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ModelValidation

Introduction

Slides based mainly in Witten and Frank (2005); Pérez et al.

(2005); Allen (2009); Fernandes (2011)

Objective: to measure how well a model represents truth.

Truth cannot be accurately measured: observations.

Questions:

How well the model �ts the observations (goodness-of-�t)?
How well the model forecast new events (generalisation)?
How superior is one model compared to another?
Which is more important, precision or trend?

Answers:

Validation procedures.
Metrics or performance measures.
Statistical tests.
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ModelValidation

Model prediction (P), observations (O), true state (T)

a) model with no skill

b) ideal model

Reproduced from Stow et al. (2009) and Allen (2009)
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ModelValidation

Goodness-of-�t vs generalisation

Fitting:
N: Total number of cases

Training-set
Test-set

Chances of over-�tting.

Generalization → train-test split:
N: Total number of cases

Training-set                  Test-set

Hold-out (commonly 66%-33% split) (Larson, 1931)
Hold-out depends on how fortunate the train-test split is.
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ModelValidation

K-fold cross-validation (CV)

Performance is the average of k models (Lachenbruch and

Mickey, 1968; Stone, 1974).

All data is eventually used for testing.

Still sensitive to data split: strati�ed, repeated (Bouckaert and

Frank, 2004).

Reproduced from Pérez et al. (2005).
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ModelValidation

Leave-one-out cross-validation (LOOCV)

N: Total number of cases

. . .

. . .

. . .

. . .

. . .
... ......

N models, N-1 cases for training and 1 case for testing

(Mosteller and Tukey, 1968).

Suitable for small datasets, more computationally expensive.

Variance of the error is the largest, but less biased.

It can be used for more stable parameters (less variance)

(Schirripa and Colbert, 2006; Francis, 2006).
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ModelValidation

Bootstrapping (0.632 bootstrap)

A case has a 0.632 probability of being picked for training-set

(Efron, 1979).

error = 0.632 ∗ etest (generalisation) + 0.368 ∗ etraining (�t).

At least 100 resamplings, some studies suggest 10000.

Reproduced from Pérez et al. (2005).
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ModelValidation

Sumarizing

Accuracy

Precision

Real performance
Estimated performance

Real performance

Estimated performance

Increasing data partitions leads to ...

more accurate performance estimation (+).
more variance in the performance estimation, less precise (-).
more computationally expensive (-).

K-fold cross-validation: trade-o� (Rodríguez et al., 2010).
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Pipeline validation in �lter methods

Discretize
Factors

Factor
Selection

Naive Bayes
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ModelValidation

Pipeline validation in �lter methods

Full 
Dataset

Discretize
Factors

Factor
Selection

Naive Bayes

10x5cv
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ModelValidation

Pipeline validation in �lter methods

Full 
Dataset

Train 1
Discretize

Factors
Factor

Selection

Test 1 Naive Bayes

Train 5

Test 5

...

... ...
10x5cv

Performance estimation
          

Discretize
Factors

Factor
Selection

Naive Bayes

Performance 
estimation

(Fold 1)

Performance 
estimation

(Fold 5)

...



EURO-BASIN Training Workshop on Introduction to statistical modelling tools, for habitat models development

ModelValidation

Pipeline validation in �lter methods
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ModelValidation

Pipeline validation in wrapper methods

Full 
Dataset

Train 5

Test 5

...

Train 1

Test 1

Train 5

Test 5

...
...

R
E
P
E
A
T
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E
P
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...

...

10x5cv

Model building
Model validation

Train 1

Test 1 Naive Bayes

Discretize
Class

CFS with
LOOCV

Naive Bayes

Discretize
Predictors

Performance estimation
         (Bootstrap 1)

Test 1
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Train 100
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... ......
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PerformanceMeasures

Introduction to metrics

Each metric shows a di�erent property of the model (Holt

et al., 2005; Fernandes et al., 2010)

Low vs high:

Lower is better (error)
Higher is better (performance)

Bounds:

Boundless
Between 0 and 1
Between 0 and 100%
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PerformanceMeasures

PerformanceMeasures

Numeric prediction metrics

Where p are predicted values and a are the actual values.

Mean-squared error: outliers → mean absolute error.

Relative squared error: relative to the mean of actual values.

Correlation coe�cient: bounded between 1 and -1.

Reproduced from Witten and Frank (2005).
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PerformanceMeasures

PerformanceMeasures

Root Mean Squared Error (RMSE)

RMSE =

√∑
(p − a)2

n

Goodness of �t between model and observations.

The closer to 0 the better is the �t.

If RMSE greater than variance of observations: poor model.

Reproduced from Allen (2009)
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PerformanceMeasures

PerformanceMeasures

Nash Sutcli�e Model E�ciency)

ME = 1−
∑N

n=1(an − pn)
2∑N

n=1(an − a))2

Ratio of the model error to data variability.

Levels: >0.65 excellent, >0.5 very good, >0.2 good, <0.2

poor Márechal (2004).

Proposed in Nash and Sutcli�e (1970), reproduced from Allen

(2009)
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PerformanceMeasures

PerformanceMeasures

Percentage Model Bias

Pbias =

∑N
n=1(an − pn)∑N

n=1(an)
∗ 100

Sum of model error normalised by the data.

Measure of underestimation or overestimation of observations.

Levels: <10 excellent, <20 very good, <40 good, >40 poor

Márechal (2004).

Reproduced from Allen (2009)
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PerformanceMeasures

PerformanceMeasures

Pearson correlation coe�cient (R)

R =

∑N
n=1(an − a)(pn − p)√∑N

n=1(an − a)2
∑N

n=1(pn − p)2
∗ 100

Quality of �t of a model to observations.

R = 0, no relationship.

R = 1, perfect �t.

Square of the correlation coe�cient (R2):

percentage of the variability in data accounted for by the

model.

Reproduced from Allen (2009).
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PerformanceMeasures

PerformanceMeasures

Reliability Index (RI)

RI = exp

√√√√1

n

N∑
n=1

(log
an

pn
)2

Factor of divergence between predictions and data.

RI = 2, means a divergence on average within of a

multiplicative factor of 2.

RI the closer to 1 the better.

Reproduced from Allen (2009)
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PerformanceMeasures

PerformanceMeasures

Cost functions

Do all errors have the same weight, cost or implications?

Scaling of di�erences between p and a.

E.g. RMSE scaled by the variance of data (Holt et al., 2005).

Di�erent cost values depending on the type of error.
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PerformanceMeasures

Confusion matrix: accuracy and true positive

Accuracy = TP+TN
#cases

True Positive Rate = TP
TP+FN

Higher is better for both.
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Confusion matrix: accuracy and true positive

Accuracy = TP+TN
#cases

True Positive Rate = TP
TP+FN
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PerformanceMeasures

PerformanceMeasures

Brier Score

(Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)

Brier Score = 1
#cases

∑#cases
k=1

∑#classes
l=1 (pkl − ykl )

2

Lower is better (contrary to accuracy & true positive)

Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35

acceptable, >0.35 insu�cient (Fernandes, 2011)

High
Actual

yK
l                = 1
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Brier Score

(Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)

Brier Score = 1
#cases

∑#cases
k=1
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l=1 (pkl − ykl )

2

Lower is better (contrary to accuracy & true positive)

Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35
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High Medium Low
Actual Otherwise
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l                = 0

0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14p1

0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06p2
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0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22p3
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Brier Score

(Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)

Brier Score = 1
#cases

∑#cases
k=1
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l=1 (pkl − ykl )

2

Lower is better (contrary to accuracy & true positive)

Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35
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Actual Otherwise

yK
l                = 1 yK
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0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06p2

0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22p3

0.4 0.5 0.1 (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62p4
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PerformanceMeasures

Brier Score

(Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)

Brier Score = 1
#cases

∑#cases
k=1

∑#classes
l=1 (pkl − ykl )

2

Lower is better (contrary to accuracy & true positive)

Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35

acceptable, >0.35 insu�cient (Fernandes, 2011)

Brier Score:

Normalized Brier Score:

(0.14 + 0.06 +1.22 + 0.62) / 4 = 0.51

0.51 / 2 = 0.255

High Medium Low
Actual Otherwise

yK
l                = 1 yK

l                = 0

0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14p1

0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06p2

0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22p3

0.4 0.5 0.1 (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62p4
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PerformanceMeasures

Percent Reduction in Error (PRE)

The relevance of a performance gain.

A 2% gain of an already highly accurate classi�er (90%)

... more relevant than with low starting accuracy (50%)

PRE = 100 · EB − EA

EB

EB is the error in the �rst method (Error Before)

EA is in the second method (Error After)
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PerformanceMeasures

Accuracy paradox

Mainly with unbalanced datasets (Zhu and Davidson, 2007;

Abma, 2009).

Reproduced from Wikipedia (2011).
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PerformanceMeasures

PerformanceMeasures

Minimum Description Length (MDL) principle

Kiss rule: Keep It Simple ... Occam's Razor:

The simplest explanation is the most likely to be true ...

... and is more easily accepted by others ...

... but, it is not necessarily the truth.

The more a sequence of data can be compressed, ...

... the more regularity has been detected in the data:

MDL: Minimum Description Length (Rissanen, 1978)

Trade-o� between performance and complexity.

Is MDL false? Domingos (1999); Grünwald et al. (2005)

Trade-o� between mechanism and robust parameters.

If two models have same performance then keep the simplest.



EURO-BASIN Training Workshop on Introduction to statistical modelling tools, for habitat models development

PerformanceMeasures

PerformanceMeasures

Example complex vs simple
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PerformanceMeasures

Lift chart, ROC curve, recall-precision curve

Reproduced from Witten and Frank (2005).

Area under curve (AUC), number to summarize ROC curves.
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ModelComparison

Corrected paired t-test

Statistical comparisons of the performance.

Ideal: test over several datasets of size N.

Null hypothesis that the mean di�erence is zero. Errors:

Type I: prob. the test rejects the null hypothesis incorrectly

Type II: prob. the null hypot. is not rejected with di�erence.

Reality: only one dataset of size N to get all estimates.

Problem: Type I errors exceed the signi�cance level

Solution: heuristic versions of the t-test.

(Nadeau and Bengio, 2003; McCluskey and Lalkhen, 2007;

Kotsiantis, 2007; Fernandes, 2011)

Comparing MULTIPLE methods over ONE datasets.

Comparing ONE methods over MULTIPLE datasets.
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ModelComparison

Critical di�erence diagrams

Proposed by De�msar (2006)

Revised Friedman plus Sha�er's static post-hoc test (García

and Herrera, 2008).

Comparing MULTIPLE methods over MULTIPLE datasets.

Shows average rank of methods superiority in datasets.

No signi�cant di�erence: line connecting methods.

More datasets: more easy to �nd signi�cant diferences.
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ModelComparison

Taylor diagrams

E
′2 = σ2f + σ2r − 2σf σrR; c

2 = a2 + b2 − 2ab cosϕ

Simultaneously: RMS di�erence, correlation and std. dev.

R: correlation p & a; E
′
: RMS di�.; σ2f & σ2r : variances p & a.

Proposed in Taylor (2001), reproduced from Allen (2009).
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ModelComparison

Target diagrams

RMSE in X-axis; Bias in Y-axis.

p Std. Dev. larger (x>0) than a; Bias positive (Y>0) or not.

Reproduced from Jolli� et al. (2009) and Allen (2009).
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ModelComparison

Multivariate aproaches

Uni-variate & multi-variate metrics summarize model skill.

Multi-variate approaches: simultaneous examination of several

variables variation to each other spatially and temporally.

Principal Componet Analysis (PCA) (Jolli�e, 2002).

Show the relationship between several variables in 2D space.

Multi Dimensional Scalling (MDS) (Borg and Groenen, 2005).

Exploring similarities or dissimilarities in data

Self organizing Maps (SOM) (Kohonen and Maps, 2001).

Produce a low-dimensional discretized representation of the

observations.
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Examples

Zooplankton biomass models

Several models �ts with squared error.

Reproduced from Irigoien et al. (2009).



EURO-BASIN Training Workshop on Introduction to statistical modelling tools, for habitat models development

Examples

An example of anchovy recruitment

Performance reported depending on validation schema.

Reproduced from Fernandes et al. (2010).
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Examples

Phytoplankton classi�cation

Without (Table III) and with (Table II) statistical di�erences

(corrected paired t-test).

Reproduced from Zarauz et al. (2009) and Zarauz et al.

(2008).
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Examples

Zooplankton classi�cation

Reproduced from Fernandes et al. (2009).
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Weka

Weka explorer
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Weka

Weka experimenter
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Weka

Weka knowledge �ow
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