EURO-BASIN Training Workshop on Introduction to statistical modelling tools, for habitat models development: Model Validation Performance measures Models comparison WEKA: open source software for data mining

Jose A. Fernandes

University of East Anglia / CEFAS AZTI-Tecnalia Intelligent Systems Group (University of Basque Country)

Outline

- 2 Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models
- 4 Examples
- 5 Weka: open source data mining tool

6 References

Outline

Model validation

- Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models

4 Examples

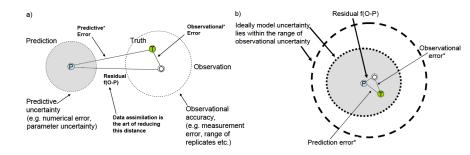
5 Weka: open source data mining tool

6 References

Introduction

- Slides based mainly in Witten and Frank (2005); Pérez et al. (2005); Allen (2009); Fernandes (2011)
- Objective: to measure how well a model represents truth.
- Truth cannot be accurately measured: observations.
- Questions:
 - How well the model fits the observations (goodness-of-fit)?
 - How well the model forecast new events (generalisation)?
 - How superior is one model compared to another?
 - Which is more important, precision or trend?
- Answers:
 - Validation procedures.
 - Metrics or performance measures.
 - Statistical tests

Model prediction (P), observations (O), true state (T)



- a) model with no skill
- b) ideal model
- Reproduced from Stow et al. (2009) and Allen (2009)

Goodness-of-fit vs generalisation

• Fitting:

N: Total nun	nber of cases
--------------	---------------

Training-set Test-set

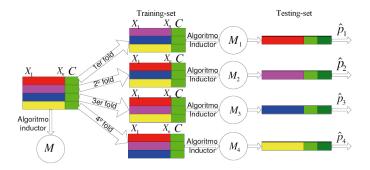
- Chances of over-fitting.
- Generalization \rightarrow train-test split:

N: Total number of cases

Training-set	Test-set
--------------	----------

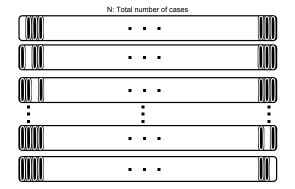
- Hold-out (commonly 66%-33% split) (Larson, 1931)
- Hold-out depends on how fortunate the train-test split is.

K-fold cross-validation (CV)



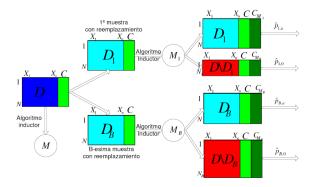
- Performance is the average of k models (Lachenbruch and Mickey, 1968; Stone, 1974).
- All data is eventually used for testing.
- Still sensitive to data split: stratified, repeated (Bouckaert and Frank, 2004).
- Reproduced from Pérez et al. (2005).

Leave-one-out cross-validation (LOOCV)



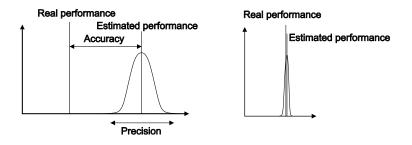
- N models, N-1 cases for training and 1 case for testing (Mosteller and Tukey, 1968).
- Suitable for small datasets, more computationally expensive.
- Variance of the error is the largest, but less biased.
- It can be used for more stable parameters (less variance)

Bootstrapping (0.632 bootstrap)

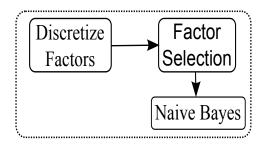


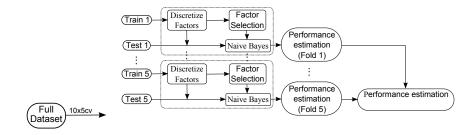
- A case has a 0.632 probability of being picked for training-set (Efron, 1979).
- error = $0.632 * e_{test}$ (generalisation) + $0.368 * e_{training}$ (fit).
- At least 100 resamplings, some studies suggest 10000.
- Reproduced from Pérez et al. (2005).

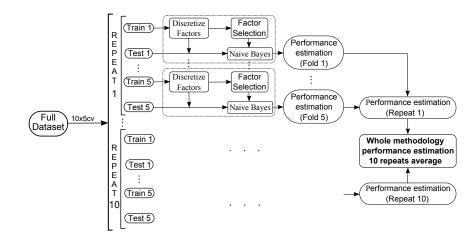
Sumarizing



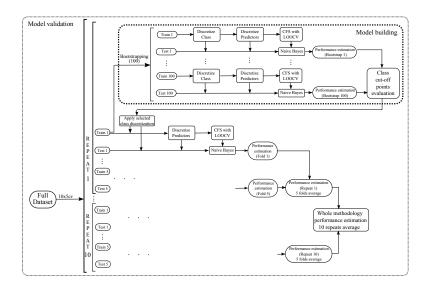
- Increasing data partitions leads to ...
 - more accurate performance estimation (+).
 - more variance in the performance estimation, less precise (-).
 - more computationally expensive (-).
- K-fold cross-validation: trade-off (Rodríguez et al., 2010).







Pipeline validation in wrapper methods



Outline

- 2 Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models
- 4 Examples
- 5 Weka: open source data mining tool

6 References

Introduction to metrics

- Each metric shows a different property of the model (Holt et al., 2005; Fernandes et al., 2010)
- Low vs high:
 - Lower is better (error)
 - Higher is better (performance)
- Bounds:
 - Boundless
 - Between 0 and 1
 - Between 0 and 100%

PerformanceMeasures

Outline

Model validation

- Performance measures or metrics
 Metrics in numeric prediction
 Metrics in classification
- 3 Comparing methodologies and models
- 4 Examples
- 5 Weka: open source data mining tool

6 References

PerformanceMeasures

PerformanceMeasures

Numeric prediction metrics

Performance measure Formula	Performance measure Formula
mean-squared error $\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}$	root relative squared error $\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_a-a_a)^2}{(a_1-\overline{a})^2+\ldots+(a_a-\overline{a})^2}}$
root mean-squared error $\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}}$	
mean absolute error $\frac{ p_1-a_1 +\ldots+ p_n-a_n }{n}$	correlation coefficient $\frac{S_{PA}}{\sqrt{S_PS_A}}$, where $S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n-1}$,
relative squared error $\frac{(p_1-a_1)^2 + + (p_n-a_n)^2}{(a_1-\overline{a})^2 + + (a_n-\overline{a})^2}$, W	where $\overline{a} = \frac{1}{n} \sum_{i} a_{i}$ $S_{p} = \frac{\sum_{i} (p_{i} - \overline{p})^{2}}{n-1}$, and $S_{A} = \frac{\sum_{i} (a_{i} - \overline{a})^{2}}{n-1}$

- Where *p* are predicted values and *a* are the actual values.
- Mean-squared error: outliers \rightarrow mean absolute error.
- Relative squared error: relative to the mean of actual values.
- Correlation coeficient: bounded between 1 and -1.
- Reproduced from Witten and Frank (2005).

PerformanceMeasures

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{rac{\sum (p-a)^2}{n}}$$

- Goodness of fit between model and observations.
- The closer to 0 the better is the fit.
- If RMSE greater than variance of observations: poor model.
- Reproduced from Allen (2009)

PerformanceMeasures

PerformanceMeasures

Nash Sutcliffe Model Efficiency)

$$ME = 1 - rac{\sum_{n=1}^{N} (a_n - p_n)^2}{\sum_{n=1}^{N} (a_n - \overline{a}))^2}$$

- Ratio of the model error to data variability.
- Levels: >0.65 excellent, >0.5 very good, >0.2 good, <0.2 poor Márechal (2004).
- Proposed in Nash and Sutcliffe (1970), reproduced from Allen (2009)

PerformanceMeasures

PerformanceMeasures

Percentage Model Bias

Pbias =
$$\frac{\sum_{n=1}^{N} (a_n - p_n)}{\sum_{n=1}^{N} (a_n)} * 100$$

- Sum of model error normalised by the data.
- Measure of underestimation or overestimation of observations.
- Levels: <10 excellent, <20 very good, <40 good, >40 poor Márechal (2004).
- Reproduced from Allen (2009)

errormancemeasures

PerformanceMeasures

Pearson correlation coefficient (R)

$$R = \frac{\sum_{n=1}^{N} (a_n - \overline{a})(p_n - \overline{p})}{\sqrt{\sum_{n=1}^{N} (a_n - \overline{a})^2 \sum_{n=1}^{N} (p_n - \overline{p})^2}} * 100$$

- Quality of fit of a model to observations.
- R = 0, no relationship.
- R = 1, perfect fit.
- Square of the correlation coefficient (R_2) :
- percentage of the variability in data accounted for by the model.
- Reproduced from Allen (2009).

PerformanceMeasures

PerformanceMeasures

Reliability Index (RI)

$$RI = \exp \sqrt{\frac{1}{n} \sum_{n=1}^{N} (\log \frac{a_n}{p_n})_2}$$

- Factor of divergence between predictions and data.
- RI = 2, means a divergence on average within of a multiplicative factor of 2.
- RI the closer to 1 the better.
- Reproduced from Allen (2009)

Cost functions

- Do all errors have the same weight, cost or implications?
- Scaling of differences between p and a.
- E.g. RMSE scaled by the variance of data (Holt et al., 2005).
- Different cost values depending on the type of error.

Table 5.	5 Defa	Default cost matrixes: (a) a two-class case and (b) a three-class case.							
		Predicted class					Predicted class		
		yes	no			а	b	С	
Actual	yes	0	1	Actual	а	0	1	1	
class	no	1	0	class	b	1	0	1	
					С	1	1	0	
(a)				(b)					

PerformanceMeasures

Outline

- 2 Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models
- 4 Examples
- 5 Weka: open source data mining tool

6 References

PerformanceMeasures

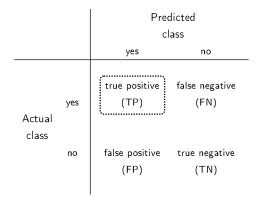
Confusion matrix: accuracy and true positive

		Predicted class		
		yes	no	
Actual class	yes	true positive (TP)	false negative (FN)	
	no	false positive (FP)	true negative (TN)	

 Accuracy = TP+TN #cases
 True Positive Rate = TP TP+FN
 Higher is better for both.

PerformanceMeasures

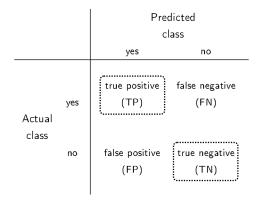
Confusion matrix: accuracy and true positive



 Accuracy = TP+TN #cases
 True Positive Rate = TP TP+FN
 Higher is better for both.

PerformanceMeasures

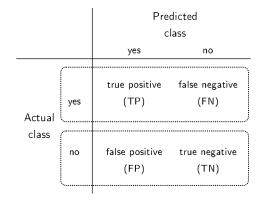
Confusion matrix: accuracy and true positive



 Accuracy = <u>TP+TN</u> #cases
 True Positive Rate = <u>TP</u> TP+FN
 Higher is better for both.

PerformanceMeasures

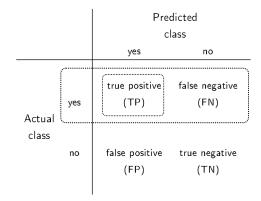
Confusion matrix: accuracy and true positive



 Accuracy = <u>TP+TN</u> #cases
 True Positive Rate = <u>TP</u> TP+FN
 Higher is better for both.

PerformanceMeasures

Confusion matrix: accuracy and true positive



PerformanceMeasures

Confusion matrix: accuracy and true positive

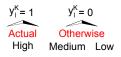
		Predicted class		
		yes	no	
Actual class	yes	true positive (TP)	false negative (FN)	
	no	false positive (FP)	true negative (TN)	

Brier Score

- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)

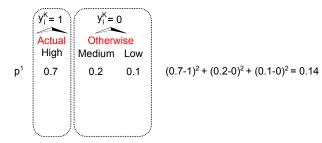
Brier Score

- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)

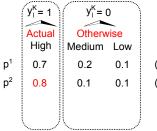


Brier Score

- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)



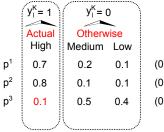
- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)



$$(0.7-1)^2 + (0.2-0)^2 + (0.1-0)^2 = 0.14$$

 $(0.8-1)^2 + (0.1-0)^2 + (0.1-0)^2 = 0.06$

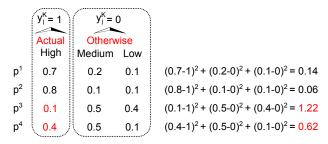
- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)



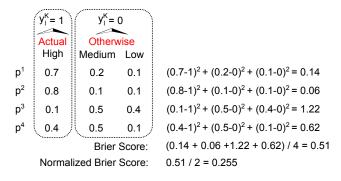
$$(0.7-1)^2 + (0.2-0)^2 + (0.1-0)^2 = 0.14$$

 $(0.8-1)^2 + (0.1-0)^2 + (0.1-0)^2 = 0.06$
 $(0.1-1)^2 + (0.5-0)^2 + (0.4-0)^2 = 1.22$

- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)



- (Brier, 1950; van der Gaag et al., 2002; Yeung et al., 2005)
- Brier Score = $\frac{1}{\#cases} \sum_{k=1}^{\#cases} \sum_{l=1}^{\#classes} (p_l^k y_l^k)^2$
- Lower is better (contrary to accuracy & true positive)
- Levels: <0.10 excellent, <20 superior, <0.30 adequate, <0.35 acceptable, >0.35 insuficient (Fernandes, 2011)



PerformanceMeasures

۲

Percent Reduction in Error (PRE)

- The relevance of a performance gain.
- A 2% gain of an already highly accurate classifier (90%)
- ... more relevant than with low starting accuracy (50%)

$$\textit{PRE} = 100 \cdot \frac{\textit{EB} - \textit{EA}}{\textit{EB}}$$

- EB is the error in the first method (Error Before)
- EA is in the second method (Error After)

PerformanceMeasures

PerformanceMeasures

Accuracy paradox

$$\mathbf{A}(M) = \frac{TN+TP}{TN+FP+FN+TP} \, \mathrm{wh}$$

TN is the number of true negative cases ere FP is the number of false positive cases FN is the number of false negative cases TP is the number of true positive cases

$\label{eq:redicted Negative Predicted Positive} \\ \begin{array}{r} \mbox{Negative Cases 9,700} & 150 \\ \mbox{Positive Cases 50} & 100 \\ \mbox{A}(M) = \frac{9,700+100}{9,700+150+50+100} = 98.0\% \end{array}$

Predicted Negative Predicted Positive

Negative Cases 9,850 0
Positive Cases 150 0
$$A(M) = \frac{9,850+0}{9,850+150+0+0} = 98.5\%$$

- Mainly with unbalanced datasets (Zhu and Davidson, 2007; Abma, 2009).
- Reproduced from Wikipedia (2011).

PerformanceMeasures

Minimum Description Length (MDL) principle

- Kiss rule: Keep It Simple ... Occam's Razor:
- The simplest explanation is the most likely to be true ...
- ... and is more easily accepted by others ...
- ... but, it is not necessarily the truth.
- The more a sequence of data can be compressed, ...
- ... the more regularity has been detected in the data:
- MDL: Minimum Description Length (Rissanen, 1978)
- Trade-off between performance and complexity.
- Is MDL false? Domingos (1999); Grünwald et al. (2005)
- Trade-off between mechanism and robust parameters.
- If two models have same performance then keep the simplest.

PerformanceMeasures

PerformanceMeasures

Example complex vs simple

EXPERTS SPECIFIED NETWORK					NAIVE	BAYES C	LASSI	FIER		
HTOT HO22H PO4P			NTOT probability table			e	NTOT	CHLA PTOT N	023H	Po4P
NTOT	PTOT	NO23N	PO4P	Good	Moderate	:				
		Good	Good Moderate	22,414 50,000	77,5		NTC)T probab	ility ta	ble
	Good	Moderate	Good	0,222	99,7		CHLA	Good	Mo	derate
Good		moderate	Moderate	2,941	97,0		Good	97,0		2,941
0000		Good	Good	20,186	79,8		Moderate	94,0	00	6,000
	Moderate		Moderate	1,515	98,4					
		Moderate	Good	0,617	99,3		CIT		· · ·	
			Moderate	98,485	1,5			-A probat		
		Good	Good	50,000	50,0				Moderate	
	Good		Moderate Good	50,000 50,000	50,0 50,0			18,478	81,5	22
		Moderate	Moderate	50,000	50,0					
Moderate			Good	50,000	50,0					
		Good	Moderate	97,059	Z.9					
	Moderate		Good	2.941	97,0					
		Moderate	Moderate	50,000	50,0	100				
Accura			uracy		True p	oosi	tive	Fal	lse po	sitive
		NBC	Expert	N	BC	I	Expert	NB	C	Expert
All coa	stal 8	2.5±4.1	80.1±5.9	0.18	8±0.1	0.1	9±0.08	0.07±	0.03	0.08±0
EGOF	8	4.5±7.8	88.9±11.	4 0.:	5±0	(0.5±0	0.06	i±0	0.06±0
WGOF	73	3.3±12.6	69.1±13.	5 0.1	3±0	0.1	4±0.04	0.13±	0.05	0.17±0

PerformanceMeasures

Lift chart, ROC curve, recall-precision curve

sures used to evaluate	e the false positiv	ve versus the fals	se negative tradeoff.
Domain	Plot	Axes	Explanation of axes
marketing	TP vs.	TP	number of true positives
	subset size	subset size	$\frac{\text{TP} + \text{FP}}{\text{TP} + \text{FP} + \text{TN} + \text{FN}} \times 100\%$
communications	TP rate vs. FP rate	TP rate	$tp = \frac{\text{TP}}{\text{TP} + \text{FN}} \times 100\%$
		FP rate	$fp = \frac{FP}{FP + TN} \times 100\%$
information	recall vs.	recall	same as TP rate <i>tp</i>
retrieval	precision	precision	$\frac{\text{TP}}{\text{TP}+\text{FP}} \times 100\%$
	200 the positives 200	1% - 1% - 1% -	40% 60% 80% 100%
	Domain marketing communications information retrieval	Domain Plot marketing TP vs. subset size communications TP rate vs. FP rate information recall vs. precision	marketing TP vs. subset size TP subset size communications TP rate vs. FP rate FP rate FP rate information retrieval recall vs. recall precision precision

Outline

Model validation

- 2 Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification

3 Comparing methodologies and models

4 Examples

5 Weka: open source data mining tool

6 References

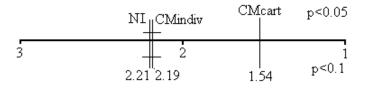
Corrected paired t-test

- Statistical comparisons of the performance.
- Ideal: test over several datasets of size N.
- Null hypothesis that the mean difference is zero. Errors:
- Type I: prob. the test rejects the null hypothesis incorrectly
- Type II: prob. the null hypot. is not rejected with difference.
- Reality: only one dataset of size N to get all estimates.
- Problem: Type I errors exceed the significance level
- Solution: heuristic versions of the *t-test*.

(Nadeau and Bengio, 2003; McCluskey and Lalkhen, 2007; Kotsiantis, 2007; Fernandes, 2011)

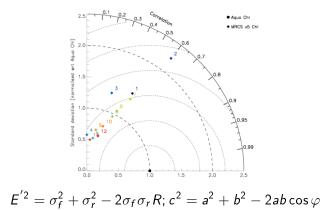
- Comparing MULTIPLE methods over ONE datasets.
- Comparing ONE methods over MULTIPLE datasets.

Critical difference diagrams



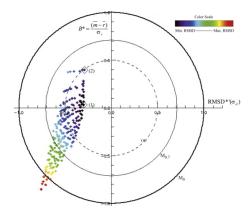
- Proposed by Demsar (2006)
- Revised Friedman plus Shaffer's static post-hoc test (García and Herrera, 2008).
- Comparing MULTIPLE methods over MULTIPLE datasets.
- Shows average rank of methods superiority in datasets.
- No significant difference: line connecting methods.
- More datasets: more easy to find significant diferences.

Taylor diagrams



- Simultaneously: RMS difference, correlation and std. dev.
- R: correlation p & a; E': RMS diff.; $\sigma_f^2 \& \sigma_r^2$: variances p & a.
- Proposed in Taylor (2001), reproduced from Allen (2009).

Target diagrams



- RMSE in X-axis; Bias in Y-axis.
- p Std. Dev. larger (x>0) than a; Bias positive (Y>0) or not.
- Reproduced from Jolliff et al. (2009) and Allen (2009).

Multivariate aproaches

- Uni-variate & multi-variate metrics summarize model skill.
- Multi-variate approaches: simultaneous examination of several variables variation to each other spatially and temporally.

Principal Componet Analysis (PCA) (Jolliffe, 2002).

• Show the relationship between several variables in 2D space.

Multi Dimensional Scalling (MDS) (Borg and Groenen, 2005).

• Exploring similarities or dissimilarities in data

Self organizing Maps (SOM) (Kohonen and Maps, 2001).

• Produce a low-dimensional discretized representation of the observations.

Outline

Model validation

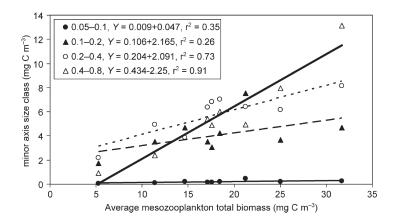
- 2 Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models

4 Examples

5 Weka: open source data mining tool

6 References

Zooplankton biomass models



- Several models fits with squared error.
- Reproduced from Irigoien et al. (2009).

An example of anchovy recruitment

Bins	Metrics	Equal frequency	Expert	Max_mean_tp	Max_accuracy
2	10 × 5cv Acc. Best 5cv Acc. Best fold Acc. Brier score TP Low TP High	$\begin{array}{c} 73.7\pm 4.9\%\\ 82.1\pm 18.9\%\\ 100\%\\ 0.08\pm 0.2\\ 79.9\%(<1550;20)\\ 67.4\%(>1550;19) \end{array}$	71.2±3.9% 76.8±18.7% 100% 0.08±0.03 77.1% (<1500; 21) 67.7% (>1500; 17)	$\begin{array}{c} 65.1 \pm 5.5\% \\ 74.3 \pm 9\% \\ 87.5\% \\ 0.19 \pm 0.05 \\ 61.8\% (> 1050; 14) \\ 54\% (> 1050; 25) \end{array}$	$\begin{array}{c} 67.4 \pm 4.9\% \\ 76.8 \pm 16.5\% \\ 100\% \\ 0.10 \pm 0.07 \\ 74.4\% \ (< 3600; \ 33) \\ 28.4\% \ (> 3600; \ 6) \end{array}$
3	10 × 5cv Acc. Best 5cv Acc. Best fold Acc. Brier score TP low TP medium TP high	$\begin{array}{c} 41.3 \pm 9.2\% \\ 53.9 \pm 10.5\% \\ 75\% \\ 0.21 \pm 0.05 \\ 47.1\% (<\!1000; 13) \\ 32.9\% (1000\!-\!2400; 13) \\ 51.8\% (>2400; 13) \end{array}$	$\begin{array}{c} 47.4\pm7.1\%\\ 55.7\pm21.5\%\\ 100\%\\ 0.16\pm0.03\\ 75.6\%(<1500;19)\\ 24.3\%(1500-3000;9)\\ 28.1\%(<3000;11) \end{array}$	$\begin{array}{c} 44.9\pm5\%\\ 51.4\pm20\%\\ 75\%\\ 0.24\pm0.05\\ 47.3\%(<1200;16)\\ 27\%(1200-3250;14)\\ 39.4\%(<>3250;9) \end{array}$	$\begin{array}{c} 47.1\pm7.6\%\\ 58.9\pm10.4\%\\ 75\%\\ 0.23\pm0.04\\ 50.4\%(<1500;19)\\ 24.4\%(1500-3250;11\\ 41\%(>3250;9) \end{array}$
4	10 × 5cv Acc. Best 5cv Acc. Best fold Acc. Brier score TP low TP med. I TP med. II TP high	$\begin{array}{c} 33.4 \pm 6.3\% \\ 41.4 \pm 12.5\% \\ 62.5\% \\ 0.25 \pm 0.04 \\ 49.7\% < 850; 10) \\ 10\% (850-1550; 10) \\ 27.7\% (1550-3250; 10) \\ 51.8\% (> 3250; 9) \end{array}$	-	$\begin{array}{c} 30.8 \pm 4.1\% \\ 36.4 \pm 18.1\% \\ 62.5\% \\ 0.34 \pm 0.06 \\ 36.5\% (<1050; 14) \\ 10.8\% (1050-1900; 9) \\ 15\% (1900-3350; 9) \\ 35.7\% (3350>; 8) \end{array}$	$\begin{array}{c} 26.93\pm6.8\%\\ 38.2\pm11.7\%\\ 50\%\\ 0.31\pm0.04\\ 43.3\%(<1050;14)\\ 11.3\%(1050-1900;9)\\ 11.3\%(1900-3350;9)\\ 30.4\%(<3350;8) \end{array}$

- Performance reported depending on validation schema.
- Reproduced from Fernandes et al. (2010).

Phytoplankton classification

Table III: Output of the significance test

Table II: Output of the significance test

Iteration	RF	TAN	Iteration	RF	TAN
1	90.88	88.95	1	99.43	99.1
2	90.7	88.77	2	99.47	99.15
3	90	89.12	3	99.52	99.12
4	91.05	89.3	4	99.48	99.07
5	91.75	88.95	5	99.43	99.09
	(v/ /*)	(0/5/0)		(v/ /*)	(0/0/5)

The percent of correctly classified instances is compared with the The percentage of correctly classified instances using RF and classifications performed using RF and TAN algorithms. Annotation (\prime /*) algorithms are compared. Annotations (\prime /*) correspond to the nu corresponds to the number of iterations in which the TAN algorithm is of iterations in which TAN algorithm is significantly better (v), similar () or worse (*) than RF.

- Without (Table III) and with (Table II) statistical differences (corrected paired t-test).
- Reproduced from Zarauz et al. (2009) and Zarauz et al. (2008).

Zooplankton classification

Merger evaluation	DataSet1	DataSet2	DataSet3	
Before After first iteration	Accuracy (%) Accuracy (%) <i>P</i> -value original PRE original (%) CPU-time CPU-time CM	64.7 68.3 0.585 10.2 3:01:39 0:17:37	85.7 87.3 0.078 4.7 0:32:34 0:16:07	82 82.1 0.976 0.6 1:30:47 0:17:31
After second iteration	Accuracy (%) <i>P</i> -value previous <i>P</i> -value original PRE previous (%) PRE original (%) CPU-time	70.9 0.542 0.395 8.2 17.6 1:57:40	88.8 0.7 0.006 4.6 9 0:17:45	- - - - - -

• Reproduced from Fernandes et al. (2009).

Outline

Model validation

- Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models

4 Examples

5 Weka: open source data mining tool

References

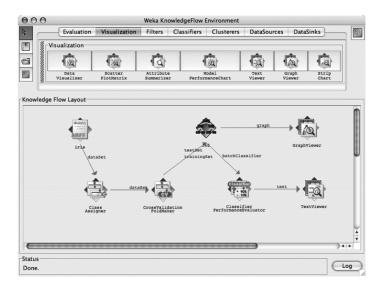
Weka explorer

) 🖯 🖯 🦳 Weka f	Explorer
Preprocess Classify Cluster A	ssociate Select attributes Visualize
Open file Open URL Open DB Open DB	Undo Edit Save
Choose None	Apply
Current relation Relation: autos Instances: 205 Attributes: 26	Selected attribute Name: normalized-losses Type: Numeric Missing: 41 (20%) Distinct: 51 Unique: 10 (5%)
Attributes All None Invert No. normalized-losses nome 1 2 make 1 1 1	Statistic Value Minimum 65 Maximum 256 Value 122 StdDev 35.442
3 [uel-type 4 aspiration 5 num-of-doors 6 body-style 7 drive-wheels 8 engine-location 9 wheel-base 10 ength 11 with	Class: symboling (Nom)
Remove	5 4 1 1 05 100.5 22

Weka experimenter

🗑 🔿 💮 Waka	Experiment Environment
Se	tup Run Analyse
Experiment Configuration Mode:	Simple
Open	Save New
Results Destination	
CSV file Filename: Experiment1	Browse)
Experiment Type	Iteration Control
Cross-validation	Number of repetitions: 10
Number of folds: 10	O Data sets first
Classification Classification	 Algorithms first
Datasets	Algorithms
Add new Delete selecte	ed) (Add new) (Edit selected) (Delete selected)
Use relative paths	J48 -C 0.25 -M 2
/Users/eice/Documents/data/UCI/iris.arff	One -B 6 ZercR
	Load options Save options
(Notes

Weka knowledge flow



Outline

Model validation

- Performance measures or metrics
 - Metrics in numeric prediction
 - Metrics in classification
- 3 Comparing methodologies and models

4 Examples

5 Weka: open source data mining tool

6 References

- Abma, B. (2009). Evaluation of requirements management tools with support for traceability-based change impact analysis. PhD thesis, University of Twente, Enschede, The Netherlands.
- Allen, J. (2009). D2.7 user guide and report outlining validation methodology. Deliverable in project Marine Ecosystem Evolution in a Changing Environment (MEECE).
- Borg, I. and Groenen, P. (2005). Modern multidimensional scaling: Theory and applications. Springer Verlag.
- Bouckaert, R. R. and Frank, E. (2004). Evaluating the replicability of significance tests for comparing learning algorithms. Lect. Notes Artif. Int., pages 3–12.
- Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Month. Weather Rev., 78(1):1-3.
- Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:1-30.
- Domingos, P. (1999). The role of Occam's razor in knowledge discovery. Data Min. Knowl. Disc, 3(4):409–425.
- Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Stat., 7(1):1-26.
- Fernandes, J. (2011). Data analysis advances in marine science for fisheries management: Supervised classification applications. PhD thesis, University of the Basque Country, San Sebastian, Guipuzkoa, Spain.
- Fernandes, J. A., Irigoien, X., Boyra, G., Lozano, J. A., and Inza, I. (2009). Optimizing the number of classes in automated zooplankton classification. J. Plankton Res., 31(1):19-29.
- Fernandes, J. A., Irigoien, X., Goikoetxea, N., Lozano, J. A., Inza, I., Pérez, A., and Bode, A. (2010). Fish recruitment prediction, using robust supervised classification methods. *Ecol. Model.*, 221(2):338-352.
- Francis, R. I. C. (2006). Measuring the strength of environment-recruitment relationships: the importance of including predictor screening within cross-validations. ICES J. Mar. Sci., 63(4):594.
- García, S. and Herrera, F. (2008). An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons. J. Mach. Learn. Res., 9:2677-2694.

- Grünwald, P., Myung, I., and Pitt, M. (2005). Advances in minimum description length: Theory and applications. The MIT Press.
- Holt, J., Allen, J., Proctor, R., and Gilbert, F. (2005). Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 1 model overview and assessment of the hydrodynamics. Journal of Marine Systems, 57(1-2):167-188.
- Irigoien, X., Fernandes, J., Grosjean, P., Denis, K., Albaina, A., and Santos, M. (2009). Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment. J. Plankton Res., 31(1):1-17.
- Jolliff, J., Kindle, J., Shulman, I., Penta, B., Friedrichs, M., Helber, R., and Arnone, R. (2009). Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. *Journal of Marine Systems*, 76(1-2):04-82.
- Jolliffe, I. (2002). Principal component analysis. Encyclopedia of Statistics in Behavioral Science.
- Kohonen, T. and Maps, S. (2001). Springer series in information sciences. New York, New York.
- Kotsiantis, S. (2007). Supervised Machine Learning: A Review of Classification Techniques. Inform., 31:249–268.
- Lachenbruch, P. and Mickey, M. (1968). Estimation of error rates in discriminant analysis. Technometrics, pages 1–11.
- Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. J. Educ. Psychol., 22(1):45-55.
- Márechal, D. (2004). A soil-based approach to rainfall-runoff modelling in ungauged catchments for England and Wales. PhD thesis, Cranfield University, Cranfield, UK.
- McCluskey, A. and Lalkhen, A. G. (2007). Statistics iv: Interpreting the results of statistical tests. Continuing Education in Anaesthesia, Critical Care & Pain, 7(6):208-212.
- Mosteller, F. and Tukey, J. F. (1968). Data Analysis, Including Statistics. In G. Lindzey and E. Aronson, editors. Handbook of Social Psychology, Vol. II. Addison-Wesley, Reading, MA, USA.
- Nadeau, C. and Bengio, Y. (2003). Inference for the generalization error. Mach. Learn., 52(3):239-281.

- Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models part i-a discussion of principles. Journal of hydrology, 10(3):282-290.
- Pérez, A., Larrañaga, P., and I., I. (2005). Estimar, descomponer y comparar el error de mala clasificación. In Primer Congreso Español de Informática.
- Rissanen, J. (1978). Modeling by the shortest data description. Automatica, 14:465-471.
- Rodríguez, J. D., Pérez, A., and Lozano, J. A. (2010). Sensitivity analysis of k-fold cross-validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell., 32(3):569-575.
- Schirripa, M. J. and Colbert, J. J. (2006). Interannual changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions within the California Current System. Fish. Oceanogr., 15(1):25-36.
- Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statistical Society, Series B, 36.
- Stow, C., Jolliff, J., McGillicuddy Jr, D., Doney, S., Allen, J., Friedrichs, M., and Rose, K. (2009). Skill assessment for coupled biological/physical models of marine systems. *Journal of Marine Systems*, 76(1-2):4-15.
- Taylor, K. (2001). Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res, 106(D7):7183-7192.
- van der Gaag, L. C., Renooij, S., Witteman, C. L. M., Aleman, B. M. P., and Taal, B. G. (2002). Probabilities for a probabilistic network: a case study in oesophageal cancer. Artif. Intell. Med., 25(2):123-148.
- Wikipedia (2011). Accuracy paradox. [Online; accessed 15-September-2011].
- Witten, I. H. and Frank, E. (2005). Data mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Francisco, CA, USA.
- Yeung, K. Y., Bumgarner, R. E., and Raftery, A. E. (2005). Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. *Bioinformatics*, 21(10):2394-2402.

- Zarauz, L., Irigoien, X., and Fernandes, J. (2008). Modelling the influence of abiotic and biotic factors on plankton distribution in the Bay of Biscay, during three consecutive years (2004-06). J. Plankton Res., 30(8):857.
- Zarauz, L., Irigoien, X., and Fernandes, J. (2009). Changes in plankton size structure and composition, during the generation of a phytoplankton bloom, in the central Cantabrian sea. J. Plankton Res., 31(2):139-207.
- Zhu, X. and Davidson, I. (2007). Knowledge discovery and data mining: challenges and realities. |gi Global.

EURO-BASIN Training Workshop on Introduction to statistical modelling tools, for habitat models development: Model Validation Performance measures Models comparison WEKA: open source software for data mining

Jose A. Fernandes

University of East Anglia / CEFAS AZTI-Tecnalia Intelligent Systems Group (University of Basque Country)