
SpiNNaker: Impact of Traffic Locality, Causality and
Burstiness on the Performance of the Interconnection Network

Javier Navaridas†, Luis A. Plana*, Jose Miguel-Alonso†, Mikel Luján*, Steve Furber*

† Dpt. of Computer Architecture and Technology
The University of the Basque Country, Spain

Manuel de Lardizabal, 1. 20018 San Sebastian

* School of Computer Science
The University of Manchester

Oxford Road, Manchester M13 9PL, UK.

{javier.navaridas, j.miguel}@ehu.es {plana, mikel.lujan, steve.furber}@manchester.ac.uk

ABSTRACT
The SpiNNaker system is a biologically-inspired massively
parallel architecture of bespoke multi-core System-on-Chips. The
aim of its design is to simulate up to a billion spiking neurons in
(biological) real-time. Packets, in SpiNNaker, represent neural
spikes and these travel through the two-dimensional triangular
torus network that connects the over 65 thousand nodes housed in
the largest size of SpiNNaker.

The research question that we explore is the impact that spatial
locality, temporal causality and burstiness of the traffic have on
the performance of such interconnection network. Given the
limited knowledge of neuron activity patterns, we propose and use
synthetic traffic patterns which resemble biological neural traffic
and allow tuning of spatial locality. Causality is explored by
means of temporal patterns that maintain a specified overall
network load while allowing at the node level autonomous causal
traffic generation. Part of the traffic is generated automatically,
but the remaining traffic is triggered by a spike arrival in the form
of a packet or a burst of packets; as neural stimuli do. In this way,
we generate non-uniform traffic patterns with an evolving
concentration of activity at nodes which contain more active parts
of the spiking neural network.

Given the application domain, the simulation-based study focuses
on the real-time behavior of the system rather than focusing on
standard HPC network metrics. The results show that the
interconnection network of SpiNNaker can operate without
dropping packets with traffic loads that exceed more than 3.5
times those required to simulate 109 spiking neurons, despite
using non-local traffic. We also find that increments in the degree
of traffic causality do not affect the performance of the system,
but burstiness in the traffic can hurt performance.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Network topology.

C.3 [Special-Purpose and Application-Based Systems]: – Real-
time and embedded systems.

C.4 [Performance of Systems]: – Modeling Techniques,

Performance attributes.

General Terms
Performance, Design, Verification.

Keywords
Interconnection Networks, Massively Parallel Systems,
Performance Evaluation, Power-Efficient Architectures, Real-time
Applications, Spiking Neural Networks, System-on-Chip, Traffic
Characterization.

1 INTRODUCTION
SpiNNaker is a massively parallel architecture designed to model
large-scale spiking neural networks in biological real-time. Its
design is based around bespoke multi-core System-on-Chips
which are interconnected using a two-dimensional triangular
torus. Neural models running in the system communicate by
means of spike events that occur when a neuron is stimulated
beyond a given threshold and then fires. Spike events are
communicated to all connected neurons, with typical fan-outs on
the order of 103. Applications such as these have abundant
parallelism and no explicit requirement to maintain consistency in
shared memories. Another characteristic of the biological process
is its natural resilience to failures: neurons may die, spikes may be
missed, but the brain remains functioning appropriately.
Furthermore, the biological process advances at very low pace
when compared to standard electronic components: milliseconds
versus microseconds [4]. The design of SpiNNaker takes
advantage of these characteristics to deploy a well-balanced, low-
power massively parallel architecture. The largest configuration
(to be deployed by 2012) houses 216 nodes creating a system with
over one million computing cores capable of simulating spiking
neural networks with up to one billion (109) neurons. To put this
number into perspective, a human brain contains approximately
1011 neurons.

In a previous paper [13], we justified the interconnection network,
characterized analytically some of its topological properties, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.

Copyright 2010 ACM 978-1-4503-0044-5/10/05...$10.00.

investigated appropriate values for certain timeout parameters of
the packet dropping mechanisms used to avoid deadlock and
livelock. We also investigated the temporal evolution of the
system under different levels of degradation due to faults,
showing the suitability of a novel mechanism to keep the system
working stably: the emergency routing. A limitation of that study
was its reliance on plain uniform, point-to-point traffic from
independent traffic sources.

This paper overcomes this and carries out a more extensive
evaluation using more complex and realistic traffic patterns. In
particular, we explore how traffic locality, causality and
burstiness may affect the performance figures of the
interconnection network.

Given the limited scientific knowledge of activity patterns in large
biological spiking neural networks [5] [18], we use synthetic
traffic patterns which resemble biological neural traffic while
allowing tuning spatial locality: from very local traffic with
packets traveling small distances, to very distant ones in which
packets are likely to travel across the whole network. Moreover
we explore causality by means of temporal patterns that use a
two-folded traffic generation scheme: independent traffic
generation plus causal traffic generation. In other words, part of
the traffic is generated automatically, but the remaining traffic is
triggered by the arrival of a packet (as neural stimuli do) in the
form of a packet or a burst of packets.

The structure of this paper is organized as follows: Section 2
describes the architecture of the SpiNNaker system. The
experimental set-up of the simulation-based environment is
discussed in Section 3. Section 4 presents and discusses the results
of the experimental evaluation. Section 5 is devoted to discuss
some related projects. Finally, Section 6 closes this paper with the
main conclusions of this research work.

2 SPINNAKER ARCHITECTURE
SpiNNaker is a system-on-chip (SoC)-based architecture designed
to support the real-time simulation of large networks of spiking
neurons (up to 109). To emulate the very high connectivity of
biological systems, SpiNNaker uses a self-timed, packet-switched
interconnection network which gives support to efficient

multicast, with high bandwidth and low-delay. The heart of the
communication infrastructure is an on-chip router and the self-
timed implementation of the fabric that allows the seamless
extension of the on-chip communications to include the inter-chip
links. We encourage the interested reader to check [15] for a more
detailed description of the system at hardware level and [7] for an
engineering-oriented overview of biologically plausible neural
networks applications and systems.

2.1 SpiNNaker Node
The basic block of the interconnection network is the SpiNNaker
chip. It contains one multi-core SoC with 20 low-power
ARM968S-E processing cores and one SDRAM chip. On-chip,
each ARM core has a tightly-coupled dedicated memory that can
hold 32KBytes of instructions and 64Kbytes of data. Processing
units are provided with other useful modules such as the timer, the
vector interrupt controller (VIC in the figure), the communication
controller and the DMA controller. A conceptual representation of
the SpiNNaker chip is depicted in Figure 1. Detailed low-level
simulations of the chip using Verilog and SystemC confirmed that
each of the cores is able to simulate up to around 1000 individual
neurons [9].

All the cores in a chip share a SDRAM in which synaptic
connection information is stored. Access to this shared storage
space is carried out by means of a self-timed NoC [6] which is
used to connect resources in the chip. This NoC provides higher
communication bandwidth (8 Gbps), lower contention and lower
consumption than any typical bus-based architecture [16]. Each
chip is also provided with other subsystems used for booting and
managing purposes, which are also accessed through the NoC.
The Boot ROM stores the minimal code to boot and verify the
chip. The system controller is in charge of performing
management functions at the chip level. Finally, every chip has an
Ethernet connection that can be used for loading the application
data [11], managing the system from a console and also for fault-
tolerance purposes. However, given that this sub-module requires
a dedicated core, only a few chips of the system will make use of
this connection, being them in charge of distributing through the
SpiNNaker interconnection network the necessary Ethernet
received traffic.

Figure 1. Schematic model of the SpiNNaker chip with all its

components depicted.

Figure 2. Architecture of the router. Black arrows represent

links outwards from the chip. White arrows represent hard-

wired links within the chip.

2.2 SpiNNaker Router
A depiction of the router is shown in Figure 2. It has 20 ports for
internal use of the ARM cores and six ports to communicate with
six adjacent chips. All ports are full-duplex and implement self-
timed protocols. The organization within the router is hierarchical;
ports are merged in three stages before using the actual routing
engine. Note that the router is able to forward a single packet at
once, but works faster than transmission ports. Therefore, most of
the time, routers will be idle, and router delay barely affects the
pace at which packets are processed.

The router is designed to support point-to-point and multicast
communications, as required by the target applications. The
multicast engine helps reducing pressure at the injection ports,
and, compared to a pure point-to-point alternative, it reduces
significantly the number of packets that traverse the network.
Information interchange is performed using small, 40-bit packets.
It is important to indicate that routers make routing decisions
based on the source address (neuron identifier) of the packets.
Hence, packets do not contain any information about its
destination(s), only the neuron that fired it. The network itself will
deliver the packets to all chips containing neurons that have
synaptic connections with the source neuron. These connections
are embedded in the 1024-word routing tables inside the routers,
and must be preloaded using application-specific information. To
minimize the space pressure on the routing tables, these offer a
masked associative route look-up. In addition the routers are
designed to perform a default routing that sends the packet
following a straight line, a process that avoids using extra entries
in the routing tables. For example, if the packet comes from the
North it will be sent to the South. The expected shape of the
routes among chips is formed by two straight lines connected at a
single inflection point to keep the number of entries in each table
as low as possible [10].

The network topology allows two-hop routes to go from a chip to
each one of its neighbors—see Figure 3. These two-hop paths

between neighbor nodes are known as emergency routes and may
be invoked to bypass problematic links due to transient congestion
states or link failures. In order to minimize chip area, the
emergency routing mechanism implements only one of these
turns. Our previous study [13] showed the potential of such
mechanism for keeping the system operating stably despite
considering scenarios in which the interconnection network
suffered of high number of link failures (up to 1024).

The SpiNNaker flow-control is straightforward. When a packet
arrives to an input port, one or more output ports are selected and
the router tries to transmit the packet through them. If the packet
cannot be forwarded, the router will keep trying, and after a given
amount of time it will also test the clockwise emergency route—
both the regular and the emergency route will be checked. Finally,
if a packet stays in the router for longer than a given threshold—a
router parameter: waiting time—the packet will be dropped to
avoid deadlock scenarios. To avoid livelock situations, packets
have an age field in their header. When two ages pass and the
packet is still in transit, it is considered as outdated and dropped.
The ages are global to the whole system and its time-span is
arbitrary, a system configuration parameter. Appropriate values
for these parameters were provided in our previous study [13].

Emulating the behavior of biological neural networks, dropped
packets in SpiNNaker are not re-sent. Losing neurons (one per
second in human brains) or signals does not impede the normal
functioning of the biological processes; although, the dropping
level must be kept (very) low. We consider acceptable any packet-
dropping level below one dropped packet every 106 injected.

2.3 Interconnection Network Topology
SpiNNaker chips are arranged in a two-dimensional triangular
torus topology with links to the neighbors in North, South, East,
West, Southwest and Northeast. An 8×8 instance of this topology
is depicted in Figure 3. Note that chips at the network boundaries
are connected by means of peripheral, wrap-around links that are
not shown in the figure for the sake of clarity. The topological
characteristics of the SpiNNaker interconnection network were
analytically derived in [13], and validated by means of simulation.
Furthermore, in that work we computed the expected network
utilization during regular operation of the system. This value was
roughly a packet generation rate of 0.01 packets/cycle/node. In the
following experiments, we represent this generation rate as RO,
standing for Regular Operation.

Using the 6-port router within the SpiNNaker chip, the system
could be arranged as a three-dimensional (3D) torus, which has
theoretically superior topological properties (e.g,. bisection
bandwidth and distance-related characteristics) than those of the
topology of SpiNNaker. However the topology of SpiNNaker has
some advantageous properties: a two-dimensional system is easier
to deploy and the diagonal links add redundancy to the design, a
redundancy that can be exploited using the previously described
emergency routing mechanism. Note that a three-hop emergency
routing could be implemented in a 3D torus, but the extra chip
area required makes it unaffordable in the context of SpiNNaker.
It is also noticeable that routing in a 3D torus requires more
entries in the routing tables, as regular routes are composed by
three straight lines instead of two. This would increase the entries
in the routing tables roughly by a 25% which may force to
increase the number of entries in each table and, therefore, the
chip area. In our previous paper [13], we compared the behavior

Figure 3. Example of an 8×8 SpiNNaker topology. Peripheral

connections are not depicted for the sake of clarity. The

regular route (slashed line) and the two emergency routes

(thick arrows) between the shaded nodes are shown.

of the two topologies, showing how the availability of the
emergency routing tipped the scale in favor of the SpiNNaker
topology as it provided a more stable behavior across different
scenarios of network degradation.

3 EXPERIMENTAL SET-UP
We perform a simulation-based evaluation in which the main
figure of merit is the packet dropped ratio. As explained
previously, the application modeled by SpiNNaker tolerates some
degree of packet loss, but it must be kept low. Any packet
dropped ratio below 10-6 is considered acceptable. This section
describes the environment used to collect the results.

3.1 Model of the System
A detailed model of the SpiNNaker interconnection network is
implemented in INSEE, a fast, flexible and mature simulation
environment [17] for interconnection networks. The developed
node model contains most of the features of the router, as well as
the topological arrangement. In order to be able to confront
simulations of large-scale systems, some simplifications are taken.
We model a cycle as the time to route and forward a packet. Since
routing is faster than transmission, the router can process several
packets in a single cycle, provided that all the involved input and
output ports are different.

This study evaluates the largest configuration of the system,
which is composed by 216 nodes arranged on a 256×256 layout.
The model of the router includes the emergency routing and
deadlock avoidance mechanisms (packet-dropping). The
clockwise emergency routing is checked during the last 3 cycles
before dropping the packet. As suggested in [13], the waiting time
parameter of the deadlock avoidance mechanism has been fixed to
5 cycles.

Regarding the routing tables, the actual system will configure
them on a per biological network basis. As our evaluation should
not be tied to any particular biological network, the table-based
routing is not used, a simplification that significantly reduces the
computing resources required to perform simulations. As the
regular routes between chips in the actual system will attempt to
use a minimal path with a single inflection point [10], packets are
sent through minimal routes using Dimension Order Routing
(DOR). When applying DOR, the diagonal links are considered a
third dimension (Z), therefore the routes followed by packets were
always XY, XZ or YZ—note that a XYZ route can not be a
minimal path.

The nodes are modeled as independent traffic sources that inject
packets following a Bernoulli temporal distribution, in which the
packet injection rate (packets/cycle/node) can be tuned to any
desired value. Furthermore we provide them with the capability to
react to receiving a packet by generating a new packet or a burst
of packets. We model this reactive traffic with two parameters,
the probability to trigger a new packet (p) and the number of
packets that are triggered (n). Given that all the ports from the
cores inside a chip are merged, we model the whole set of cores as
a single injection queue with room for up to four packets. If this
queue is full and a core tries to inject, the packet is dropped
because there is no room to store it.

3.2 Workloads
We propose workloads that introduce the possibility to modulate
the locality and causality of the traffic while resembling the kind

of workloads that will execute on SpiNNaker. In previous work
 [10], the neuron-to-core mapping was explored with the purpose
of increasing locality, i.e. reducing the distance among
communicating nodes. In this paper we want to explore how
critical the mapping of the neurons onto the system may become.

Despitve the application model being known, there is no detailed
biological expression describing concrete and detailed brain
activity. For this reason, this evaluation uses Poisson distributions
with different values of its lambda (λ) parameter to simulate the
way packets spread through the network. Note that this is a
comprehensible model of the kind of traffic that will be executed
over SpiNNaker. A combination of Poisson distributions with
different lambdas could be a more accurate model but, for the sake
of simplicity, we will restrict the study to a single Poisson.

For every injected packet, we first select, using the given
distribution, the distance (number of hops) that the packet will
traverse and then randomly select a destination node located at
this distance. We have used seven different values for the lambda
parameter of the Poisson distribution with the purpose of
modeling different degrees of locality, from very local (λ=2) to
very distant (λ=128). Figure 4 shows the distance distributions
generated by each of the used values of λ. The greater the value of
λ the more distant is the generated traffic.

Uniform traffic, as the used in [13], has no implicit bottleneck in
its definition and, consequently, produces a balanced use of
network resources. In contrast, the Poisson-based spatial patterns
used in this paper do not guarantee balanced network usage and,
therefore, bottlenecks may appear. Capturing this effect is
desirable, as the traffic generated by the applications running on
SpiNNaker may not (and probably will not) exhibit a balanced
utilization of network resources.

3.3 Experimental Methodology
The experiments are carried out with the following methodology.
We start with an empty network that is fed by the selected
workload. A warm-up phase of 25K cycles is executed, after
which a convergence phase starts in which the figures of interest
are measured and collected every 103 cycles. Once three
consecutive intervals are within a range of ±5% difference, the
system is considered stable, and a statistics collection phase starts.
In this phase the statistics are collected for 10 intervals of 104
cycles each. In the plots we present the average values of these 10

Poisson distributions used in our study

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140 160

Distance

P
ro
b
a
b
il
it
y

Poisson 2

Poisson 4

Poisson 8

Poisson 16

Poisson 32
Poisson 64

Poisson 128

Figure 4. The Poisson distributions used to model different

degrees of locality.

intervals. As the figures of merit are captured once the system has
converged, the standard deviations are negligible and therefore are
not plotted. In the graphs illustrating system evolution, the
average of each figure of merit is captured every 10 cycles, which
allows capturing the dynamic behavior of the interconnection
network.

The first set of experiments uses independent traffic sources (non-
causal traffic) with a wide range of traffic generation rates;from
0.1·RO (0.001 packets/cycle/node) to 10·RO (0.1
packets/cycle/node). In this way, we can observe the relation
between the degree of locality and the ratio of dropped packets.

In the second set of experiments, we model traffic causality using
the trigger mechanism explained previously: the reception of a
packet can generate a single packet or a burst of them. To make
fair comparisons we test different configurations that manage the
same overall amount of traffic. To do so, we have to solve the
following equation,

∑
∞

=

⋅⋅+=
1k

kpniiG

in which G is the desired total traffic generation rate, i is the
independent traffic generation rate, p is the probability to trigger a
new burst and n is the amount of packets generated in each burst.

In this set of experiments, we fix the generation rate (G) to RO
(0.01 packets/cycle/node) and consider different levels of causal
generation of packets. The values of p are deliberately selected to
generate constant values, across configurations, for the
independent generation rate: i=0.0099, i=0.009, i=0.0075 and
i=0.005 which correspond to 99%, 90%, 75% and 50% of the
desired G. Thus, for the causal generation of a single packet (n=1)
we use four different probabilities of triggering a packet: p=0.01,
p=0.1, p=0.25 and p=0.5. Similarly, for the causal generation of a
burst of 5 packets (n=5) we use four different probabilities of
triggering a burst: p=0.002, p=0.02, p=0.05 and p=0.1. For the
causal generation of a burst of 10 packets (n=10) we use:
p=0.001, p=0.01, p=0.025 and p=0.05. Finally, for the causal
generation of a burst of 20 packets (n=20) we use p=0.0005,
p=0.005, p=0.0125 and p=0.025. Notice that a burst of 20 packets
corresponds to a scenario where all the cores in the chip respond
to a packet reception.

These experiments study whether the causality and burstiness
implicit in spiking neural networks can generate excessive
injection-level contention and hurt the performance of the system.
However, as we will see later, the system can handle the RO and
loads that are considerably higher. Thus, to learn more about the
behavior of the interconnection network, we also consider
scenarios with much higher loads, which will be described later.

4 ANALYSIS OF RESULTS

4.1 Locality Study
The first set of experiments in our study revolves around the
impact that different degrees of traffic locality can have on the
performance of the interconnection network, measured as the
amount of packets dropped and the lowest generation rate at
which the system is forced to drop packets. As discussed before,
this study will provide some insights about the importance of
neuron mapping onto the SpiNNaker system.

Figure 5 shows the ratio of packets dropped for each
configuration. The X-axis shows the traffic generation rate (using
independent sources) and the Y-axis the measured ratio of
dropped/injected packets. Values not plotted are equal to zero,
which means that no packet is dropped. The shaded area at the left
delimits the expected injection rates during RO. The results show
that traffic locality has a great impact on the behavior of the
SpiNNaker interconnection network as the load at which it is
forced to drop packets is inversely proportional to the λ parameter.
The system can handle all the injected traffic, regardless of their
degree of locality, for injection rates up to 3.5·RO. For those
distributions that do not expose very distant spatial distributions
(λ≤32), we can see that even with a network pressure in excess of
ten times RO, the system is able to manage the traffic without
dropping any packet. This behavior reinforces the impression of
robustness encountered in [13].

In the experiments, we also observed that, when the network
operates with a load either well below or well above saturation, it
reaches the steady-state after a short transient period. When the
load is low, the steady-state is reached after a few hundred cycles.
Note that in such state, the system behaves perfectly: no packet is
dropped and latencies are low. Similarly, when the network is
working under high pressure the steady-state is reached after one
thousand cycles. In this case, the system behavior is unacceptable:
most of the packets are dropped and those packets that are lucky
enough to reach their destination suffer from severe latencies
(more than 5 times those experienced in non-saturated scenarios).

In contrast with the rapid convergence observed in the previous
scenarios, when the system is working at injection levels close to
its saturation point, the temporal evolution of performance
indicators is somewhat different. They rapidly progress, in just a
few hundred cycles, to a phase in which the system behaves as
non-saturated. During this phase the network operates correctly
and is able to deliver all the injected traffic. However, after a long
interval of several thousand cycles, the network enters into a long
transient phase (that spans a few thousand cycles) in which the
network starts to collapse, leading to the steady-state phase in
which the network is severely affected by saturation. This
behavior was not found when working with uniform traffic. Any
unbalance introduced by the Poisson traffic generates network
bottlenecks. The contention around these bottlenecks is eventually

Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic from independet sources

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Generation rate (packets/node/cycle)

P
a
c
k
e

t
d
ro

p
e
d

 r
a

ti
o

λ=128

λ=64

λ=32

λ=16

λ=8

λ=4

λ=2

Figure 5. Packet dropped ratio per configuration using

Poisson-spatial traffic from independent sources. Shaded area

amid 0.00 and 0.01 represents SpiNNaker’s regular operation.

spread to the whole network, in which case the network operates
as severely saturated.

The temporal evolution of the network when fed with RO load
(non-saturated), with a load close to the previously observed
saturation point (at 0.037 packets/cycle/node) and with a load well
beyond the saturation point (at 0.05 packets/cycle/node) are
plotted in Figure 6a, b and c, respectively. We limited the plot to
the first 30 Kcycles of the simulation, with the purpose of
allowing a clear visualization of the transient states. Three
important performance metrics are plotted. The first one is the
load accepted by the system, which is normalized to the provided
load in order to allow an easy comparison of system behavior.
The packet dropped ratio and the average delay suffered by the

packets are also plotted. The plotted figures were captured every
10 simulation cycles.

Another interesting finding from these experiments is that, in
those cases in which the network reaches saturation, the distance
distribution computed at injection and that measured at
consumption (considering those packets that are actually
consumed) are noticeably different. Figure 7 shows the
cumulative distance distribution of the system when being fed by
the most distant traffic (λ=128), at loads below and over the
saturation point. Three figures of merit are plotted: the first one is
the distance distribution at injection (Di), computed as the number
of hops in the shortest path between source and destination. The
second is the distance distribution at consumption (Dc), also
computed as the shortest path. Finally, the distribution of the

a) Temporal evolution - 256x256 SpiNNaker
Poisson traffic at low load - 0.01 packets/node/cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Simulation Clock (Kcycles)

N
o
rm

a
liz

e
d
 l
o
a
d

P
a

c
k
e
t

d
ro

p
p
e
d
 r

a
ti
o

0

100

200

300

A
v
g
.
d
e
la

y
 (

c
y
c
le

s
)

Normalized load

Packet dropped ratio

Average delay

b) Temporal evolution - 256x256 SpiNNaker
Poisson traffic at saturation point - 0.037 packets/node/cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Simulation Clock (Kcycles)

N
o
rm

a
liz

e
d
 l
o
a
d

P
a

c
k
e
t

d
ro

p
p
e
d
 r

a
ti
o

0

200

400

600

800

A
v
g
.
d
e
la

y
 (

c
y
c
le

s
)

.

Normalized load

Packet dropped ratio

Average delay

c) Temporal evolution - 256x256 SpiNNaker
Poisson traffic over saturation - 0.05 packets/node/cycle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Simulation Clock (Kcycles)

N
o
rm

a
liz

e
d
 l
o

a
d

P
a
c
k
e
t
d
ro

p
p
e
d
 r

a
ti
o

0

200

400

600

800

1000

A
v
g
.
d
e
la

y
 (

c
y
c
le

s
)

Normalized load

Packet dropped ratio

Average delay

Figure 6. Temporal evolution using Poisson-spatial traffic at different loads. a) Non-saturated at RO load (0.01

packets/cycle/node). b) Saturation point (0.037 packets/cycle/node). c) Over saturation (0.05 packets/cycle/node).

distance actually traveled by the packets, measured as the actual
number of hops the packet traveled, is also plotted (Dt). We want
to remark that the utilization of the emergency routing mechanism
only affects Dt.

Note how these three distributions are almost identical when the
system is operating under a low load, RO in Figure 7a. In
saturated scenarios, 10 RO in Figure 7b, the distance distribution
at injection does not experience any change. However the distance
distributions at consumption are noticeably different. Dc is shifted
to the left (shorter distances) meaning that those packets that have
to travel longer distances are more likely to be dropped. In
contrast, Dt is shifted to the right (longer distances). This is
because the frequent activation of the emergency routing
mechanism, due to the saturation scenario, is reflected as an
increase in the number of hops actually traveled by the packets.

4.2 Causality and Burstiness Study
The second set of experiments focuses on measuring the impact
that traffic causality and burstiness have on the performance of
the interconnection network. We simulate the network with causal
traffic at RO level (0.01 packets/cycle/node). For that level of
utilization none of the workloads forced the system to drop any
packet. Consequently, we need to put additional stress on the
network in order to capture the impact that the traffic properties
have on the performance of the network. For this reason, we use
the previously defined burst lengths (n) and probabilities of
triggering a burst (p), and use total generation rates (G) that are
around the point at which the traffic from independent sources
forced the system to drop packets (0.037 packets/cycle/node). We
only show the results for the most distant traffic (λ=128), but the
conclusions also hold for other λ values when managing loads
close to their corresponding saturation points. Values λ=64 and
λ=32 were checked, but not plotted for the sake of brevity.

Figure 8 shows the packet dropped ratio for each burst length. In
all cases, the higher degree of causality in the traffic the lower the
packet dropped ratio is once the system reaches saturation. This is
inherent to the causality of the traffic because, when packets are
dropped they do not reach their destination and, therefore, they do
not trigger other packets. For this reason the actual generation rate
is not as high as expected, which can be seen as a form of self-
throttling of the workload. Another important discovery is that
traffic burstiness affects the injection rate at which the network is
forced to drop packets. The larger the burst length and the

probability to trigger a burst are, the lower the generation rate at
which the network starts dropping packets. We want to remark,
however, that the used loads are more than three and a half times
the required one during the regular operation of the system.

We found that traffic locality and burstiness have a noticeable
impact on the performance of the interconnection network of
SpiNNaker. Another interesting finding is that the causal traffic
shelf-throttles: an increase in the number of dropped packets leads
to the decrease of the injection rate. To conclude, we have found
that the system is able to manage workloads that are significantly
more demanding than those expected during the regular operation
of the system, even in those scenarios in which the traffic
exhibited undesirable characteristics such as a low degree of
locality and large bursts. We can derive, hence, that the neuron-to-
node mapping while being important is not going to become a
critical issue when simulating actual neural activity with
SpiNNaker.

5 RELATED WORK
Research in simulating biologically plausible neural networks
(brain-like systems) has remained a hot topic for the last decades.
In the early nineties a team at U.C. Berkeley worked in the
Connectionist Network Supercomputer [1]. This project aimed to
build a supercomputer specifically tailored for neural computation
as a tool for connectionist research. The system was designed to
be implemented as a two-dimensional mesh, with a target size of
128 nodes (scalable to 512). Each node would incorporate a
general-purpose RISC processor plus a vector coprocessor, 16MB
of RAM and a router. To our knowledge, a prototype of the node
was built (under the codename T0), but the system never operated
as a network. Experiments using up to five nodes in a bus
configuration were discussed in [14].

More recently, the Microelectronics Division at the T.U. of Berlin
worked in a project [12] whose objectives were similar to those of
SpiNNaker. Part of this project is an acceleration board, called
SSE, implemented with a collection of FPGAs interconnected via
an on-board bus. An SEE accelerator is able to perform neural
computations 30 times faster than a desktop PC [8]. Other projects
used FPGAs for similar purposes, obtaining speedups of up to 50
compared to software-only implementations. However, as these
boards cannot be connected to form a network, they are not able to
scale to the magnitudes of SpiNNaker.

a) Cumulative distance distribution
Poisson (lambda=128) - Low load (0.01 packets/node/cycle)

0.0

0.2

0.4

0.6

0.8

1.0

80 100 120 140 160 180

Distance

C
u

m
u
la

ti
v
e

 p
ro

b
a

b
ili

ty

Di

Dc

Dt

b) Cumulative distance distribution
Poisson (lambda=128) - Saturation (0.1 packets/node/cycle)

0.0

0.2

0.4

0.6

0.8

1.0

80 100 120 140 160 180

Distance

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Di

Dc

Dt

Figure 7. Cumulative distance distribution functions measured at injection and at consumption.

a) Network fed at RO level (non-saturated). b) Saturated network at 10·RO load.

As far as we know, the only active project comparable to
SpiNNaker in terms of simulation scale is the BlueBrain project
 [2] which aims to create a biologically accurate functional model
of the brain. However, the high complexity of its neuronal model
does not allow it to work in real-time. In contrast with the
biologically-inspired SpiNNaker architecture, the BlueBrain
project does not contemplate the construction of any specific
computing system but uses a general-purpose supercomputer, an
IBM BlueGene [3].

6 CONCLUSIONS
This paper investigates the performance of the interconnection
network of SpiNNaker, a system designed for real-time simulation
of biologically plausible spiking neural networks. In particular,
for the first time we have analyzed the impact that traffic locality
and causality have on the real-time behavior. The system has been
evaluated under several different scenarios using Poisson spatial
distributions that allow tuning the degree of traffic locality, while
being a reasonable model of the actual traffic that has to be
supported by the system.

Similarly to other interconnection architectures, traffic locality
has a strong influence on the performance of SpiNNaker
interconnection network. However, even in the case of very
distant patterns, the network is able to manage the traffic without
dropping packets with injection rates well above three times the
required during regular system operation. This means that the

neuron mapping will not become a crucial issue. Moreover, for
those distributions that do not impose very distant communication
the system can manage the traffic for injection times up to 10
times the required during regular operation, which remarks the
system robustness found in previous evaluations [13].

Regarding the causality and burstiness of the traffic we have
found that the burstiness in the generation of traffic may generate
contention around the node that is injecting. This contention may
lead to dropping packets at loads at which the network would
operate flawlessly with non-causal traffic, but still significantly
higher than the load required during the regular operation of the
system. Another interesting property that we found is that causal
traffic manages to self-throttle, because the dropping of packets
leads to the reduction of the packet generation rate.

7 ACKNOWLEDGMENTS
The SpiNNaker project is supported by the Engineering and
Physical Sciences Research Council, through Grants
EP/D07908X/1 and GR/S61270/01, and also by ARM and Silistix.
Dr. Mikel Luján holds a Royal Society University Research
Fellowship. Authors from the University of the Basque Country
are supported by the Spanish Ministry of Education and Science,
grant TIN2007-68023-C02-02, and by Basque Government grant
IT-242-07. Dr. Javier Navaridas is supported by a post-doctoral
grant of the University of the Basque Country.

a) Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic with causality (1-packet bursts)

0.0

0.2

0.4

0.6

0.8

1.0

0.031 0.033 0.035 0.037 0.039 0.041

Generation rate (packets/node/cycle)

P
a
c
k
e

t
d
ro

p
p
e
d
 r

a
ti
o

n=0 p=0

n=1 p=0.01

n=1 p=0.1

n=1 p=0.25

n=1 p=0.5

b) Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic with causality (5-packet bursts)

0.0

0.2

0.4

0.6

0.8

1.0

0.031 0.033 0.035 0.037 0.039 0.041

Generation rate (packets/node/cycle)

P
a

c
k
e

t
d

ro
p

p
e

d
 r

a
ti
o

n=0 p=0

n=5 p=0.002

n=5 p=0.02

n=5 p=0.05

n=5 p=0.1

c) Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic with causality (10-packet bursts)

0.0

0.2

0.4

0.6

0.8

1.0

0.031 0.033 0.035 0.037 0.039 0.041

Generation rate (packets/node/cycle)

P
a

c
k
e

t
d

ro
p

p
e

d
 r

a
ti
o

n=0 p=0

n=10 p=0.001

n=10 p=0.01

n=10 p=0.025

n=10 p=0.05

d) Packet dropped ratio - 256x256 SpiNNaker
Poisson traffic with causality (20-packet bursts)

0.0

0.2

0.4

0.6

0.8

1.0

0.031 0.033 0.035 0.037 0.039 0.041

Generation rate (packets/node/cycle)

P
a

c
k
e

t
d
ro

p
p

e
d

 r
a

ti
o

n=0 p=0
n=20 p=0.0005
n=20 p=0.005
n=20 p=0.0125
n=20 p=0.025

Figure 8. Packet dropped ratio per configuration using Poisson-spatial traffic from bursty causal sources.

As reference, the thick grey line represents this figure when independent traffic sources are used.

a) 1-packet bursts. b) 5-packet bursts. c) 10-packet bursts. d) 20-packet bursts.

8 REFERENCES
[1] K Asanovic, J Beck, J Feldman, N Morgan, J Wawrzynek.

“A supercomputer for neural computation.” In Proc. 1994
Intl. Conf. on Neural Networks.

[2] BlueBrain project. Available (September 2009) at:
http://bluebrain.epfl.ch/.

[3] M. Blumrich, et al. “Design and Analysis of the BlueGene/L
Torus Interconnection Network”. IBM Research Report
RC23025 Dec. 2003.

[4] P Dayan and L Abbott, “Theoretical Neuroscience”.
Cambridge: MIT Press, 2001.

[5] S.A. Knock, A.R. McIntosh, O. Sporns, R. Kotter, P.
Hagmann, V.K. Jirsa, “The effects of physiologically
plausible connectivity structure on local and global dynamics
in large scale brain models” Journal of Neurosicence
Methods, 183(1), pp 86-94, 2009.

[6] S Furber, S Temple, and A Brown, “On-chip and inter-chip
networks for modelling large-scale neural systems,” in Proc.
International Symposium on Circuits and Systems, ISCAS-
2006, Kos, Greece, May 2006.

[7] S Furber, S Temple, “Neural Systems Engineering”. Journal
of The Royal Society Interface 4(13), pp 193-206, April
2007

[8] H Hellmich, M Geike, P Griep, P Mahr, M Rafanelli, H
Klar.. “Emulation engine for spiking neurons and adaptive
synaptic weights”. In Proc. IEEE International Joint
Conference on Neural Networks (IJCNN), 2005.

[9] X. Jin, S.B. Furber, and J.V. Woods. “Efficient Modelling of
Spiking Neural Networks on a Scalable Chip
Multiprocessor”. In Proc. of the International Joint
Conference on Neural Networks, 2008.

[10] MM Khan, DR Lester, LA Plana, A Rast, X Jin, E Painkras
and SB Furber. "SpiNNaker: Mapping Neural Networks onto
a Massively-Parallel Chip Multiprocessor". Proc. 2008

International Joint Conference on Neural Networks
(IJCNN2008).

[11] MM Khan, J Navaridas Palma, AD Rast, X Jin, LA Plana, M
Luján, JV Woods, J Miguel-Alonso, and SB Furber. “Event-
Driven Configuration of a Neural Network CMP System over
a Homogeneous Interconnect Fabric”. 8th Intl Symposium on
Parallel and Distributed Computing. July 2009. Lisbon,
Portugal.

[12] Microelectronics Division T.U. of Berlin. “Design and
implementation of spiking neural networks”. Available
(September 2009) at: http://mikro.ee.tu-berlin.de/spinn.

[13] J Navaridas, M Luján, J Miguel-Alonso, LA Plana, SB
Furber. “Understanding the Interconnection Network of
SpiNNaker”. 23rd International Conference on
Supercomputing (ICS’09), June 8-12, 2009, York Town
Heights, New York, USA.

[14] P Pfaerber and K Asanovic. “Parallel neural network training
on multispert”. In Proc. IEEE Third International Conference
on Algorithms and Architectures for Parallel Processing
(ICA3PP’97), 1997.

[15] LA Plana, SB Furber, S Temple, MM Khan, Y Shi, J Wu,
and S Yang. “A GALS Infrastructure for a Massively Parallel
Multiprocessor”. IEEE Design & Test of Computers,
Volume: 24 , Issue: 5, pp. 454 - 463, Sept.-Oct. 2007

[16] LA Plana, J Bainbridge, SB Furber, S Salisbury, Y Shi and J
Wu. “An on-chip and inter-chip communications network for
the spinnaker massively-parallel neural net simulator,” in
Proc. 2nd ACM/IEEE Intl. Symposium on Networks-on-Chip,
2008, pp. 215 – 216.

[17] FJ Ridruejo, J Miguel-Alonso. “INSEE: an Interconnection
Network Simulation and Evaluation Environment”. Lecture
Notes in Computer Science, Volume 3648 / 2005 (Proc.
Euro-Par 2005).

[18] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C.J.
Honey, et al., “Mapping the Structural Core of Human
Cerebral Cortex”, PloS. Biol. 6(7), 2008.

