
cretization method shows a more balanced distribution of the error (47.3%
low, 27% medium and 39.4% high).

In the case of hake, fisheries expert and max mean tp discretizations ac-
complish similar accuracies (42.8% compared to 42.2%; Table 5.5), with no sig-
nificant differences (p>0.05; corrected paired t-test). Expert levels boundary
set presents lower Brier score (0.23) than max mean tp (0.30). The discretiza-
tion provided by the experts shows again an imbalanced distribution of perfor-
mance between intervals, showing a good forecasting behaviour in low recruit-
ments (71.7%) and poor behaviour in high recruitment, whereas max mean tp
shows a more balanced distribution of true positive rates (41.3% low, 33.6%
medium and 45% high). Taking into account both cases, the max mean tp
semi-automated discretization performed satisfactorily, helping to avoid over-
fitting, as well as establishing informative recruitment intervals (similar to
those proposed by the expert) and with a balanced distribution of the error
among all the intervals.

Factors selection:

After discarding unbalanced recruitment discretizations and classifiers
with unbalanced true positive distributions, all shaded classifiers in Tables
5.5 and 5.6 are selected as potential candidates to be used as the final clas-
sifiers. Two interval recruitment discretizations accomplish 70% of accuracy;
and Brier scores of around 0.10 for Anchovy Recruitment Index and Hake
Recruitment. Whereas, three interval recruitment discretizations accomplish
50% of accuracy; and Brier scores of around 0.25 for ARI, and 0.30 for HR.

Regarding the multivariate factors selection results for ARI (Table 5.4),
the most stable subset of factors for end-user discretization was formed by
CLI1 (the first PCA component of climatic detrended indices, being the most
influential EA/WR and POL indices) and UIBs 4502 (Upwelling Index along
the French and Spanish coasts (45N, 2W) annual mean of positive values,
March-July, m3s−1km−1). The same subset of factors is the second top-ranked
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Table 5.6. Performance evaluation of discretization methods, for different number
of hake recruitment index intervals (bins). Notes: (i) several performance estimations
are presented, to illustrate the differences in reported accuracies, depending upon
the validation scheme; (ii) the scheme used in this work is 10 times 5-fold cross-
validation (105cv); (iii) ’best 5cv’ is the accuracy that would be reported, if the
best repeat is selected. ’Best fold’ represents the best accuracy of a single fold in
a specific cross-validation repeat (a 80-20% hold-out); (iv) true positive rates (TP)
are followed by the recruitment cut-off point sets and the number of instances in
each interval; (v) the classifiers that have been considered, as useful candidates to
be used as the final classifier, are shaded.

Bins Metrics Expert Max mean tp Max accuracy

2 10x5cv Acc. 68.3± 8.2% 68.5± 6.6%

Best 5cv Acc. 79.3± 18.2% 76± 8.6%

Best fold Acc. − 100% 100%

Brier score 0.12± 0.08 0.10± 0.07

TP low 54.1%(< 170k; 7) 63.9%(170k; 7)

TP high 67%(> 170k; 22) 55.6%(170k; 22)

3 10x5cv Acc. 55.7± 6.4% 43.7± 7.5% 43.3± 7%

Best 5cv Acc. 66± 10.7% 52± 17.3% 54.6± 20.4%

Best fold Acc. 100% 83.3% 83.3%

Brier score 0.23± 0.05 0.30± 0.05 0.32± 0.05

TP low 71.7%(< 170k; 7) 41.3%(< 170k; 7) 43.7%(< 170k; 7)

TP medium 57.9%(170220k; 16) 33.6%(170213k; 14) 36.3%(170213k; 14)

TP high 17%(> 220k; 6) 45%(> 213k; 8) 38%(> 213k; 8)

4 10x5cv Acc. 33.6± 8.3% 32± 7.7%
Best 5cv Acc. 44.7± 18.4% 41.3± 14.5%
Best fold Acc. 66.7% 66.7%
Brier score − 0.38± 0.04 0.40± 0.05
TP low 42%(< 161k; 6) 47.3%(< 161k; 6)
TP med. I 11%(161205k; 9) 5%(161197k; 5)
TP med. II 26.7%(205247k; 9) 25.7%(197213k; 10)
TP high 35%(> 247k; 5) 39.7%(> 213k; 8)

set of variables for the end-user discretization, with an additional factor;
TURB 4502 (mean annual turbulence Bay of Biscay at 45N, 2W, m3s−3).
For max mean tp discretization method, UIBs 4502, V 4503 (mean N-S wind;
45N, 03W, ms−1) and CLI1 were the selected factors. However, max mean tp
recruitment discretization shows stronger probabilistic relationships in the fi-
nal classifier graphical representation (Fig. 5.5), coupled with a greater factor
subset stability (Table 5.4). Other factors that emerge in the multivariate fac-
tors selection ranking, with a lower level of stability than the exposed ones



5.2 Results 87

(Table 5.4), are the following: NAOm (North Atlantic Oscillation annual mean
from Hurrell, 1995); the climatic indices TNH and POL; and UILm 4502 (Up-
welling Index Landes 45N, 2W annual mean, m3s−1km−1).

The end-user, the max mean tp and max accuracy discretization methods
select the same set of factors, in the HR case (Table 5.4). This set is composed
of: TempAnom N (mean annual temperature anomaly for the area 55-60N; 15-
10W); CLI2 (second PCA component of de-trended climatic indices, with the
most influential being the NAO index); TURB 4502; and Sunspot (number of
Sunspots per year).

Performance and recruitment scenarios:

Tables 5.5 and 5.6 present the performance of the different recruitment
discretization methods measured in terms of several performance indicators
and validation schemes. Table 5.7 lists a set of examples of the estimated prob-
ability associated with each forecast, which should contribute to management
decisions.

Table 5.7. Forecast output from a cross-validation fold, for 10 test samples or years.
Notes: (i) the first column is the labelled recruitment and the second column is the
label forecasted by the naive Bayes classifier; (ii) an incorrectly classified instance is
marked with the symbol ’+’ in the third column; (iii) the forth to sixth columns are
the ’a posteriori’ probabilities for each recruitment level, after observing the factors;
(iv) an example of a misclassified case is shadowed. ’*’ indicates the most probable
recruitment forecast value, for a given year.

Observed Forecasted Error Less 1500 1500-3000 More 3000

More 3000 More 3000 0.005 0.065 0.931∗
1500-3000 More 3000 + 0.119 0.376 0.505∗
More 3000 More 3000 0.070 0.132 0.798∗
Less 1500 Less 1500 0.715∗ 0.029 0.257
More 3000 More 3000 0.001 0.010 0.989∗
1500-3000 1500-3000 0.025 0.958∗ 0.016
Less 1500 Less 1500 0.517∗ 0.207 0.276
Less 1500 Less 1500 0.931∗ 0.046 0.023
Less 1500 Less 1500 0.960∗ 0.035 0.005
1500-3000 1500-3000 0.220 0.581∗ 0.200

Finally, different scenarios for anchovy can be observed for the naive Bayes
classifier (Fig. 5.5). The scenarios for the ARI max mean tp discretization
method are the following: (i) in the ’a priori’ recruitment distribution (Fig.
5.5f), Low Recruitment is the most predominant level (41%), followed by
Medium (36%) and High Recruitment (23%); (ii) a Low Recruitment level
(Fig. 5.5g) is characterised by high N-S wind (V 4503) and low CLI1; (iii)
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Medium Recruitment (Fig. 5.5h) is characterised by a probable high CLI1,
dominated slightly by low N-S wind and a probable high upwelling; and (iv)
High recruitment (Fig. 5.5i) is characterised by high upwelling episodes.

Neither in the case of Anchovy Recruitment (AR time-series shorter than
ARI, Table 5.5) or Hake Recruitment (HR, Table 5.6) was the spawning
biomass selected by the model, as a relevant factor. This outcome is not sur-
prising if it is considered that, in both cases, the spawning stock biomass
explains very little of the recruitment variability (Fig. 5.1.1). However, it has
to be considered that in the case of anchovy, the recruitment time-series (AR)
is probably too short (21 years) to adopt the approach described. In hake
time-series there is an absence of data on very low recruitment values.

5.3 Discussion

Stock-recruitment models (Ricker, 1954; Beverton and Holt, 1957), together
with other regression methods used for environmental variables (Schirripa and
Colbert, 2006; Planque and Buffaz, 2008), are used commonly for recruitment
forecast. A complementary methodology is presented here, that converts the
regression problem of recruitment forecast (quantitative), into a classification
problem (qualitative), that is less complex (Alpaydin, 2004; Bishop, 2006).
Thus, the variable of interest (recruitment) needs to be discretized.

A notable advantage of the proposed approach is that certain classifica-
tion models, such as naive Bayes, provide the probabilities associated to each
output or ’recruitment interval’; these can be used as a measure of robustness
of the forecast (Frank et al., 2000). In terms of management, instead of trying
to forecast a number with high precision (i.e. regression provides an exact
number within a problem with high uncertainty), an interval with a measure
of the uncertainty of that forecast can be a more useful outcome. Different
interpretations and decisions will be made if a forecast shows a probability
of 0.50 or 0.9 (Table 5.7). Other differences with respect to regression-based
models are the following: no strong distribution assumption is made; and it
allows to deal with a certain degree of missing data to be managed, with the
outliers and scale effect reduced (Witten and Frank, 2005).

Regression-based models attempt to fit a model to the data by likelihood
maximisation; whilst some classification models have an additional aim to
the likelihood that is the forecast performance (Zhou, 2003). Direct compar-
ison between regression and classification approaches is not possible quan-
titatively as they use different fitting and performance measures. However,
because stock-recruitment relationships often fail (Myers et al., 1995) and re-
lations with the environment are difficult to disentangle, managers have to
work with recruitment scenarios (Schirripa and Colbert, 2006; Planque and
Buffaz, 2008). In such a situation, the interest of having a forecast and a
measure of the uncertainty associated with each forecast is important.
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The major contribution of this study is the proposal of a pipeline of already
established methods, in order to ensure a robust recruitment forecast, based
upon scarce and noisy data. Once robustness has been assured, a ’trade-off’,
between searching for a high accuracy degree with informed factors selec-
tion and over-fitting avoidance, can be used for domain knowledge extraction
(Fayyad et al., 1996).

5.3.1 Proposal for a robust supervised classification pipeline

Discretization dependency:

The supervised discretization and selection of variables have advantages
in model-building and for expert interpretation (Fayyad et al., 1996). This
means that supervised steps are dependant upon the recruitment definition
(interval boundaries). This is the reason why different recruitment discretiza-
tions can lead to different factor subsets and the motivation for suggesting
a semi-automatic method to identify adequate recruitment boundaries (Uusi-
talo, 2007). Among the proposed boundaries that improve performance, the
end-users can employ their expertise to choose cut-off points that have bio-
logical meaning. As an example, in Figure 5.5, the factors selected with the
cut-off points proposed by the fisheries expert do not show a good behaviour
for forecasting of high recruitment level. In contrast, those cut-off points se-
lected by the proposed max mean tp discretization method, show a competi-
tive behaviour in all the recruitment intervals and they are close to the expert
proposed cut-off points. Equal width discretization leads to extremely unbal-
anced recruitment levels, which are not particularly useful. Equal frequency
discretization leads to artificial boundaries, without any biological meaning;
thus, these are not useful for subsequent interpretation by the end-users. The
proposed semi-automated recruitment discretization method considers critical
issues in order to learn a Bayesian network (Uusitalo, 2007): the number of
intervals or bins (Table 5.5 and 5.6); the domain significance of the break-
points (through entropy reduction and end-user evaluation; Table 5.1); and
the balance of the instances in each recruitment level using a threshold (a
minimum number of instances within each interval).

As the number of re-sampling sets in the bootstrapping scheme is in-
creased, both (max mean tp and max accuracy) wrapper recruitment dis-
cretization criteria suggest similar cut-off point sets. At least 100 bootstrap
re-sampling sets are suggested, to ensure robustness; if lower number of re-
sampling sets is performed, our suggestion is to use the max mean tp criterion.
Significance is ’re-ensured’ in factor’s discretization by means of a well-known
entropy-based supervised discretization algorithm, such as the Fayyad & Irani
Multi Interval Discretization method (Fayyad and Irani, 1993). Even if accu-
racy does not increase significantly, forecasts benefit from a more informed
model (Guyon et al., 2007). Finally, fisheries experts found useful a method
that allows them to find recruitment and factors intervals that are reciprocally
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connected and that can have biological meaning. This is extremely useful for
interpretation and knowledge extraction.

Multivariate non-redundant variable selection:

The Correlation-based Feature Selection method (CFS) tends to select
non-redundant factors that are likely to be independent of each other (Hall
and Smith, 1997). This approach favours classifiers such as naive Bayes, which
restricts relationships between factors and takes advantage of variables which
are independent of each other, given the recruitment. CFS often selects the
top ranked factors, in a univariate ranking of correlations with the recruit-
ment, together with other factors that are not the top ranked, but that are
selected due to their non-redundant nature. The selection of not top ranked
factors is related to their forecast power in intervals, not discriminated by
other variables that are ranked higher and redundant with other top ranked
variables. The properties of this CFS scheme makes the returned subset of
factors interesting, for expert discussion.

Naive Bayes classifier:

There are several specific properties of naive Bayes classifier (Domingos
and Pazzani, 1997; Zhang, 2004) that makes them especially useful for the
proposed methodology, together with its objectives. Firstly, its probabilistic
nature is particularly useful for management decisions, where information on
the estimated probability of each outcome can be decisive (Table 5.7). The
end-user can check if the model forecast is strong enough (high ’a posteriori’
probability for the most likely recruitment level), or if there are several fore-
cast with similar ’a posteriori’ probabilities. These equally probable situations
occur usually when the recruitment is close to the boundaries of two recruit-
ment levels (Frank et al., 2000). Secondly, it benefits from techniques such as
CFS and PCA (Principal Components Analysis) that return non-redundant
factors.

Finally, no other classification method has a performance that is signifi-
cantly higher (corrected paired t-test) than naive Bayes in this study (Table
5.8). Indeed, naive Bayes shows higher performance estimation stability (lower
variability between repeated cross-validations). Support vector machines ac-
complish similar results to naive Bayes. It is important to highlight that for
other recruitment time-series, another classification method can outperforms
the naive Bayes classifier. If a longer recruitment time-series is considered
a Tree Augmented Naive Bayes (TAN) might benefit from interactions be-
tween factors and outperform a naive Bayes classifier. Finally, it might not
be justified the use of a more complex or less comprehensible model by a
small performance improvement following Occam’s razor principle (Domin-
gos, 1999).
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Table 5.8. Comparison of naive Bayes with other classification models as the clas-
sifier in the proposed pipeline of supervised methods. The CPU-time rows corre-
spond with the processing time required to perform the recruitment max mean tp
discretization. The methodology validation consists of 10 times-repeated 5-fold cross-
validation with a inner 100 re-sampling sets in a 0.632 bootstrap schema. Classifi-
cation models abbreviations are the following: NB for naive Bayes; TAN for tree
augmented naive Bayes; J48DT for J48 Decision Tree; MPNN for multi-layer per-
ceptron neural network ; SVM for support vector machine.

Species Metrics NB TAN J48DT MPNN SVM

ARI 10 x 5cv Acc. (%) 44.9± 5 38.4± 9.1 46.3± 7.3 46.3± 7.7 45.8± 5.1

Brier score 0.24± 0.05 0.26± 0.06 0.27± 0.05 0.29± 0.05 0.22± 0.05

TP low 0.473 0.393 0.488 0.474 0.454

TP medium 0.27 0.276 0.313 0.29 0.376

TP high 0.394 0.323 0.348 0.356 0.325

CPU-time (min) 29 29.8 29.7 82.3 33.4

HR 10 x 5cv Acc. (%) 43.7± 7.5 32.9± 7.6 41.5± 7.7 44.6± 7.5 44.6± 9.4

Brier score 0.30± 0.05 0.38± 0.06 0.37± 0.07 0.36± 0.07 0.26± 0.04

TP low 0.413 0.32 0.357 0.42 0.43

TP medium 0.336 0.342 0.366 0.379 0.316

TP high 0.45 0.189 0.358 0.364 0.403

CPU-time (min) 10.6 10.7 10.6 24.1 12.4

Methodology validation:

Repeated cross-validation reduces the variance of the estimated perfor-
mance of the classifier (Rodŕıguez et al., 2010). In addition, repeated cross-
validation permits an analysis of the stability of the classifier performance,
reporting replicable as well as cautious performances (Bouckaert and Frank,
2004). As such, it can be observed that single hold-out validation could reach
100% accuracy (Tables 5.4 and 5.6). This conclusion is not realistic and can
undermine the trust of the managers that have to rely on these performance
estimations.

Cross-validation provides safer estimations, reporting a more cautious per-
formance (mean of internal cross-validation accuracies) and stability (stan-
dard deviation). In this study datasets, the use of repeated cross-validation
reported lower accuracies, up to 10% less than the cross-validation (Tables 5.4
and 5.6). However, it reports also lower deviations. A high estimated accuracy
of 70%, with a high variance of 20%, is not useful. It is preferable to obtain a
lower accuracy value with a small variance. Finally, in order to ensure repli-
cability of the results, repeated cross-validation can be used for methodology
comparison, through a statistical test.

The inclusion of all the steps in the validation procedure (i.e. train-test
split before discretization, factor selection and model learning), avoids over-
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fitting (Reunanen, 2003; Statnikov et al., 2005). In addition, it ensures robust-
ness of the reported performances, selected factors and discretization intervals.
Therefore, the reported results would be less sensitive to new data, or to any
changes in the available data.

5.3.2 Selected factors

A way to asses the validity of the method is to check whether the selected
factors make sense, compared with the published literature and under the
view of several fisheries experts.

For the ARI, the factors selected in the multivariate and non-redundant
CFS method (for both, end-user and semi-automated recruitment discretiza-
tions) are the CLI1 global pattern index, upwelling index, turbulence and wind
speed (CLI1, UIBs 4502, TURB 4502 and V 4503). The first component of
the PCA on climate indices (CLI1) reflects variations of the Eastern Atlantic
pattern. The selected factors coincide with previous knowledge showing the
effect of the Eastern Atlantic pattern on Anchovy Recruitment (Borja et al.,
2008), upwelling intensity (Borja et al., 1998; Allain et al., 2001), turbulence
(Allain et al., 2001) and wind-driven offshore transport (Irigoien et al., 2007).

In general, the ARI time-series analysis reveals a periodical component,
which is similar to the CLI1 behaviour (Fig. 5.2b); this is in accordance with
Bode et al. (2006), who found also a coincidence between anchovy landings
and CLI1. Such cycles in both variables explain the high forecast power of
the CLI1. However, the time-series in the dataset used in the present study
is not sufficiently long to confirm such cyclic behaviour. Moreover, it can be
observed in Fig. 5.5, that CLI1 is especially relevant, for low and medium
recruitments.

In the case of hake, the factors of higher correlation with recruitment (that
have been selected in the multivariate and non-redundant CFS) are CLI2,
temperature anomaly and turbulence. In addition, Sunspot number has been
selected, even if it is not amongst the highest ranked variables in the univariate
ranking of factor-recruitment correlation values. The second component of the
PCA on climate indices (CLI2) reflects mainly the variability in the Northern
Atlantic Oscillation (NAO), the first prominent mode of low-frequency vari-
ability over the North Atlantic that modulates the temperature and precipi-
tation regime (Hurrell et al., 2003). Meiners (2007) has demonstrated already
a robust and persistent influence of the NAO, upon the recruit abundance of
hake, off the north western coast of Africa. In this way, a positive relation-
ship between NAO and the extent of the environmentally-optimal window
for recruitment was found, through longer periods of wind-induced upwelling
episodes.

Turbulence episodes over the hake spawning area, i.e. shelf break (Álvarez
et al., 2004), represented by TURB 4502, would have a major role in egg and
larval survival, through their food encounter and capture probability as shown
for other gadoids (e.g Fiksen et al. (1998)).
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Temperature is related not only to NAO, but appears also to be related
to solar activity (Benner, 1999). Within this context, sea-surface temperature
(SST) fluctuations are believed to be driven by, partly, Sunspot cycles. Reid
(1987, 1991) found a remarkable similarity between SST anomalies and the 11-
year running mean of the Sunspot number. Since solar variability is believed
to play a prominent role in recent global temperature change (Lean et al.,
1995), whilst HRI has been found to be related to SST anomalies, Sunspot
number influence on the Hake Recruitment can be understood (through the
effect of SST anomalies on hake).

Amongst different temperature anomaly measurement boxes, Tempera-
ture anomaly N is the only one selected as an HRI factor in the multivariate
and non-redundant CFS final selection. It represents the average tempera-
ture anomaly over the study period, within the area located around 55-60N,
10-15W. This area is known as the Rockall Trough and lies close to some of
the main recruitment areas of hake, over the shelf break of the Celtic Sea
(Ibaibarriaga et al., 2007). The Rockall Trough provides a pathway by which
warm North Atlantic upper water reaches the Norwegian Sea. In this sense,
the effect of the temperature anomaly, on the Rockall Trough area can be
understood as an increased transport of warm water, with eggs and larvae,
to northern areas. There could be a consequent increase in the recruitment
areas and a direct beneficial effect of the warmer temperatures, for the eggs
and larvae spawn at the northern limits of the hake distribution.

It can be observed that neither in the case of Anchovy Recruitment nor
in the case of Hake Recruitment (AR and HR) is the spawning stock biomass
(SSB) selected as a factor. This outcome is easily understandable, when it
can be observed that, in both cases, SSB explains only a small amount of the
recruitment variance: low, medium and high recruitments can be found at the
same SSB levels (Fig. 5.1.1). However, the case of anchovy has to be considered
with caution, as the AR time-series is probably too short for accurate results
and SSB was not available for the longer recruitment index time-series (ARI).
The use of SSB and other environmental variables, as factors, together with
their interactions have been discussed widely in the literature (e.g. Schirripa
and Colbert (2006); Planque and Buffaz (2008)).

The proposed methodology properties are interesting for data analysis.
However, it has some limitations that, like any other statistical tool, must
be taken into consideration by the users. The key factors selected depend on
the user assumptions, on what is or could be relevant for recruitment, as well
as the selected recruitment boundaries (even using the max mean tp method,
the user selects the boundaries from a ranked list).

Therefore, pre-existing knowledge and common sense must guide the anal-
ysis. Despite the analysis being effective in removing spurious correlations and
identifying sets of complementary factors, there are some scenarios where a
spurious correlation can survive this analysis, as for example: i) if the end-user
has restricted the candidate set of variables to highly correlated variables and
has not provided any good complementary variables; ii) variables are highly
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correlated by chance, e.g. recruitment time-series with a negative trend (over-
fishing) and temperature always shows a positive tendency (climate warm-
ing); iii) variables that could explain just a single recruitment interval, not
explained by other variables.

5.4 Conclusions and suggestions for Future Work

The proposed methodology (Fernandes et al., 2010c) permits a robust classifier
learning procedure, ensuring stable results, i.e. results that do not dramati-
cally change with slight changes in the data. This outcome is accomplished by
the use of well-established methods in the machine-learning literature which
properties are known, as well as using strong and honest validation in all of
the steps and over the whole model-building process.

Firstly, the recruitment discretization algorithm helps the expert to iden-
tify more informed and stable boundaries, which is validated using a boot-
strapping re-sampling procedure for over-fitting avoidance. Secondly, the
Multi Interval Discretization algorithm identifies factor boundaries that are
significant for recruitment forecast, avoiding over-fitting by using a minimum
description length criteria. Thirdly, the CFS method for factors selection iden-
tifies a non-redundant and more stable set of factors by means of a ’leaving
one out’ re-sampling process. Fourthly, the model performance estimation is
undertaken by validating not only the model, but also the rest of the data
analysis steps for a honest validation. Validation that consists in repeated
cross-validation in order to report reliable and reproducible estimated perfor-
mances.

All of the above conclusions, together with the fact that the model esti-
mates the uncertainty inherent in the reported forecast, make the final model
robust and reliable even with sparse data. Hence, the proposed methodology
is a valid alternative when traditional methods, based upon stock-recruitment
relationships, cannot be applied. It may be of particular interest in the context
of forecasting as it fits with the concept of projection according to weighted
mixture of past recruitment (years or levels). It can be also useful as an ex-
ploratory analysis when the objective is to understand the factors determining
recruitment, or as a second opinion to other models forecasts.

There are several issues to explore for future work: (i) consideration of
temporal relationships, between factors and the recruitment; (ii) considera-
tion of relationships with other species recruitment, due to spatial and food
competition or predation; and (iii) the use of cost-sensitive classification and
model-building, where all kinds of errors are not equally penalised.

5.5 Posterior work and robustness through time

Robustness of the methodology can be observed comparing selected factors
for anchovy recruitment in a later study (Fernandes et al., 2009b) and selected
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factors in the first study (Fernandes et al., 2010c), which corresponds to the
previous exposed results. Between both studies several modifications to the
database have been performed: the anchovy recruitment time-series has been
recalculated, more factor candidates has been added and some of the factors
have been removed because they are not published anymore.

However, the same factors has been selected (upwelling and CLI1) or they
have been replaced by a similar one when eliminated from the analysis. This
is the case of the eliminated ’ICOADS N-S wind annual mean (45N, 03W)’
that has been replaced by the ’FNMOC N-S wind stress annual mean (45N,
02W)’, which was not considered in the previous work. Similarly, in the case
of hake, TempAnom N (mean annual temperature anomaly for the area: 55-
60N, 15-10W) is selected again. However, there are some discrepancies, mainly
due to the inclusion of factor candidates that where not considered in the
previous work like Ekman transport or wind data. Number of Sunspots is
replaced by sun geomagnetic activity, both related between them and with sea
temperature (Reid, 1987). Other temperature related factors are selected such
as Global Tanom and SST; whose might be influencing copepod abundance
(Hays et al., 2005).

The expose research has been published and leaded to the following re-
search contributions in refereed journals and international forums:

• (2010) Fish recruitment prediction, using robust supervised clas-
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• (2010) Robust machine-learning techniques for recruitment fore-
casting of North East Atlantic fish species. Fernandes J.A., Irigoien
X., Lozano J.A., Inza I. and Pérez A. ICES Journal of Marine Science.
Submited.

• (2010) The potential use of a Gadget model to forecast stock
responses to climate change in combination with Bayesian Net-
works: the case of the Bay of Biscay anchovy. Andonegi E., Fer-
nandes J.A., Quincoces I., Uriarte A., Pérez A., Howell D. and Stefansson
G. ICES Journal of Marine Science. Submited.

• (2009) Robust approaches to supervised machine learning tech-
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Fernandes J.A., Irigoien X., Goikoetxea N., Uriarte A., Lozano J.A. and
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G. International Symposium Climate Change Effects on Fish and Fish-
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J. A. and Irigoien X. Working document to WGANSA, 24-28 June 2010,
Lisbon (Portugal).

• (2010) UNCOVER: Fish stock recovery strategies - Report from
the Bay of Biscay. Andonegi E., Quincoces I., Murua H., Fernandes
J.A., Uriarte A., Sanchez S., Cerviño S., Velasco F., Huret M., Lehuta S.
and Petitgas P.

• (2009) Anchovy Recruitment Mixed Long Series prediction us-
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Multi-dimensional fish recruitment forecasting

6.1 Introduction

In the previous chapter, classification methods have been presented as mono-
species forecasting approaches (Fernandes et al., 2010c). Other studies can
be found in the literature (Dreyfus-León and Chen, 2007; Dreyfus-León and
Schweigert, 2008) where supervised classification has been applied. However,
based in the ecosystem-based approach to fisheries management, it would be
desirable to approach the multiple species fish recruitment forecasting simul-
taneously in a single classification model.

Classification models based upon probability theory, such as Bayesian net-
work classifiers, are especially useful for fisheries management (Fernandes
et al., 2010c). In addition, supervised pre-processing methods can be com-
bined with Bayesian networks in order to improve classifier performance and
interpretability (Fernandes et al., 2010c; Uusitalo, 2007). Data pre-processing
is a key issue in a domain of high uncertainty, such as recruitment forecasting,
where sparse and noisy data are common. Supervised pre-processing methods
can also aid in the process of model interpretation and knowledge extraction
(Fernandes et al., 2010c; Fayyad et al., 1996).

Classical classification methods can be applied to multiple species mod-
elling using a different model for each class variable, or alternatively, using
a single model where the class is a compound of all class variables by per-
forming the Cartesian product. However, in small datasets, such as in the fish
recruitment domain, this is not adequate because there will be many class
values without data, or with too little data to be representative.

In addition, the use of this compound class reduces model readability and
comprehensibility (van der Gaag and de Waal, 2006; de Waal and van der
Gaag, 2007; Rodŕıguez and Lozano, 2008, 2010; Bielza et al., 2010). There-
fore, the Cartesian product of class variables is not commonly used for multiple
class-variables modelling. Consequently, in this work the utilization of sepa-
rate models for each class variable is selected as uni-dimensional approach to
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compare with the proposed multi-dimensional approach. In contrast, multi-
dimensional Bayesian networks (MDBNs) permit the learning of classifiers
that have multiple class variables in a single model. This approach is used in
this study for multiple species modelling (Fernandes et al., 2010b). MDBNs
have been proposed in (van der Gaag and de Waal, 2006); their learning and
inference extended in (de Waal and van der Gaag, 2007) and a multi-objective
learning approach has been developed in (Rodŕıguez and Lozano, 2008, 2010).
In these studies, the multiple class variables approach is referred to as ’multi-
dimensional’. This term is used also in this study, in order to avoid the longer
term ’multiple class variables’.

As with one class variable classification (uni-dimensional), it would be
desirable to be able to combine these MDBNs in a pipeline with specific pre-
processing methods targeting several species forecasting, taking advantage of
the relationships between species. Therefore, pre-processing supervised meth-
ods adaptation (missing data imputation, discretization and feature subset
selection) is needed for the multi-dimensional approach.

Within this context, the objectives of this study are: i) to develop pre-
processing strategies for multi-dimensional (Mul-D) classifiers based upon
uni-dimensional (Uni-D) state-of-the-art methods; ii) to test the proposed
pre-processing methods with synthetic datasets; and iii) to apply the proposed
multi-dimensional approaches within the real domain of fish recruitment fore-
casting.

This choice of the naive Bayes classification model is motivated by two
facts. On the one hand, naive Bayes for one class variable problems (uni-
dimensional) has outperformed other more complex paradigms within the
fish recruitment forecasting domain (Fernandes et al., 2010c), where data is
usually scarce. On the other, as one of the objectives of this study is the design
and evaluation of multi-dimensional pre-processing methods, the use of a fixed
classifier permits to reduce the influence of the model learning process (Hua
et al., 2009).

6.2 Performance measures for multi-dimensional
classification

In order to evaluate the MDBN classifiers learnt, two commonly-used (uni-
dimensional) performance measures have been generalized for the multi-
dimensional approach: accuracy and Brier score.

In the uni-dimensional approach accuracy, or percent of correctly classified
cases, measures model performance without considering the estimated ’a pos-
teriori’ probability of each class value. It considers only the class value with
the highest probability (0-1 loss measure). Accuracy is measured between 0%
and 100%, with the objective of the highest values that indicate the best re-
sults. Brier score, contrary to accuracy, considers the estimated ’a posteriori’
probabilities for each possible outcome (Brier, 1950; van der Gaag et al., 2002;
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Yeung et al., 2005). The lower the value of Brier score (between 0 and 2), the
better the classifier:

1

N

N∑
k=1

r∑
l=1

(pkl − ykl )2

where N is the number of cases, r is the number of class values, and pkl is the
predicted probability for the lth value of the class for the kth case. The ykl
value is 1 if l is the observed (correct) value of the class and 0 otherwise. In
domains such as recruitment forecasting for fisheries management, the addi-
tional information provided by using the Brier score is valuable information
for the decision-making process (Fernandes et al., 2010c).

The accuracy measure adapted to the multi-dimensional approach has
been considered in two variants:

1. Using the average of the accuracy measure calculated for each class vari-
able in isolation, which is named average accuracy.

2. Using the so-called joint accuracy (Rodŕıguez and Lozano, 2010) proposed
in van der Gaag and de Waal (2006), where a case is classified correctly
if all the class variables are labelled correctly simultaneously.

The Brier score can be generalized to be considered in two variants:

1. Average Brier score:

1

Nm

N∑
k=1

m∑
j=1

rj∑
l=1

(pkjl − ykjl)2

where m is the number of class variables, rj is the number of values of the
jth class variable and, similarly to the uni-dimensional Brier score, pkjl is
the estimated probability of the single class variable Cj takes its rj value
given the kth case, i.e. p(Cj = cjl|xk); finally, the ykjl value is 1 if l is the
class observed (correct) value and 0 otherwise.

2. Joint Brier score:

1

N

N∑
k=1

ro∑
g=1

(pkg − ykg )2

where ro = r1×· · ·×rm is the Cartesian product of class variables values,
pkg is the estimated probability of the gth class combination for the kth

case, i.e. p(C = cg|xk); and the ykg value is 1 if the observed (correct)

values of the m class variables correspond with the gth vector of class
combination and 0 otherwise.

Average Brier score and joint Brier score are two generalizations of Brier
score for the multi-dimensional approach, which give different and useful in-
formation. Both consider the estimated probability assigned to the classes.
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However, the average Brier score rewards the observed classes separately;
whereas the joint Brier score rewards only the estimated probability of being
right in all the classes simultaneously. However, neither of the generalizations
rewards the number of observed values (correctly labeled classes) of each class
combination, i.e. the score should be lower (superior behaviour) when higher
probabilities are assigned to class variables combinations that contain two
observed values, than if it contains only one observed value.

Therefore, a new score that shows this behaviour is proposed. This has
been named multi-dimensional calibrated Brier score (MdCBS). It ranges be-
tween 0 and 1, where the lower the value the better the classifier:

MdCBS =
1

N ∗ rs

N∑
k=1

ro∑
g=1

pkg ∗ fkg

where pkg is the estimated probability of the gth class combination and fkg is the

number of non-observed class values (failures) within the current (gth) combi-
nation of class variables being evaluated. This score is used in the evaluation
of multi-dimensional results for the real domain dataset in Section 6.5.

The MdCBS is not used in the experimentation with artificial domains for
the uni-dimensional and multi-dimensional approaches comparison, since it
cannot be computed in the uni-dimensional approach. The Joint Brier score
is also not used due to the exposed limitation.

6.3 Pre-processing methods for multi-dimensional
classification

There are two basic approaches that allow the extension of uni-dimensional
pre-processing methods to the multi-dimensional approach: 1) applying the
uni-dimensional method to each class variable separately, and then combining
the obtained results and 2) using the Cartesian product of all the classes, as
a single class variable, to perform the pre-processing steps.

In addition to these approximations, the formulation of the method itself
can be adapted in order to consider the nature of multiple class variables,
which is one of the main contributions of this work. In the following sections
the proposed multi-dimensional pre-processing methods are introduced.

6.3.1 Missing data imputation proposals for the multi-dimensional
approach

In the case of missing data imputation, the CMean (CM) has been selected to
be adapted for the multi-dimensional approach. Given a missing value in an
instance of a feature, this method fills it with its mean (continuous variables)
considering only the instances that present the same class variable label than
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the instance with the missing value. In this work, all the features considered
are continuous; therefore, the following explanation is limited to this case.

The proposed approaches for addressing the issue of missing data in the
multi-dimensional approach are summarized below.

1. No imputation (NI); since some classification models can be learnt in the
presence of missing data.

2. Merge of single uni-dimensional class imputations; by means of averaging
the resulting imputed value for each class variable separately (CMindiv).

3. Imputation targeting the Cartesian product of classes (CMcart).

6.3.2 Discretization for the multi-dimensional approach

The supervised discretization of features is the transformation of continuous
variables into categorical variables, taking into account the class values. The
Fayyad and Irani’s Multi-Interval Discretization (MID) method (Fayyad and
Irani, 1993) has been selected. This method searches recursively, in each fea-
ture, for a set of cut-off points that reduce the class entropy. This method
firstly searches for the cut-off point of the given feature Xi that minimizes
the conditional entropy H(C|Xi) of the class variable C. In following recur-
sive searches, the method repeats the process on both sides of the previous
selected cut-off point. The process is stopped if the gain in entropy reduction
H(C) − H(C|Xi) is below a Minimum Description Length (MDL) criterion
(Rissanen, 1978):

gain >
1

N
(log2(N − 1) +∆)

∆ = log2(3r − 2)− [rH(S)− r1H(Sleft)− r2H(Sright)]

where r is the number of class values present in the full training data S and r1,
r2 are the number of class values in each resultant data subset after applying
a cut-off point (Sleft, Sright).

This work proposes to adapt the uni-dimensional MID to the multi-
dimensional scenario as listed below.

1. The merging of single uni-dimensional class discretizations (MIDindiv).
2. Discretization targeting a single class variable formed by the Cartesian

product of all class variables (MIDcart).
3. A discretization policy which considers the mean of class entropies in

the MDL criterion (MIDmean), where the mean of class entropies and
the mean of conditioned class entropies are used to evaluate the entropy
reduction before and after adding a cut-off point (m denotes number of
class variables):

∆ = log2(3rs − 2)− 1

m
[rs

m∑
j=1

H(S)− r1
s

m∑
j=1

H(Sleft)− r2
s

m∑
j=1

H(Sright)]
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where rs the sum of number of class values in all the class variables in the
dataset or in the subdataset (r1

s , r2
s).

In addition, the gain in the MDL criterion has to be m times higher to
accept the cut-off point:

gain =
1

m

 m∑
j=1

H(Cj)−
m∑
j=1

H(Cj |Xi)


4. A discretization policy which considers the sum of class entropies in the

MDL criterion (MIDsum):

∆ = log2(3rs − 2)− [rs

m∑
j=1

H(S)− r1
s

m∑
j=1

H(Sleft)− r2
s

m∑
j=1

H(Sright)]

where the gain in the MDL criterion has to be m times higher to accept
the cut-off point as in MIDmean.

6.3.3 Feature subset selection for the multi-dimensional approach

Feature subset selection (FSS) Saeys et al. (2007); Guyon et al. (2007) is
the process of reducing the number of features before learning a classifier.
The popular multivariate Correlation-based Feature subset Selection (CFS)
method Hall (2000) has been selected in this work as a prior step to classifier
learning. CFS is based upon an interesting formulation, the assumption that
a good subset of forecasting features is one that is highly correlated with the
class and, at the same time, the features have low correlation between them.
CFS gives a merit to each feature subset (Xi1 , ..., Xiz ), where the correlation
of each feature (in the subset) with the class is viewed positively (numera-
tor), whilst correlation between pairs of features (in the subset) is penalised
(denominator):

Merit(Xi1 , ..., Xiz ) =
z · tCX√

z + z(z − 1)tXX

where {Xi1 , ..., Xiz} ⊆ {X1, ..., Xn} being z the number of features in the
subset, tCX the average class-feature correlation and tXX the average feature-
feature correlation of a feature subset. Correlation between two variables is
calculated by means of the previous exposed symmetrical uncertainty score
(Hall, 1999).

This work proposes to adapt the uni-dimensional CFS to the multi-
dimensional scenario as summarized below.

1. To select the union of all variable subsets that have been selected by the
uni-dimensional CFS for each class variable in isolation (CFSindiv).
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2. The selection of features targeting the Cartesian product of the m class
variables (CFScart).

3. The merit of the CFS formulation is modified by considering in the numer-
ator the mean of correlations between each class variable and each feature
of the subset (CFSmean):

Merit(Xi1 , ..., Xiz ) =
z
m

∑m
j=1 tCjX√

z + z(z − 1)tXX

4. The merit of the CFS formulation is modified by considering in the numer-
ator the sum of correlations between each class variable and each feature
of the subset (CFSsum):

Merit(Xi1 , ..., Xiz ) =
z
∑m

j=1 tCjX√
z + z(z − 1)tXX

6.4 Experiments with synthetic data

The purpose of the experiments described in this section is to empirically
test the behaviour of the different proposed multi-dimensional pre-processing
strategies by themselves, and their joint behaviour in a pipeline. The experi-
mentation is performed for a broad range of datasets with different intrinsic
data characteristics, in order to know which strategies perform the best and
under which conditions.

This is accomplished by means of statistical tests and a process of meta-
learning (Hall, 1999; Inza et al., 1999; Witten and Frank, 2005). In order to
proceed with this, a schema to generate synthetic data for multi-dimensional
domains and procedures for methods comparison are described.

6.4.1 Synthetic data generation schema

Most experiments with continuous synthetic data are restricted to certain
distribution assumptions (Hall, 1999). However, real-world problems do not
necessarily follow a parametric distribution. Besides, the underlying distri-
bution is usually unknown in real domains. There is no way of generating
all possible kinds of distributions. However, kernel-based Bayesian networks
(KBNs) can represent a broad range of distributions due to the flexibility
of the kernel-based density functions (Pérez et al., 2009). The generation of
synthetic domains, based upon KBNs, ensures a wide range of density shapes
and different intrinsic data characteristics. This permits to reach conclusions
about the proposed methods that can be considered general enough (Pérez
et al., 2009).

In this framework, each domain generated is specified by the ’a priori’
distribution of the discrete class variables p(C1), · · · , p(Cm) and the density
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function ρ (Xi|Pai) of each (continuous) feature Xi, given its parents Pai.
These densities are modelled using Gaussian kernel-based functions (Wand
and Jones, 1995; Silverman, 1986). The kernel-based functions used depend
upon the number of kernels q, and on the coordinates of each of those kernels
{e1, · · · , eq}. They also depend on a unique smooth parameter h (in this work

h = q−
1
6 , based upon Pérez et al. (2006)) that is used to define the covariance

matrix H = h2 ∗ I, where I is the n × n identity matrix. The kernel-based
density (Pérez et al., 2009) in its most general form can be written as:

f(x) =
1

|q|

|q|∑
k=1

KH(x− ek)

where KH is a Gaussian kernel, defined as:

KH(x) = (2π)−
n
2 |H|− 1

2 exp(−1

2
xTH−1x)

Based upon the procedure presented in Pérez et al. (2006), the method-
ology used for the generation of synthetic datasets consists of the following
steps:

1. Generate a set of KBNs input parameter values at random (Fig. 6.1).
2. Build a classifier based on a KBN, with these parameter values (Fig. 6.1).
3. Sample the generated KBN to form a dataset with a randomly-selected

number of cases in {25, 50, 100}.
4. Missing values are generated in the features (class variables are excluded).

The degree of missing values generation is a randomly-selected percentage
{0%, 10%, 25%}.

The number of generated datasets is 1000.
The experimental set-up has been restricted to the range of parameters

(Fig. 6.1) that are common in fish recruitment datasets. As it has been pointed
out before, a meta-learning process is carried out to know under which con-
ditions each pipeline and method performs the best. In order to accomplish
that, for each dataset, a set of intrinsic data characteristics (e.g. missing data
level or class entropy) are measured. Several of them are based upon Infor-
mation Theory (see Appendix). This process allows to select the methods to
be applied to real-world datasets that share the same intrinsic data charac-
teristics.

6.4.2 Procedures for methods comparison

In order to understand which multi-dimensional pre-processing methods are
superior and under which intrinsic data characteristics, several comparison
scenarios are considered (Table 6.1). First, full multi-dimensional pipelines
of the proposed methods are compared between each other in each pre-
processing step (COMPmul−pipe). Secondly, the uni-dimensional and the
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Inputs
The number of class variables m in {2, 3, 4}, number of class values rj in {2, 3, 4}, number of
features n in {5, 10, ..., 25}, maximum number of feature parents for each feature in {1, 2},
probability of an arc between a class and a feature p(Cj → Xi), probability of an arc between
class variable pairs p(Cj → Cj+1).

Outputs
A probabilistic model M based on KBN.

Algorithm
Generate randomly a graph G of the KBN structure taking into account the input parameters.
For each feature Xi ∈ {X1, ..., Xn}:

For each configuration of the discrete parents, pdi, of Xi:
A number of kernels qpdi

is randomly selected from {1, 2, 4, ..., 512, 1024}.
A set of kernels qpdi

is built, sampling qpdi
points (xi,pci) from a uniform distribution

in [1, 10].
End for

End for

Fig. 6.1. The pseudocode for the generation of a classifier, based upon a KBN. pdi

denotes the discrete parents of Xi and pci is used to denote its continuous parents,
and where pai = pdi ∪ pci.

multi-dimensional approaches are compared (COMPuni−mul), in particular
the best multi-dimensional pipelines are compared with the uni-dimensional
pipeline. Finally, the proposed pre-processing methods are compared with
each other (COMPmul−pre): missing data imputation (COMPmul−mis), dis-
cretization (COMPmul−dis) and feature subset selection (COMPmul−FSS).

Table 6.1. General overview of methods comparison schema. In first column the
two main levels of comparison (COMPove and COMPspe), in the second the three
scenarios (COMPmul−pipe, COMPuni−mul and COMPmul−pre) and in the third
column the three measures used for these comparisons (COMP avAcc, COMP jAcc

and COMP avBS).

Comparison level Comparison scenarios Measures of performance

COMPove: Identification
of

pipelines,
approaches (Uni-D, Mul-D)
and pre-processing methods,

that show an
overall superior behaviour

COMPovemul−pipe:
Multi-dimensional pipelines

avAcc: average accuracy
jAcc: joint accuracy

avBS : average Brier score

COMPoveuni−mul:
Uni-D vs Mul-D approaches

avAcc, jAcc
and

avBS
(superindex)

COMPovemul−pre:
Mul-D pre-processing
methods (subindex):

mul−mis, mul−dis and mul−FSS

avAcc, jAcc
and

avBS
(superindex)

COMPspe: Identification of
intrinsic data characteristics
where each pipeline, method
or approach (Uni-D, Mul-D)

have specific superior behaviour

COMPspemul−pipe
avAcc, jAcc

and
avBS

(superindex)

COMPspeuni−mul
avAcc, jAcc

and
avBS

(superindex)

COMPspemul−pre (subindex):

mul−mis, mul−dis and mul−FSS avAcc, jAcc
and

avBS
(superindex)

The comparison is performed at two different levels of detail (Table 6.1,
first column). On the one hand, it is established which pipelines, approaches
and methods show a superior overall behaviour (COMPove). On the other,
a meta-learning process is performed to determine under which intrinsic data
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characteristics (Fig. 6.1 and Appendix) each method shows a specific superior
behaviour (COMPspe). These two levels of comparison are performed for the
three scenarios previously presented.

In addition, the comparison is performed for three multi-dimensional per-
formance measures, which are denoted by the following superindex (Table 6.1,
third column):

• avAcc; for comparison in terms of average accuracy ;
• jAcc; for comparison in terms of joint accuracy ;
• avBS ; for comparison in terms of average Brier score.

The overall comparison at the first level (COMPove) is performed by
means of the revised Friedman plus Shaffer’s static post-hoc test, proposed
by Garćıa and Herrera (2008) for comparison of multiple methods over mul-
tiple datasets. These statistical test results can be represented by means of
critical difference diagrams Dem̌sar (2006), which show the average ranks of
the performance of each method across all the domains in a numbered line.
If there is not a statistically significant difference between two methods, they
are connected in the diagram by a straight line. As an example, in Figure
6.5, NI and CMindiv methods are connected since they show no significant
difference for average accuracy ; whereas these methods are unconnected for
average Brier score, showing a statistically significant difference.

The specific data characteristics comparison at the second level (COMPspe)
is performed by studying the intrinsic data characteristics of the sampled
datasets as forecasting factors (Fig. 6.1 and Appendix) in a meta-learning
process (Witten and Frank, 2005; Inza et al., 1999). For this purpose, a meta-
dataset (Table 6.2) is compiled with the intrinsic data characteristics of all
the simulated synthetic datasets. For each of the previously mentioned com-
parison scenarios a target node is added to the meta-dataset with the result of
these comparisons. For example, in the COMPspeavAcc

mul−pipe scenario, a target

variable is added such that for the ith dataset it takes the value of the best
pipeline (Table 6.2). As a way of studying this dataset, the ’Markov blanket’1

of the target node of this meta-dataset is of interest in order to determine
under which characteristics a method is superior to others. Each ’Markov
blanket’ is learned using the method proposed in Peña et al. (2007). Instead
of representing each ’Markov blanket’ of each target variable in a different
figure, all the ’Markov blanket’ are jointly represented in a single structure
for each scenario comparison (Fig. 6.3, 6.4 and 6.6) as a way of summarising
the results.

1 In a Bayesian network, the ’Markov blanket’ of a node includes its parents, chil-
dren and the other parents of all of its children ?. Therefore, the ’Markov blanket’
of a variable (X) is the smallest set (Mb(X)) containing all variables carrying in-
formation about X that cannot be obtained from any other variable Peña et al.
(2007); Pellet and Elisseeff (2008), meaning that the variables of the ’Markov
blanket’ is the only knowledge base needed to forecast the behaviour of the tar-
get variable.
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The ’Markov blanket’ is used to perform inference and extract useful in-
formation; i.e., the value of one or several variables (both; characteristics or
target nodes) can be fixed and the effects on the rest observed. For example,
under which intrinsic data characteristics a method (e.g. MIDmean) shows a
superior behaviour can be determined; or given a value of an intrinsic data
characteristic (e.g. evidence of 10% missing values), the behaviour of the differ-
ent methods observed. Results that accomplished certain probability thresh-
olds have been considered useful knowledge. In the case of target variables
(for each performance measure) with three or four values (for each method
that shows a superior behaviour), evidence needs to reach at least 0.5 proba-
bility. Whereas in the case of pipelines evaluation, the target nodes (one for
each performance measure) have 48 values (one for each possible pipeline),
and only results with a probability higher than 0.1 have been used.

Table 6.2. Example of the meta-dataset for meta-learning of characteristics re-
lated with the superiority of a specific pipeline/approach/method over the rest. The
dataset is composed of intrinsic data characteristics of the sampled datasets and a
set of target nodes, whose values contains the pipeline/approach/method that has
a higher performance for each dataset.

Intrinsic data characteristics Target nodes of the meta-analysis (COMPspe)

Set
#

cases
Miss.
level

· · · Class
entr.

Class
inter.

Feat.
relev.

· · · COMPavAcc
mul−pipe · · · COMPavBS

pre−FSS · · · COMPavBS
uni−mul

1 50 10 0.61 0.21 0.57 CMcart-MIDcart-CFSsum CFSsum Uni-D

2 100 10 0.57 0.06 0.45 NI-MIDsum-CFSindiv CFSindiv Uni-D

3 50 0 0.64 0.15 0.65 CMcart-MIDmean-CFScart CFScart Mul-D

4 25 25 0.43 0.32 0.32 CMindiv-MIDsum-CFScart CFScart Uni-D

5 100 0 0.69 0.09 0.73 CMcart-MIDmean-CFSmean CFSmean Mul-D

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1000 50 25 0.54 0.17 0.24 CMcart-MIDsum-CFSsum CFSsum Uni-D

6.4.3 Software

All of the above steps have been implemented using several established API
machine-learning software tools: Weka (Witten and Frank, 2005) has been
adapted to implement the MDnB classifier and the multi-dimensional pre-
processing methods, as well as to calculate the performance measures con-
sidering multiple class variables; and the Elvira software platform (Consor-
tium, 2002), using Jama matrix library, which was adapted in a previous
work to generate synthetic data based on flexible Bayesian network classi-
fiers in Pérez et al. (2009), has been readapted to generate synthetic data
with multiple class variables. Reproducibility is ensured by a Java program-
ming language implementation of all the methodology using these APIs.
This software is available from the ISG group and Azti-Tecnalia webpages
(www.sc.ehu.es/ccwbayes/members/jafernandes or www.azti.es).
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6.4.4 Results on synthetic data

In the following sections, the results on synthetic data are presented for
the three comparison scenarios (Table 6.1): pipelines of multi-dimensional
methods (COMPmul−pipe), uni-dimensional vs multi-dimensional approaches
(COMPuni−mul) and the multi-dimensional pre-processing methods in each
pipeline step (COMPmul−pre). The comparison is firstly performed observ-
ing which methods show an overall superior behaviour (COMPove) and sec-
ondly identifying under which conditions each method outperforms the others
(COMPspe).

6.4.4.1 Comparison of multi-dimensional pipelines based on
proposed methods

In this section, the results of multi-dimensional pipelines of methods are anal-
ysed (COMPmul−pipe). A pipeline is considered to be the combination of a
missing data imputation method, a discretization technique, a feature sub-
set selection strategy and a MDnB classifier. Although the large number of
method combinations make it difficult to extract conclusions, some general
trends can be observed.

Figure 6.2 shows the results of overall behaviour comparison for pipelines
of multi-dimensional methods (COMPovemul−pipe). The figure represents
the critical diagram obtained with the 1000 simulated synthetic datasets.
Pipelines that contain the CMCart imputation and MIDmean or MIDsum dis-
cretization methods tend to have a superior behaviour than the rest.

In the case of specific data characteristics comparison (COMPspemul−pipe;
Fig. 6.3), such as high levels of missing values, it can be observed that pipelines
with MIDmean show a superior behaviour than the rest of Mul-D discretization
methods in terms of both average accuracy and joint accuracy. In datasets
where there are no missing values, the use of MIDmean method shows a su-
perior behaviour. The no imputation, in combination with MIDcart and MID-
mean, is another pipeline which shows a solid behaviour. Finally, in terms
of average Brier score (COMPspeavBS

mul−pipe), the pipelines with better be-
haviour are those that include CMindiv-MIDmean with CFSsum or CFSindiv
feature selection methods in the case of high levels of missing data; whereas
with moderate levels of missing data, the pipelines that contain CMcart are
the ones that show superiority over the others.

6.4.4.2 Comparison of the uni-dimensional vs the
multi-dimensional approaches

In the case of overall comparison (COMPoveuni−mul), the uni-dimensional
(Uni-D) pipeline statistically outperforms the multi-dimensional (Mul-D) ap-
proach (Fig. 6.2) in terms of accuracy measures (average and joint). However,
the difference in ranks between both approaches is lower in joint accuracy
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Fig. 6.2. Critical difference diagrams, comparing pipelines of multi-dimensional
methods and the uni-dimensional pipeline in synthetic datasets for the three perfor-
mance measures. The methods with a general superior behaviour are shown on the
right hand side of each diagram. Pipelines that do not show a statistical significant
difference are connected by a horizontal line.

than in average accuracy ; this means that Mul-D pipelines have a superior
behaviour in terms of joint accuracy for many datasets.

In terms of average Brier score (COMPoveavBS
uni−mul), several of the Mul-D

pipelines outperform the Uni-D approach, as can be observed in the right side
of the third critical difference diagram, in Figure 6.2. In particular, the Mul-
D pipelines that contain the CMcart missing data imputation strategy show
a superior behaviour. The fact that the multi-dimensional approach shows a
superior behaviour in average Brier score is of importance in domains such
as recruitment forecast (Fernandes et al., 2010c), where the value of the ’a
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Fig. 6.3. Results of the meta-learning process represented in a single structure for
multi-dimensional pipelines (’COMPspemul−pipe’). A single characteristic (level of
missing data) forms the ’Markov Blanket’ of the three target nodes, determining the
superior behaviour of some pipelines in comparison with the rest in terms of average
accuracy, joint accuracy and average Brier score.

posteriori’ probabilities for each class value is crucial for informed management
decision-making.

Missing data level is the specific characteristic (COMPspeuni−mul) that
stands out as the most influential for the superiority of an approach when
average accuracy is used as score. This is also a key characteristic in terms
of joint accuracy, which is influenced also by the class entropy and the total
number of class values.

In terms of average Brier score, the most influential characteristics are the
class entropy and the total number of class values. These specific conditions,
where the Mul-D approach is superior to the Uni-D scheme, can be analysed
using the learned ’Markov blanket’ set (Fig. 6.4), fixing the Mul-D value of
the target nodes and performing inference:

• In terms of average accuracy (COMPspeavAcc
uni−mul); when the total number

of class values is low.
• In terms of joint accuracy (COMPspejAcc

uni−mul); when the total number of
class values as well as the class entropy are low and the missing data level
is high.

• In terms of average Brier score (COMPspeavBS
uni−mul); when the total num-

ber of class values is high and with low levels of class entropy.

6.4.4.3 Comparison of multi-dimensional missing imputation
methods

In terms of missing data imputation strategies, observing critical difference
diagram results (Fig. 6.5), CMcart is, in general, superior (COMPovemul−mis)
in all of the multi-dimensional performance measures.
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Fig. 6.4. Results of the meta-learning process, summarised in a single structure, for
the comparison of specific conditions (’COMPspeuni−mul’). It shows whether the
uni-dimensional or the multi-dimensional pipeline is superior, for the three multi-
dimensional performance measures. As an example, ’COMPspeavBS

uni−mul’ node values
are the approaches that show a superior behaviour (Uni-D or Mul-D) in average
Brier Score for each generated synthetic dataset; its ’Markov blanket’ is composed
of two nodes. The target nodes of the two learned ’Markov blanket’ are emphasised.

1 2 3

CMindiv CMcart

2.07   1.93 1.78 p<0.1

p<0.05

Average Brier Score

NI

1 2 3

NI  CMindiv CMcart

2.21  2.19 1.59 p<0.1

p<0.05

Average Accuracy

1 2 3

NI  CMindiv CMcart

2.11  2.09 1.56 p<0.1

p<0.05

Joint Accuracy

Fig. 6.5. Critical difference diagrams comparing multi-dimensional missing data
imputation methods in synthetic datasets for three performance measures. Methods
that do not show a significant difference are connected in the diagram.

However, there are specific conditions (Fig. 6.6) where each method shows
a superior behaviour (COMPspemul−mis). This can be observed fixing each
target node value and performing inference over the characteristics in its
’Markov blanket’.

In terms of average accuracy (COMPspeavAcc
mul−mis) and joint accuracy

(COMPspejAcc
mul−mis):

• CMcart, with higher levels of missing values.
• CMindiv, with lower levels of missing values.

In terms of average Brier score (COMPspeavBS
mul−mis):
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Fig. 6.6. Meta-learning process results, represented in a single structure, show
that only four characteristics (plain nodes) are the most influential in terms of
average accuracy, joint accuracy and average Brier score, for all multi-dimensional
pre-processing steps (emphasized nodes). As an example, ’FSS average BS’ node
contains the feature subset selection method that shows a superior behaviour in
average Brier Score, for each generated synthetic dataset; its ’Markov blanket’ is
composed of a single node (Number of Cases).

• CMcart, with lower levels of missing values.
• CMindiv, with higher levels of missing values.

6.4.4.4 Comparison of the proposed multi-dimensional
discretization methods

Based upon critical difference diagram results (Fig. 6.7), overall behaviour of
the discretization methods can be observed (COMPovemul−dis). The MID-
mean method shows the best behaviour for average accuracy and joint accu-
racy, followed by MIDsum, MIDcart and MIDindiv. In the case of average Brier
score, MIDmean shows the worst behaviour.

However, there are specific conditions (Fig. 6.6) where each method shows
a superior behaviour (COMPspemul−dis).

In terms of accuracy measures (COMPspeavAcc
mul−dis and COMPspejAcc

mul−dis):
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123

MIDindiv
MIDcart

2.35 1.81 p<0.1

p<0.05

Average Accuracy

MIDsum MIDmean

2.713.02

Joint Accuracy

123
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MIDcart

2.38 1.77 p<0.1

p<0.05

MIDsum MIDmean

2.622.95

Average Brier Score

123

MIDindiv
MIDcart

2.31 2.14 p<0.1

p<0.05MIDsum
MIDmean

2.572.92

Fig. 6.7. Critical difference diagrams, comparing multi-dimensional discretization
methods in synthetic datasets for three performance measures. All the methods show
a statistically significant difference each other; therefore, they are not connected in
the diagram.

• MIDsum and MIDcart, with a low number of cases.
• MIDindiv shows a superior behaviour in datasets with few cases.

In terms of average Brier score (COMPspeavBS
mul−dis):

• MIDmean and MIDcart, with high number of class variables and with few
cases.

• MIDsum, with few class variables and high number of cases.

6.4.4.5 Comparison of proposed multi-dimensional feature
selection methods

The CFScart method shows the best overall behaviour (COMPovemul−FSS)
in terms of joint accuracy based on the critical difference diagram (Fig. 6.8).
However, it shows a tie with CFSsum in average accuracy terms. CFSmean
is the best contender in terms of average Brier score. In terms of specific
behaviour, each method shows superiority to the rest (COMPspemul−FSS)
under different intrinsic data characteristics (Fig. 6.6):

• CFSmean, with low levels of missing values, few features and with a high
number of cases.

• CFSsum, with high levels of missing values and a moderate amount of
cases.

• CFSindiv, with few cases in terms of Brier score and moderate levels of
missing values in terms of joint accuracy.

• CFScart, with high levels of missing values, a high number of features and
a moderate amount of cases.

Average Accuracy

123

CFSindiv

CFScart

2.18 2.14 p<0.1

p<0.05
CFSsumCFSmean

2.32

2.82

Joint Accuracy

123

CFSindiv
CFScart

2.19 2.04 p<0.1

p<0.05
CFSsum

CFSmean

2.252.8

Average Brier Score

123

CFSindiv
CFScart

2.41 1.89 p<0.1

p<0.05
CFSsum

CFSmean

2.42
2.58

Fig. 6.8. Critical difference diagrams, comparing multi-dimensional feature subset
selection methods in synthetic datasets. Methods that do not show a significant
difference are connected by a horizontal line.
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6.5 Application to fish recruitment forecasting

In this section, the application of the multi-dimensional approach to a real
domain of multi-dimensional nature is presented. This domain is fish recruit-
ment forecast (Fernandes et al., 2010c), where recruitment is the amount of
fish that enters the fishery each year. Recruitment is considered more impor-
tant than the total stock because it represents the future of the fish population,
conditioning the feasibility of species exploitation (Fernandes et al., 2010c).

This is a domain of high uncertainty and with considerable biological, so-
cial, economic and political impact. In this study, a subset of the proposed
methods is tested with three species that are of commercial interest in the
Bay of Biscay; anchovy, sardine and hake. The nature of this domain, with
interactions due to the sharing ecosystem, demands a multi-dimensional ap-
proach.

In order to apply the multi-dimensional approach to species of the Bay
of Biscay, three scenarios are considered since the relationships between the
species have not been established by experts. In a first multi-dimensional
study, two class variables are considered; anchovy recruitment index (ARI)
and hake recruitment (HR) (Table 6.3). Anchovy is a short-life fish, likely to
be a prey of hake, which is a long-life species. In a second multi-dimensional
study, another pair of class variables are considered: ARI and SR (sardine
recruitment); sardine is suspected to be a competitor of anchovy. Finally,
three class variables are considered: ARI, HR and SR, where hake might be a
predator of anchovy and sardine, whereas sardine might be a predator of the
two other species eggs.

Table 6.3. Intrinsic data characteristics of fish recruitment datasets, for the three
species recruitment: anchovy (ARI), sardine (SR) and hake (HR).

Characteristic ARI-HR ARI-SR ARI-SR-HR

# cases 41 41 41

Missing level (%) 0.2 0.2 0.2

# class variables 2 2 3

Total # class values 9 9 27

# features 192 192 192

Class entropy 0.67 0.65 0.66

Classes interaction 0.06 0.07 0.14

Anchovy and hake are species of high commercial interest in the Bay of
Biscay that share the ecosystem with sardine and, consequently, they share the
same factor candidates. Fish recruitment is originally a continuous variable,
which has been discretized using the method proposed in Fernandes et al.
(2010c) to work with levels of recruitment; this is considered adequate for
management decision-making.
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The previous experiments with synthetic datasets are used to select the
multi-dimensional methods to be applied in this real domain scenario (Ali
and Smith, 2006) of intrinsic multi-dimensional nature. In terms of overall
behaviour (Fig. 6.2), the pipeline CMcart-MIDsum-CFScart shows a superior
behavior in average accuracy and joint accuracy, whereas in terms of average
Brier score, the pipeline with superior behaviour is CMcart-MIDmean-CFSsum.

In general, pipelines that contain any of CMcart and MIDmean or MID-
sum methods show an overall superior behaviour. In addition, considering the
domain intrinsic data characteristics (Table 6.3), such as few cases or low
class entropy, other methods can have a superior behaviour: CMindiv miss-
ing data imputation and MIDindivdiscretization. Therefore, in addition to the
mentioned CMcart-MIDsum-CFScart and CMcart-MIDmean-CFSsum pipelines,
the following pipelines have been selected to be used in the real domain based
upon the plethora of results:

• CMcart-MIDindiv-CFScart
• CMcart-MIDmean-CFSmean
• CMcart-MIDmean-CFSindiv
• CMcart-MIDmean-CFScart
• CMindiv-MIDindiv-CFSmean
• CMindiv-MIDindiv-CFSsum
• CMindiv-MIDindiv-CFSindiv

6.5.1 Anchovy and hake multi-dimensional modelling

In Table 6.4, the results of the application of the uni-dimensional pipeline
(Uni-D) and the set of selected multi-dimensional pipelines (Mul-D) are
shown. It can be observed that the CMcart-MIDmean-CFSsum combination
is the one with the highest joint accuracy, showing a significant difference
with the Uni-D approach (p<0.05; corrected paired t-test, Nadeau and Bengio
(2003)). It also shows a higher average accuracy, in comparison to the Uni-D
pipeline. In addition, this combination shows the highest accuracy for anchovy
(non-significant) and the lowest Brier score for hake (p<0.05) in comparison
with the Uni-D approach. However, a high number of features are selected, as
well as a high number of intervals for each feature.

An interesting point is that some of the Mul-D methods superior perfor-
mance could be due to selecting a higher number of features and intervals
(Kohavi and Sommerfield, 1995; Kononenko, 1995). However, some of the
combinations show a general tendency to overcome the Uni-D approach with
the same or lower number of features and intervals (Table 6.4). Moreover,
the number of features, or intervals, could be limited introducing a Minimum
Description Length criteria; however, this could be a questionable solution
(Domingos, 1999), in such a domain.

In addition to performance improvement, model comprehension and trans-
parency is a key issue for domain experts in order to be able to extract knowl-
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edge, or to obtain a descriptive model of the relationship between the environ-
ment and the recruitment of the species of interest. As such, an intermediate
approach could be to consult the full table of results with experts, so they can
decide a proper balance depending upon the research objective (Fernandes
et al., 2009c, 2010c).

As an example, the combination CMcart-MIDmean-CFSsum (Table 6.4)
shows a large number of selected features. However, the combination CMcart-
MIDmean-CFSmean shows a similar performance, with only 22 features (in-
stead of 86) and less intervals per feature. In addition, the pipeline CMcart-
MIDmean-CFSindiv shows superior behaviour in terms of the multi-dimensional
calibrated Brier score with only 15 features.

6.5.2 Anchovy and sardine multi-dimensional modelling

In Table 6.5, the results for the uni-dimensional pipeline (Uni-D) and mul-
tidimensional (Mul-D) pipelines, targeting anchovy and sardine species, can
be observed. The pipeline CMcart-MIDmean-CFSsum shows the highest joint
accuracy and average accuracy performance values, as well as a lower av-
erage Brier score than the Uni-D pipeline with significant statistical differ-
ence (p<0.05). This pipeline selects a high number of features and inter-
vals. However, there are several pipelines that outperform the uni-dimensional
approach, with a lower number of selected features (e.g. CMcart-MIDmean-
CFSmean).

The pipeline with superior behaviour, in terms of the multi-dimensional
calibrated Brier score, is the pipeline CMcart-MIDindiv-CFScart; this pipeline
also shows a superior behaviour in terms of joint accuracy.

The CMindiv-MIDindiv-CFSindiv combination of methods shows the highest
uni-dimensional accuracy (non-significant) and Brier score (p<0.05), with
respect to the Uni-D pipeline for anchovy; whereas, in the case of sardine, the
improvement is non-significant.

6.5.3 Anchovy, sardine and hake multi-dimensional modelling

The three species uni-dimensional (Uni-D) and multi-dimensional pipelines
results are listed in Table 6.6. The CMcart-MIDmean-CFScart pipeline is the
one with the highest joint accuracy (p<0.05), as well as better uni-dimensional
accuracy and Brier score for anchovy (non-significant) in comparison with the
Uni-D pipeline. This Mul-D pipeline also improves the results of the Uni-D
approach for hake and sardine, in both accuracy (non-significant) and Brier
score (p<0.05).

The combination CMcart-MIDmean-CFSsum shows the highest average ac-
curacy (non-significant) and accuracy for hake (p<0.05). Both pipelines re-
turn a high number of selected features. However, the combinations CMcart-
MIDindiv-CFScart and CMcart-MIDmean-CFSmean show the lowest average
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Table 6.4. Pipelines performance results are shown for anchovy and hake recruit-
ment study. In the first row, uni-dimensional approach pipeline results are shown,
followed by multi-dimensional pipelines in the rest of rows. The uni-dimensional
Brier score (BS) has been divided by 2 in order to be in the more comprehensible
range (0-1). In the last three columns, the multi-dimensional calibrated Brier score
(MdCBS), the number of features (Fea.) and average discretization intervals (Int.)
selected are shown. The best results are emphasised in bold.
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Table 6.5. Pipelines performance results are shown for anchovy and sardine recruit-
ment study. In the first row, uni-dimensional approach pipeline results are shown,
followed by multi-dimensional pipelines in the rest of rows. The uni-dimensional
Brier score (BS) has been divided by 2 to be in the more comprehensible range (0-
1). In the last three columns, the multi-dimensional calibrated Brier score (MdCBS),
the number of features (Fea.) and average discretization intervals (Int.) selected are
shown. The best results are emphasized in bold.
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Brier score, with a low number of selected features. The pipeline with a su-
perior behaviour, in terms of the multi-dimensional calibrated Brier score, is
the pipeline CMcart-MIDmean-CFSindiv (similar to the ARI-HR dataset); this
pipeline also shows a superior behaviour in terms of joint accuracy.

In general, the multi-dimensional approach improves the uni-dimensional
accuracy of each species; however, the differences are often not statistically
significant. A key issue in this domain is that the multi-dimensional approach
improves in terms of the uni-dimensional Brier score of each species with
differences that are statistically significant. In addition, the most important
result is that there are notable improvements of the joint accuracy, when the
multi-dimensional approach is used, i.e. the chance of being correct, at the
same time, in all of the species is higher than using a uni-dimensional classifier
for each species. In fact, the increase of joint accuracy is higher than average
accuracy, or the uni-dimensional accuracy of each species. This simultaneous
improvement in all species is crucial in terms of the ecosystem-based fisheries
management approach.

6.6 Conclusions and recomendations for future work

To the best of authors’ knowledge, this is the first study which proposes a
set of supervised filter pre-processing methods for multi-dimensional classi-
fication. This study is complemented by the identification of the conditions
where the multi-dimensional approach can be superior to the uni-dimensional
approach. Similarly, the conditions where a pre-processing method is superior
to others are identified. The most influential characteristics for the success of
specific multi-dimensional pre-processing methods are the number of cases,
the level of missing values and the class entropy. These conclusions suggest
that the pre-processing methods can be improved by taking into account these
characteristics in future works.

On the other hand, the principal objective of proposing a set of multi-
dimensional pre-processing approaches, appropriate for fisheries management,
is achieved. The application to a real oceanographic problem, which shows a
clear multi-dimensional nature, reveals benefits in terms of improving fore-
casting of fish recruitment for management purposes. Firstly, improvement
in the forecasting of each species is achieved (individual and average species
accuracy). Secondly, a significant improvement in the chance of simultaneous
correct forecast for all of the species (joint accuracy), which is a key issue for
the ecosystems management approach, can be highlighted. Finally, significant
improvement in the ’a posteriori’ estimated class probabilities, which leads
to better informed decisions, can be shown (single, average and joint Brier
score). This is a key objective in knowledge-based fisheries management.

Finally, a line of future work will consist of learning descriptive, instead of
forecasting, models for knowledge extraction purposes, i.e. building classifiers
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Table 6.6. Comparison of multi-dimensional vs uni-dimensional approach for an-
chovy, sardine and hake study. Best results are emphasized in bold.
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where the structure is not fixed. These models can help in the process of
understanding environment and climate change effects.

The expose research is under peer review in a refereed journal:
(2010) Supervised pre-processing approaches in multiple class-

variables classification for fish recruitment forecasting. Fernandes
J.A., Lozano J.A., Inza I., Irigoien X., Rodŕıguez J.D. and Pérez A. Applied
Soft Computing. Submitted.
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Conclusions

The topic of this dissertation is the application of supervised classification
methods in fisheries management related activities. Fisheries management is
a multi-disciplinary area, where biological and the methodological issues from
mathematics, statistics or computer science have to be appropriately consid-
ered. Although many of the methods presented in this dissertation are not
new for the machine learning community, many are relatively unknown in
marine science. Indeed, there is uncertainty on the methods to use as well as
the correct way of using them in their practical application in real domains
related to fisheries management. Therefore, many necessary issues have not
been covered in the literature so far about the practical application of such
methods. The main contributions of this dissertation are concerned about
achieving a good trade off between appropriate dealing with methodological
and biological issues.

The relevance of an appropriate selection of a pipeline of methods (not
only the model induction algorithms), depending on the specific objectives
of each study, is shown in different parts of this dissertation. In addition,
other topics such as discretization, feature selection or pipeline evaluation are
considered for both classical uni-dimensional classification approach and the
novel multi-dimensional approach. In this dissertation we have applied the
proposed methods mainly in zooplankton classification and fish recruitment
forecasting.

The rest of this chapter is organised as follows. Section 7.1 summarises the
contributions of this dissertation in the application of supervised classification
methods to fisheries management, in particular in the new paradigm of multi-
dimensional classification for simultaneous forecasting of multiple fish species.
In Section 7.2 the list of publications obtained during the last four years of
PhD work are provided. Finally, Section 7.3 explores lines of work that this
dissertation has left open.
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7.1 Main contributions of the thesis

The main contributions have been focused on the topics of plankton classifica-
tion and fish recruitment forecast. In order to accomplish these contributions,
a set of methodological issues has been addressed considering the biologi-
cal objectives. These methodologies include algorithms that cover three main
aspects: class variable definition; proposal of pipelines of supervised classifica-
tion methods; and proposals of supervised pre-processing methods for multiple
class variables classification.

7.1.1 Zooplankton classification

The main contribution in this area has been in zooplankton classification,
where the author has faced the task of providing experts with a tool that
allows them to evaluate the trade-off between the number of classes and the
performance in a training set (Fernandes et al., 2009c). The end-user can
accept or reject mergers of classes, depending on whether they are ecologically
meaningful and the objectives of the research. This method permits to balance
both objectives: a) maximization of the number of classes; and b) performance,
guided by the end-user. A wrapper machine learning method is proposed in
order to accomplish this trade-off.

7.1.2 Fish recruitment forecasting

Significant contributions of this dissertation are in the domain of fish recruit-
ment forecasting. The contributions have been mostly in the application of a
set of well-known and novel techniques of supervised classification to recruit-
ment forecast for fisheries management purposes.

Firstly, in Fernandes et al. (2010c) a methodological pipeline of suited ma-
chine learning methods is proposed. The proposed pipeline has several desired
properties for fisheries management: a) forecast with its estimated uncertainty
associated; b) forecast and scenarios easy to interpret; c) recruitment and the
boundaries of the factors that can be interpreted; d) a high degree of fac-
tors stability; e) error distribution balanced through all recruitment levels
and; f) robust and honest error estimation. A wrapper method is proposed
for discretizing a continuous target variable (recruitment) with the objective
of balancing the error distribution between the different class values in fish
recruitment forecasting.

Secondly, the proposal and application of specific pre-processing methods
for the novel multi-dimensional classification approach has been achieved. A
whole methodological pipeline is proposed in order to forecast multiple species
simultaneously (Fernandes et al., 2010b). The results show how this approach
allows to improve not only the forecasts of each species, but also the chance
of being right in all the species simultaneously. In addition, experimentation
with synthetic datasets and a meta-learning process are performed in order
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to identify not only the methods with superior behaviour, but also the cir-
cumstances under which each multi-dimensional pre-processing method can
have a superior behaviour. Finally, proposals and adaptations of performance
measures for the multi-dimensional approach are presented for accuracy and
Brier score measures.

7.2 Other related contributions

In this section, a brief description of several additional contributions not de-
scribed in this thesis is provided. These contributions are related with the
methodologies proposed and the work performed during this thesis. Most of
these additional contributions are collaborations with other authors.

7.2.1 Samples classification

The method proposed in this thesis (Fernandes et al., 2009c) has allowed to
process thousand of zooplankton images that has led to the next contribution
presented. This additional contribution discarded the zooplankton as a limi-
tation or explanation for the low anchovy recruitment last years in the Bay
of Biscay (Irigoien et al., 2009).

Other contributions related to classification of samples in the Bay of Biscay
during this thesis work have been mostly in collaborations with other authors:
a) phytoplankton classification (Zarauz et al., 2009; Denis et al., 2009; Alcaraz
et al., 2010); b) zooplankton distribution (Zarauz, 2007; Zarauz et al., 2008;
Bachiller, 2008; Bachiller et al., 2010; Bachiller, 2010); and, c) otolith age
classification (Ascoreca et al., 2008).

7.2.2 Fish recruitment forecasting

In addition to the main work of this thesis, during the year 2009, a forecast
of anchovy based on environmental factors was performed (Fernandes et al.,
2009b) based on the methodology proposed in Fernandes et al. (2010c). A
medium recruitment due to improvement of environmental conditions dur-
ing the year 2009 was forecasted. In addition, the results of another study
based on distribution of juveniles confirmed this forecast, leading to a limited
opening of the fisheries. The use of some of the methodologies for a further
establishment of critical levels of recruitment for management purposes is un-
der current discussion. Its potential use for several other species (Goikoetxea,
2010) and its regular use in advising to government agencies and groups of
interest (Ibaibarriaga et al., 2010; Andonegi E., 2010) is also being evaluated.

The need to perform continuous forecast in order to incorporate them in
other modelling approaches led to studying the use of naive for regression
Bayesian network modelling (Andonegi et al., 2010a,b). However, the factors
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and recruitment boundaries remain those ones selected in Fernandes et al.
(2010c), since the application of such a methodology managing continuous
variables might have too high a CPU-time cost. Similarly, the use of flexible
Bayesian network classifiers with continuous factors has also been studied
(Fernandes et al., 2009a, 2010a) in order to provide a more detailed distribu-
tion of recruitment probabilities. These works are in the line of other works
where these kinds of approaches are being applied to real domain problems
(Fernández et al., 2007; Aguilera et al., 2010; Fernández et al., 2010).

7.2.3 Other domains

Finally, some contributions in the area of teledetection for habitat classifi-
cation have been carried out in support of other researchers (Grande et al.,
2009; Grande, 2009). There are also preliminary contributions to future works
in acoustics, which are just beginning.

7.3 List of main publications and contributions

7.3.1 First author in Refereed JCR-Journals publications

• (2010) Supervised pre-processing approaches in multiple class-
variables classification for fish recruitment forecasting. Fernandes
J.A., Lozano J.A., Inza I., Irigoien X., Rodŕıguez J.D. and Pérez A. Ap-
plied Soft Computing. Submitted.

• (2010) Robust machine-learning techniques for recruitment fore-
casting of North East Atlantic fish species. Fernandes J.A., Irigoien
X., Lozano J.A., Inza I. and Pérez A. ICES Journal of Marine Science.
Submitted.

• (2010) Fish recruitment prediction, using robust supervised clas-
sification methods. Fernandes J.A., Irigoien X., Goikoetxea N., Lozano
J.A., Inza I., Pérez A. and Bode A. Ecological Modelling, 221(2): 338-352.

• (2009) Optimizing the number of classes in automated zooplank-
ton classification. Fernandes J.A., Irigoien X., Boyra G., Lozano J.A.
and Inza I. Journal of Plankton Research 31(1): 19-29.

7.3.2 Colaborations in JCR-Journals publications

• (2010) The potential use of a Gadget model to forecast stock
responses to climate change in combination with Bayesian Net-
works: the case of the Bay of Biscay anchovy. Andonegi E., Fer-
nandes J.A., Quincoces I., Uriarte A., Pérez A., Howell D. and Stefansson
G. ICES Journal of Marine Science. Submitted.
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• (2009) Spring zooplankton distribution in the Bay of Biscay from
1998 to 2006 in relation with anchovy recruitment. Irigoien X.,
Fernandes J.A., Grosjean P., Denis K., Albaina A. and Santos M. Journal
of Plankton Research 31(1): 1-17. Featured article.

• (2009) Changes in plankton size structure and composition, dur-
ing the generation of a phytoplankton bloom, in the central
Cantabrian sea. Zarauz L., Irigoien I. and Fernandes J.A. Journal of
Plankton Research. 31(2): 193-207.

• (2008) Modelling the influence of abiotic and biotic factors on
plankton distribution in the Bay of Biscay, during three con-
secutive years (2004-06). Zarauz L., Irigoien X. and Fernandes J.A.
Journal of Plankton Research 30(8): 857-872.

7.4 Future work

In the previous sections, several ot the author contributions and other lines of
work with colaborators have been presented. However, there are many lines
of potential interesting work the author has identified.

Starting with zooplankton classification and samples classification, more
work to help the end-user in designing the training set is needed, as well
as to deal with the imbalanced dataset problem and its ecological implica-
tions. The use of cost-sensitive classification in samples classification and uni-
dimensional as well as multi-dimensional fish recruitment classification would
be a valuable tool if properly addressed. Finally, the proposed methodolo-
gies can be applied to other domains in marine science and other biological
sciences with significant results; in particular, the use of multi-dimensional
classifiers for ecosystem approaches and water quality challenges. The success
of all future work depends on the communication between different sciences to
accomplish a trade-off between methodological developments and their proper
application. Other novel approaches of interested are related with the use of
optimization methods similarly to the work presented in Ermon et al. (2010).
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Appendix: Mathematical notation

Following is a list of the most frequent mathematical notations in the thesis.

• C: Class variable or discrete target variable.
• Y : Continuous target variable.
• m: Number of class variables or dimensions.
• j: Class index.
• r: Number of class values in a class variable.
• o: Number of values of the class cartesian product.
• g: Index for number of values of the class cartesian product.
• l: Index for number of values of one class variable.
• rj : the number of class values of the j class variable.
• ro: the number of class values of the class cartesian product.
• rs: the sum of number of class values in all the class variables.
• n: Number of features. It is also used to denote the number of time a

cross-validation is repeated.
• X: Feature.
• i: Features index.
• x: Unlabeled instance.
• S: Full dataset.
• N : Number of instances or cases.
• Nc: Subset of instances with the same class value.
• pkj : Predicted probability of a class value.
• k: Cases index. It is also used to denote the number of folds in cross-

validation.
• M : A random classifiers based on KBN.
• G: The structure of MN.
• ykj : 1 if it is the observed class value, 0 otherwise.
• fkj : non-observed class values (failures) within a combination of class vari-

ables being evaluated.
• z: Number of features in a subset.
• pai: Parents of a feature in a structure.
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• e: Kernel coordinates.
• q: Number of kernels.
• h: Kernel smooth parameter.
• H: A n× n bandwidth or smoothing matrix (BM).
• KH : Gaussian kernel.
• tcx: the average class-feature correlation in CFS.
• txx: the average feature-feature correlation in CFS.
• pdi: Discrete parents of a feature Xi.
• pci: Continuous parents of a feature Xi.



B

Intrinsic data characteristics measured by
means of Information Theory

A set of statistics, based upon Information Theory Cover and Thomas (2006),
have been adapted to capture the main intrinsic data characteristics of multi-
dimensional datasets. These statistics have been normalised to permit com-
parison between different datasets, which have a different number of variables
and values.

Class entropy:
The normalized class entropy (CE) for the vector of classes is:

CE(C1, ..., Cm) =
1

m

m∑
j=1

H(Cj)

log2 rj
,

where m is the number of class variables and rj is the number of values of the
jth class variable.

Classes interaction:
The classes interaction (CI) is:

CI(C1, ..., Cm) =
2

m(m− 1)

∑
1≤i<j≤m

2I(Ci;Cj)

H(Ci) +H(Cj)

which is calculated using the symmetrical uncertainty measure Witten and
Frank (2005) for each pair of class variables.

Feature redundancy:
The features redundancy (FRd), taking all feature pairs into account, is:

FRd(X1, ..., Xn) =
2

n(n− 1)

∑
1≤i<j≤n

I(Xi;Xj)

min(H(Xi), H(Xj))
,



136 B Intrinsic data characteristics measured by means of Information Theory

which is normalized since I(X;Y ) ≤ min(H(X), H(Y )) ≤ H(X,Y ) Yao and
Regina (2003).

Feature relevance:
The features (univariate) relevance (FRv), with respect to each class, is:

FRv(X1, ..., Xn, C1, ..., Cm) =
1

nm

n∑
i=1

m∑
j=1

I(Xi;Cj)

H(Cj)

Features-class interaction:
The features-class interaction (FI), based upon the 3-way interaction metric
Jakulin (2005) which measures the uncertainty shared by three variables, is
the average interaction between variables triples (two features and one class
variable):

FI(X1, ..., Xn, C1, ..., Cm) =
2

m ∗ n(n− 1)

m∑
k=1

∑
1≤i<j≤n

I(Xi;Xj ;Ck)

I(Ck; (Xi, Xj))

where I(Xi;Xj ;Ck) = I(Xi;Xj |C)− I(Xi;Xj)
and I(Ck; (Xi, Xj)) = I(Ck;Xi) + I(Ck;Xj) + I(Xi;Xj ;Ck).

Classes-feature interaction:
The classes-feature interaction (FCI), similar to features-class interaction,

considers triples of two class variables and one feature, and it is given by:

FCI(X1, ..., Xn, C1, ..., Cm) =
2

n ∗m(m− 1)

n∑
k=1

∑
1≤i≤j≤m

I(Ci;Cj ;Xk)

I(Xk; (Ci, Cj))
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Borja, Á., Franco, J., Pérez, V., 2000. A marine biotic index to establish the
ecological quality of soft-bottom benthos within European estuarine and
coastal environments. Mar. Pollut. Bull. 40 (12), 1100–1114.
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Politécnica de Cataluña, Barcelona, Cataluña, Spain.

Meyer, R., Millar, R. B., 1999. Bayesian stock assessment using a state-space
implementation of the delay difference model. Can. J. Fish. Aquat. Sci.
56 (1), 37–52.

Minsky, M., 1961. Steps toward artificial intelligence. Proceedings of the In-
stitute of Radio Engineers 49 (1), 8–30.

Montgomery, D., Peck, E., 1992. Introduction to Linear Regression Analysis.
John Wiley, New York, NY, USA.



152 References

Mosteller, F., Tukey, J. F., 1968. Data Analysis, Including Statistics. In G.
Lindzey and E. Aronson, editors. Handbook of Social Psychology, Vol. II.
Addison-Wesley, Reading, MA, USA.

Motos, L., 1996. Reproductive biology and fecundity of the Bay of Biscay
anchovy population (Engraulis encrasicolus L.). Scientia Marina 60, 195–
207.

Motos, L., Uriarte, A., Valencia, V., 1996. The spawning environment of the
Bay of Biscay anchovy (Engraulis encrasicolus L.). Scientia Marina 60, 117–
140.

Motos, L., Wilson, D., 2006. The Knowledge Base for Fisheries Management.
Elsevier Science, Amsterdam, Holland.

Myers, J., Laskey, K., Levitt, T., 1999. Learning Bayesian networks from
incomplete data with stochastic search algorithms. In: Proceedings of the
Fifteenth Annual Conference on Uncertainty in Artificial Intelligence. pp.
476–485.

Myers, R., Bridson, J., Barrowman, N., 1995. Summary of worldwide spawner
and recruitment data. Can. Tech. Rep. Fish. Aquat. Sci., Canada.

Nadeau, C., Bengio, Y., 2003. Inference for the generalization error. Mach.
Learn. 52 (3), 239–281.

Neapolitan, R., 2003. Learning Bayesian Networks. Pearson Prentice Hall,
Upper Saddle River, NJ, USA.

Newman, K. B., Buckland, S. T., Lindley, S. T., Thomas, L., Fernández, C.,
2006. Hidden process models for animal population dynamics. Ecol. Appl.
16 (1), 74–86.

Nilsson, N., 1965. Learning Machines. McGraw-Hill, New York, NY, USA.
O’Brien, R., 2004. Spatial decision support for selecting tropical crops and

forages in uncertain environments. PhD thesis. Curtin University of Tech-
nology, Perth, Australia.

O’Brien, R., Cook, S., Peters, M., Corner, R., Mulla, D., 2004. A Bayesian
Modeling Approach to Site Suitability Under Conditions of Uncertainty.
In: Seventh International Conference on Precision Agriculture and Other
Precision Resources Management, Minneapolis, MN, USA.

Olson, R., Sosik, H., 2007. A submersible imaging-in-flow instrument to an-
alyze nano- and microplankton: Imaging FlowCytobot. Limnol. Oceanogr.:
Methods 5, 195–203.

Pérez, A., Larrañaga, P., Inza, I., 2006. Information theory and classification
error in probabilistic classifiers. In: Proceedings of the Ninth International
Conference on Discovery Science. Lecture Notes in Artificial Intelligence.
Vol. 4265. pp. 347–351.

Pazzani, M., 1996. Searching for dependencies in Bayesian classifiers. Learning
from data: Artificial intelligence and statistics V, 239–248.

Pearl, J., 1985. Bayesian networks: A model of self-activated memory for ev-
idential reasoning. In: Proceedings of the 7th Conference of the Cognitive
Science Society. pp. 329–334.



References 153

Pearl, J., 1988. Probabilistic Reasoning in Intelligence Systems. Springer series
in Statistics. Morgan Kaufman, San Francisco, CA, USA.

Pearson, T., Rosenberg, R., 1978. Macrobenthic succession in relation to or-
ganic enrichment and pollution of the marine environment. Oceanogr. Mar.
Biol. Ann. Rev 16, 229–311.

Pellet, J. P., Elisseeff, A., 2008. Using markov blankets for causal structure
learning. J. Mach. Learn. Res. 9, 1295–1342.

Peña, J. M., Nilsson, R., Björkegren, J., Tegnér, J., 2007. Towards scalable
and data efficient learning of Markov boundaries. Int. J. Approx. Reason.
45 (2), 211–232.
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