Extended experimental setting of: Learning Bayesian Network Classifiers from Label Proportions Jerónimo Hernández, Jose A. Lozano, and Iñaki Inza ## References D. R. Musicant, J. M. Christensen, J. F. Olson, Supervised learning by training on aggregate outputs, in: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), 2007, pp. 252–261. - (a) The proposed algorithm learning NB classifiers. - (b) The proposed algorithm learning TAN classifiers. (c) The proposed algorithm learning 2DB classifiers. Figure 1: Computational time needed by the four versions of the proposed algorithm to learn NB, TAN and 2DB classifiers in a 10×5 fold CV over 30 datasets (sampled from TAN models, with 31 binary variables —including the class variable— and 1000 examples). The bag size (m_i) is varied to simulate different experimental conditions. All the tests have been performed in an Intel Core i5 (2,3 GHz) with 4GB of main memory. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |--------------|-----|------------------|------------------|------------------|------------------|-------| | A | NB | 96.34 ± 0.51 | 96.45 ± 0.46 | 96.31 ± 0.34 | 96.31 ± 0.40 | | | PEM | TAN | 96.11 ± 0.56 | 96.29 ± 0.36 | 96.29 ± 0.22 | 96.47 ± 0.39 |] | | | KDB | 96.24 ± 0.41 | 96.14 ± 0.42 | 95.87 ± 0.41 | 95.99 ± 0.41 | | | M | NB | 96.58 ± 0.36 | 96.42 ± 0.30 | 96.48 ± 0.38 | 96.15 ± 0.46 | | | NPEM | TAN | 96.25 ± 0.32 | 96.22 ± 0.41 | 96.38 ± 0.40 | 96.29 ± 0.46 | | | Z | KDB | 95.91 ± 0.44 | 95.77 ± 0.32 | 96.19 ± 0.36 | 96.14 ± 0.42 | | | M. | NB | 96.48 ± 0.41 | 96.55 ± 0.36 | 96.45 ± 0.38 | 96.27 ± 0.87 | 3 | | MCEM | TAN | 96.45 ± 0.28 | 96.49 ± 0.40 | 96.41 ± 0.35 | 96.18 ± 0.58 | | | \mathbb{Z} | KDB | 96.25 ± 0.34 | 95.68 ± 0.57 | 95.71 ± 0.41 | 95.84 ± 0.48 | | | M. | NB | 96.62 ± 0.39 | 96.61 ± 0.32 | 96.32 ± 0.48 | 96.27 ± 0.40 | | | PMEM | TAN | 95.97 ± 0.58 | 95.98 ± 0.41 | 96.24 ± 0.31 | 96.37 ± 0.48 | | | Ы | KDB | 96.01 ± 0.22 | 96.08 ± 0.45 | 95.94 ± 0.52 | 95.82 ± 0.39 | | | П | - | 92.69 ± 0.91 | 85.08 ± 1.26 | 71.40 ± 1.02 | 67.41 ± 0.65 | | | M | NB | 96.48 ± 0.46 | 96.37 ± 0.43 | 96.38 ± 0.47 | 96.45 ± 0.41 | | | PEM | TAN | 96.41 ± 0.31 | 96.32 ± 0.37 | 96.47 ± 0.44 | 96.37 ± 0.42 | | | | KDB | 96.32 ± 0.59 | 96.24 ± 0.50 | 95.84 ± 0.60 | 96.11 ± 0.35 | | | M | NB | 96.45 ± 0.32 | 96.65 ± 0.19 | 96.38 ± 0.40 | 96.39 ± 0.48 | | | NPEM | TAN | 96.17 ± 0.42 | 96.38 ± 0.29 | 96.07 ± 0.57 | 96.41 ± 0.56 | 1 | | Ξ | KDB | 96.07 ± 0.55 | 95.98 ± 0.65 | 96.15 ± 0.23 | 95.79 ± 0.66 | | | J.M | NB | 96.52 ± 0.44 | 96.29 ± 0.41 | 96.44 ± 0.36 | 96.38 ± 0.41 | 2 | | MCEM | TAN | 96.27 ± 0.45 | 96.37 ± 0.40 | 96.44 ± 0.42 | 96.17 ± 0.64 | | | M | KDB | 96.15 ± 0.49 | 95.81 ± 0.59 | 96.05 ± 0.50 | 95.82 ± 0.46 | | | PMEM | NB | 95.97 ± 0.72 | 95.99 ± 0.41 | 96.57 ± 0.25 | 96.39 ± 0.43 | | | ME | TAN | 96.27 ± 0.30 | 96.31 ± 0.28 | 96.41 ± 0.51 | 96.21 ± 0.52 | | | P | KDB | 96.12 ± 0.64 | 96.15 ± 0.49 | 95.69 ± 0.61 | 95.88 ± 0.50 | | | П | 1 | 91.86 ± 0.81 | 81.93 ± 1.95 | 70.73 ± 1.10 | 67.71 ± 0.78 | | | M | NB | 96.41 ± 0.65 | 96.52 ± 0.35 | 96.45 ± 0.25 | 96.57 ± 0.37 | | | PEM | TAN | 96.25 ± 0.34 | 96.05 ± 0.91 | 96.19 ± 0.28 | 96.31 ± 0.38 | | | | KDB | 96.29 ± 0.32 | 95.84 ± 0.59 | 95.81 ± 0.46 | 96.02 ± 0.47 | | | M | NB | 96.39 ± 0.46 | 96.47 ± 0.32 | 96.17 ± 0.50 | 96.55 ± 0.29 | | | NPEM | TAN | 96.42 ± 0.45 | 95.92 ± 0.57 | 96.21 ± 0.37 | 96.54 ± 0.48 | | | Z | KDB | 96.17 ± 0.44 | 95.75 ± 0.55 | 95.77 ± 0.52 | 95.87 ± 0.44 | | |)M | NB | 96.45 ± 0.45 | 95.88 ± 0.86 | 96.72 ± 0.36 | 96.28 ± 0.37 | 15 | | MCEM | TAN | 96.35 ± 0.47 | 96.39 ± 0.42 | 96.48 ± 0.29 | 96.21 ± 0.42 | | | X | KDB | 95.91 ± 0.35 | 96.05 ± 0.40 | 95.85 ± 0.48 | 96.01 ± 0.42 | | | M. | NB | 96.05 ± 0.43 | 96.29 ± 0.73 | 96.55 ± 0.37 | 96.31 ± 0.32 | | | PMEM | TAN | 96.28 ± 0.52 | 96.42 ± 0.37 | 96.28 ± 0.44 | 96.11 ± 0.52 | | | | KDB | 95.68 ± 0.78 | 96.07 ± 0.29 | 95.89 ± 0.33 | 95.95 ± 0.42 | | | П | 7 | 90.36 ± 0.65 | 80.87 ± 1.20 | 71.32 ± 1.13 | 67.75 ± 0.75 | | Table 1: Comparing our methods with Musicant et al. proposals [1]. Breast Cancer Wisconsin dataset, evaluated for increasing bag size $(m_i = \{3,7,15\})$ and MLH entropy (MLH = $\{0.0,0.25,0.5,0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and the four versions of our method learning different Bayesian classifiers. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |------|-----|------------------|------------------|------------------|------------------|-------| | CEM | NB | 96.49 ± 0.44 | 96.61 ± 0.41 | 96.54 ± 0.35 | 96.14 ± 0.89 | | | | TAN | 96.35 ± 0.48 | 96.41 ± 0.58 | 96.58 ± 0.43 | 96.19 ± 0.33 | | | M | KDB | 96.29 ± 0.43 | 95.88 ± 0.45 | 95.94 ± 0.40 | 95.38 ± 0.52 | | | Μ | NB | 96.37 ± 0.42 | 96.37 ± 0.47 | 96.58 ± 0.35 | 96.51 ± 0.36 | 30 | | PMEM | TAN | 96.21 ± 0.31 | 96.19 ± 0.42 | 96.38 ± 0.34 | 96.09 ± 0.47 | | | Ы | KDB | 96.12 ± 0.23 | 95.89 ± 0.59 | 95.81 ± 0.55 | 95.92 ± 0.44 | | | DT | | 90.39 ± 0.73 | 81.63 ± 1.27 | 70.26 ± 1.78 | 67.83 ± 0.70 | | | CEM | NB | 96.35 ± 0.32 | 96.38 ± 0.31 | 96.34 ± 0.43 | 96.09 ± 0.77 | | | CE | TAN | 96.05 ± 0.58 | 96.01 ± 0.41 | 96.12 ± 0.39 | 96.01 ± 0.53 | | | M | KDB | 96.08 ± 0.47 | 96.09 ± 0.47 | 96.02 ± 0.58 | 95.31 ± 0.52 | | | ΣM | NB | 96.61 ± 0.33 | 96.48 ± 0.41 | 96.29 ± 0.58 | 96.34 ± 0.44 | 50 | | PMEM | TAN | 96.14 ± 0.47 | 96.12 ± 0.49 | 95.92 ± 0.55 | 95.49 ± 0.44 | | | P | KDB | 95.88 ± 0.28 | 96.14 ± 0.34 | 95.29 ± 0.47 | 93.39 ± 0.95 | | | DT | | 86.62 ± 1.13 | 80.82 ± 1.70 | 71.14 ± 1.11 | 67.54 ± 0.45 | | Table 2: Comparing our methods with Musicant et al. proposals [1]. Breast Cancer Wisconsin dataset, evaluated for large bag sizes ($m_i = \{30, 50\}$) and MLH entropy (MLH = $\{0.0, 0.25, 0.5, 0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and two specific versions of our method learning different Bayesian classifiers. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |--------------|-----|------------------|------------------|------------------|------------------|-------| | A | NB | 81.20 ± 3.82 | 81.82 ± 3.46 | 78.69 ± 4.24 | 81.08 ± 3.77 | | | PEM | TAN | 84.53 ± 2.39 | 85.33 ± 1.87 | 84.64 ± 3.25 | 82.68 ± 2.77 | | | | KDB | 88.92 ± 2.28 | 89.57 ± 2.40 | 90.03 ± 2.80 | 89.86 ± 2.38 | | | M | NB | 85.19 ± 2.40 | 82.96 ± 3.06 | 78.55 ± 3.95 | 77.52 ± 4.90 | | | NPEM | TAN | 84.76 ± 2.95 | 84.53 ± 2.60 | 84.53 ± 1.87 | 83.68 ± 2.86 | | | Z | KDB | 89.63 ± 1.44 | 90.43 ± 0.98 | 89.34 ± 1.89 | 89.69 ± 2.46 | | | Μ | NB | 82.48 ± 3.75 | 83.62 ± 2.45 | 81.17 ± 5.48 | 77.49 ± 6.26 | 3 | | CE | TAN | 84.13 ± 3.12 | 83.59 ± 2.50 | 82.76 ± 3.07 | 83.13 ± 2.34 | | | M | KDB | 90.20 ± 1.13 | 90.01 ± 1.63 | 88.49 ± 2.10 | 88.86 ± 1.46 | | | PMEM MCEM | NB | 84.07 ± 2.14 | 83.33 ± 2.69 | 78.97 ± 2.22 | 75.87 ± 5.42 | | | ME | TAN | 84.53 ± 2.25 | 85.56 ± 1.42 | 83.56 ± 2.93 | 81.82 ± 2.53 | | | \mathbf{P} | KDB | 89.09 ± 2.47 | 90.28 ± 1.23 | 89.29 ± 2.43 | 87.38 ± 2.37 | | | П | - | 85.33 ± 1.57 | 83.48 ± 1.07 | 72.74 ± 2.04 | 68.07 ± 3.55 | | | M | NB | 83.70 ± 2.21 | 82.39 ± 3.08 | 79.83 ± 5.58 | 75.56 ± 2.23 | | | PEM | TAN | 85.41 ± 3.23 | 83.25 ± 1.70 | 84.19 ± 1.74 | 82.99 ± 1.97 | | | | KDB | 90.60 ± 1.68 | 89.12 ± 1.99 | 88.52 ± 2.96 | 87.72 ± 3.41 | | | M | NB | 85.07 ± 2.84 | 81.45 ± 3.46 | 78.21 ± 5.02 | 73.22 ± 3.65 | | | NPEM | TAN | 85.44 ± 2.81 | 85.90 ± 2.14 | 84.53 ± 2.21 | 82.68 ± 2.82 | | | Z | KDB | 88.18 ± 2.67 | 88.55 ± 3.52 | 89.40 ± 0.89 | 87.78 ± 3.30 | | | Μ | NB | 82.96 ± 2.55 | 80.51 ± 4.32 | 79.26 ± 4.43 | 73.48 ± 2.62 | 7 | | MCEM | TAN | 82.54 ± 2.43 | 82.17 ± 2.16 | 81.77 ± 2.74 | 82.74 ± 2.40 | | | M | KDB | 90.46 ± 1.90 | 88.55 ± 2.11 | 89.20 ± 2.87 | 88.38 ± 3.29 | | |)M | NB | 83.59 ± 3.47 | 82.17 ± 3.08 | 79.91 ± 3.10 | 73.93 ± 7.35 | | | PMEM | TAN | 83.16 ± 3.37 | 85.19 ± 1.82 | 82.45 ± 2.64 | 82.93 ± 2.25 | | | P] | KDB | 88.75 ± 2.94 | 88.92 ± 1.75 | 88.43 ± 2.28 | 88.75 ± 1.80 | | | П | 1 | 83.65 ± 1.85 | 76.15 ± 2.52 | 67.54 ± 2.26 | 59.36 ± 2.53 | | | A | NB | 82.11 ± 4.37 | 78.77 ± 4.42 | 81.68 ± 2.89 | 74.81 ± 4.96 | | | PEM | TAN | 85.10 ± 2.69 | 87.18 ± 2.26 | 83.05 ± 2.72 | 84.27 ± 2.68 | | | | KDB | 89.26 ± 2.40 | 89.89 ± 1.28 | 89.57 ± 1.67 | 87.35 ± 2.60 | | | M | NB | 80.80 ± 3.55 | 82.96 ± 3.60 | 78.92 ± 6.65 | 76.32 ± 4.97 | | | NPEM | TAN | 84.39 ± 2.54 | 84.81 ± 1.97 | 83.48 ± 2.33 | 83.08 ± 4.67 | | | Ξ | KDB | 89.69 ± 1.87 | 89.04 ± 2.03 | 87.09 ± 2.94 | 85.61 ± 3.50 | | | MCEM | NB | 81.54 ± 3.85 | 81.37 ± 2.22 | 76.67 ± 5.17 | 75.58 ± 3.42 | 15 | | | TAN | 85.33 ± 1.76 | 83.02 ± 3.72 | 83.42 ± 2.33 | 83.48 ± 2.76 | | | | KDB | 89.40 ± 1.87 | 88.97 ± 1.99 | 88.60 ± 1.76 | 87.81 ± 2.64 | | |)M | NB | 83.93 ± 4.01 | 81.51 ± 5.31 | 81.08 ± 3.46 | 76.52 ± 7.06 | | | PMEM | TAN | 84.36 ± 2.08 | 83.65 ± 1.86 | 83.22 ± 1.76 | 83.25 ± 2.08 | | | Pl | KDB | 88.58 ± 3.35 | 89.43 ± 1.73 | 90.09 ± 2.04 | 86.47 ± 2.82 | | | П | - | 81.23 ± 2.14 | 74.22 ± 1.63 | 64.69 ± 1.66 | 57.87 ± 1.91 | | Table 3: Comparing our methods with Musicant et al. proposals [1]. Ionosphere dataset, evaluated for increasing bag size $(m_i = \{3,7,15\})$ and MLH entropy (MLH = $\{0.0,0.25,0.5,0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and the four versions of our method learning different Bayesian classifiers. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |------|-----|------------------|------------------|------------------|------------------|-------| | CEM | NB | 82.85 ± 2.79 | 79.72 ± 4.78 | 77.04 ± 3.79 | 72.48 ± 3.40 | | | CE | TAN | 85.33 ± 2.14 | 83.96 ± 1.51 | 83.19 ± 2.56 | 83.19 ± 2.68 | | | M | KDB | 88.83 ± 2.87 | 90.28 ± 2.19 | 89.06 ± 1.41 | 86.58 ± 2.54 | _ | | MEM | NB | 80.28 ± 3.62 | 81.17 ± 3.73 | 78.15 ± 2.08 | 71.99 ± 2.50 | 30 | | ΜË | TAN | 84.13 ± 3.11 | 85.13 ± 2.64 | 84.25 ± 2.13 | 82.82 ± 3.05 | | | Ъ | KDB | 90.26 ± 1.46 | 88.92 ± 2.30 | 88.35 ± 3.73 | 85.38 ± 3.40 | | | ΓG | 1 | 81.87 ± 3.27 | 71.85 ± 4.20 | 63.09 ± 2.47 | 57.18 ± 1.35 | | | CEM | NB | 82.71 ± 1.65 | 82.76 ± 2.15 | 76.55 ± 5.62 | 75.24 ± 2.94 | | | CE | TAN | 84.90 ± 1.85 | 84.47 ± 1.93 | 84.76 ± 2.79 | 82.39 ± 2.52 | | | M | KDB | 88.06 ± 1.48 | 89.97 ± 0.52 | 87.75 ± 2.41 | 85.50 ± 2.99 | | | Μ | NB | 84.19 ± 4.68 | 81.79 ± 2.43 | 78.46 ± 4.29 | 73.82 ± 3.41 | 50 | | PMEM | TAN | 85.21 ± 1.33 | 83.93 ± 2.18 | 84.05 ± 2.79 | 80.94 ± 2.93 | | | P | KDB | 88.83 ± 1.21 | 89.03 ± 1.66 | 89.57 ± 2.37 | 86.47 ± 2.21 | | | DT | | 82.05 ± 1.43 | 72.79 ± 2.51 | 61.94 ± 3.53 | 56.05 ± 1.87 | | Table 4: Comparing our methods with Musicant et al. proposals [1]. Ionosphere dataset, evaluated for large bag sizes ($m_i = \{30, 50\}$) and MLH entropy (MLH = $\{0.0, 0.25, 0.5, 0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and two specific versions of our method learning different Bayesian classifiers. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |----------------|-----|------------------|------------------|------------------|------------------|-------| | M | NB | 99.75 ± 0.08 | 99.73 ± 0.05 | 99.73 ± 0.08 | 99.73 ± 0.12 | | | PEM | TAN | 99.64 ± 0.21 | 99.75 ± 0.15 | 99.75 ± 0.08 | 99.67 ± 0.16 | 1 | | | KDB | 99.48 ± 0.36 | 99.23 ± 0.24 | 99.37 ± 0.25 | 99.54 ± 0.35 | | | M | NB | 99.70 ± 0.08 | 99.73 ± 0.05 | 99.73 ± 0.06 | 99.75 ± 0.08 | | | NPEM | TAN | 99.62 ± 0.22 | 99.70 ± 0.08 | 99.67 ± 0.16 | 99.26 ± 0.87 | | | \mathbf{Z} | KDB | 99.34 ± 0.30 | 99.32 ± 0.54 | 99.48 ± 0.31 | 99.32 ± 0.33 | | | M. | NB | 99.73 ± 0.04 | 99.73 ± 0.02 | 99.73 ± 0.04 | 99.73 ± 0.04 | 3 | | MCEM | TAN | 99.70 ± 0.15 | 99.73 ± 0.09 | 99.73 ± 0.12 | 99.67 ± 0.12 | | | \mathbb{N} | KDB | 99.29 ± 0.37 | 99.40 ± 0.34 | 99.21 ± 0.26 | 99.40 ± 0.24 | | | M. | NB | 99.70 ± 0.08 | 99.73 ± 0.12 | 99.73 ± 0.06 | 99.70 ± 0.08 | | | PMEM | TAN | 99.71 ± 0.23 | 99.73 ± 0.12 | 99.75 ± 0.15 | 99.73 ± 0.17 | | | P | KDB | 99.59 ± 0.22 | 99.37 ± 0.42 | 99.34 ± 0.39 | 99.48 ± 0.26 | | | П | - | 96.91 ± 0.59 | 88.22 ± 1.19 | 75.85 ± 1.49 | 71.17 ± 0.88 | | | A | NB | 99.73 ± 0.09 | 99.73 ± 0.12 | 99.73 ± 0.09 | 99.70 ± 0.08 | | | PEM | TAN | 99.54 ± 0.25 | 99.75 ± 0.15 | 99.73 ± 0.12 | 99.62 ± 0.13 | | | Д | KDB | 99.48 ± 0.31 | 99.21 ± 0.31 | 99.21 ± 0.51 | 99.18 ± 0.32 | | | M | NB | 99.73 ± 0.18 | 99.73 ± 0.20 | 99.70 ± 0.15 | 99.73 ± 0.19 | | | NPEM | TAN | 99.56 ± 0.33 | 99.75 ± 0.19 | 99.64 ± 0.13 | 99.73 ± 0.17 | 1 | | Ξ | KDB | 99.48 ± 0.26 | 99.41 ± 0.34 | 99.43 ± 0.48 | 99.37 ± 0.39 | | | M. | NB | 99.73 ± 0.05 | 99.75 ± 0.08 | 99.75 ± 0.08 | 99.73 ± 0.07 | 7 | | MCEM | TAN | 99.72 ± 0.23 | 99.70 ± 0.15 | 99.71 ± 0.08 | 99.70 ± 0.15 | | | M | KDB | 99.54 ± 0.21 | 99.29 ± 0.46 | 99.23 ± 0.42 | 99.26 ± 0.41 | | | M. | NB | 99.73 ± 0.05 | 99.71 ± 0.08 | 99.67 ± 0.11 | 99.73 ± 0.09 | | | PMEM | TAN | 99.64 ± 0.30 | 99.64 ± 0.17 | 99.62 ± 0.35 | 99.64 ± 0.13 | | | PI | KDB | 99.42 ± 0.32 | 99.29 ± 0.41 | 99.21 ± 0.31 | 99.40 ± 0.27 | | | П | - | 96.31 ± 0.74 | 86.78 ± 1.92 | 75.77 ± 1.63 | 71.58 ± 0.81 | | | M | NB | 99.73 ± 0.10 | 99.73 ± 0.12 | 99.73 ± 0.12 | 99.73 ± 0.12 | | | PEM | TAN | 99.72 ± 0.15 | 99.73 ± 0.17 | 99.75 ± 0.08 | 99.71 ± 0.15 | | | Щ | KDB | 99.37 ± 0.31 | 99.37 ± 0.35 | 99.51 ± 0.24 | 99.51 ± 0.38 | | | M | NB | 99.73 ± 0.12 | 99.73 ± 0.04 | 99.73 ± 0.05 | 99.73 ± 0.05 | | | NPEM | TAN | 99.75 ± 0.08 | 99.72 ± 0.08 | 99.54 ± 0.27 | 99.71 ± 0.19 | | | \overline{z} | KDB | 99.32 ± 0.44 | 99.37 ± 0.37 | 99.32 ± 0.39 | 99.23 ± 0.44 | | | Z | NB | 99.73 ± 0.07 | 99.71 ± 0.08 | 99.75 ± 0.08 | 99.70 ± 0.08 | 15 | | CE | TAN | 99.75 ± 0.08 | 99.67 ± 0.11 | 99.67 ± 0.16 | 99.62 ± 0.18 | | | MCEM | KDB | 99.23 ± 0.36 | 99.40 ± 0.49 | 99.23 ± 0.36 | 99.37 ± 0.30 | | | | NB | 99.73 ± 0.12 | 99.67 ± 0.11 | 99.73 ± 0.06 | 99.67 ± 0.11 | | | PMEM | TAN | 99.62 ± 0.28 | 99.59 ± 0.25 | 99.64 ± 0.13 | 99.70 ± 0.08 | | | PI | KDB | 99.34 ± 0.33 | 99.29 ± 0.39 | 99.29 ± 0.25 | 99.40 ± 0.32 | | | П | - | 94.29 ± 0.93 | 87.30 ± 1.10 | 75.44 ± 0.89 | 71.81 ± 1.04 | | Table 5: Comparing our methods with Musicant et al. proposals [1]. Dermatology dataset, evaluated for increasing bag size ($m_i = \{3,7,15\}$) and MLH entropy (MLH = $\{0.0,0.25,0.5,0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and the four versions of our method learning different Bayesian classifiers. | MLH | | 0.0 | 0.25 | 0.5 | 0.75 | m_i | |------|-----|------------------|------------------|------------------|------------------|-------| | CEM | NB | 99.73 ± 0.01 | 99.73 ± 0.01 | 99.71 ± 0.08 | 99.71 ± 0.08 | | | CE | TAN | 99.67 ± 0.24 | 99.70 ± 0.15 | 99.73 ± 0.17 | 99.67 ± 0.11 | | | M | KDB | 99.29 ± 0.46 | 99.43 ± 0.24 | 99.23 ± 0.47 | 99.04 ± 0.48 | | | ΣM | NB | 99.73 ± 0.04 | 99.71 ± 0.08 | 99.72 ± 0.08 | 99.64 ± 0.13 | 30 | | ME | TAN | 99.73 ± 0.02 | 99.75 ± 0.08 | 99.67 ± 0.24 | 99.70 ± 0.08 | | | Ъ | KDB | 99.32 ± 0.22 | 99.18 ± 0.35 | 99.37 ± 0.42 | 99.02 ± 0.48 | | | ΓG | 1 | 91.17 ± 1.34 | 87.76 ± 2.33 | 76.72 ± 0.87 | 72.32 ± 0.89 | | | Μ | NB | 99.67 ± 0.11 | 99.73 ± 0.12 | 99.73 ± 0.12 | 99.59 ± 0.14 | | | MCEM | TAN | 99.64 ± 0.13 | 99.67 ± 0.11 | 99.64 ± 0.13 | 99.62 ± 0.22 | | | | KDB | 99.56 ± 0.33 | 99.37 ± 0.21 | 99.04 ± 0.60 | 98.55 ± 0.47 | | | Μ | NB | 99.73 ± 0.09 | 99.71 ± 0.08 | 99.67 ± 0.11 | 99.54 ± 0.17 | 50 | | PME | TAN | 99.67 ± 0.11 | 99.70 ± 0.08 | 99.59 ± 0.25 | 99.41 ± 0.23 | | | | KDB | 99.48 ± 0.33 | 99.23 ± 0.38 | 98.25 ± 0.62 | 95.57 ± 1.64 | | | DT | | 95.71 ± 0.91 | 87.49 ± 1.79 | 74.29 ± 1.22 | 71.39 ± 0.95 | | Table 6: Comparing our methods with Musicant et al. proposals [1]. Dermatology dataset, evaluated for large bag sizes $(m_i = \{30, 50\})$ and MLH entropy (MLH = $\{0.0, 0.25, 0.5, 0.75\}$) using a 10×5 fold CV. The result is the accuracy and associated standard deviation, for their best proposal (DT) and two specific versions of our method learning different Bayesian classifiers.