
Cluster Comput
DOI 10.1007/s10586-009-0086-y

Full-system simulation of distributed memory multicomputers

Fco. Javier Ridruejo · Jose Miguel-Alonso ·
Javier Navaridas

Received: 8 October 2008 / Accepted: 8 March 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper we discuss environments for the full-
system simulation of multicomputers. These environments
are composed of a large collection of modules that simulate
the compute nodes and the network, plus additional link-
ing elements that perform communication and synchroniza-
tion. We present our own environment, in which we integrate
Simics with INSEE. We reuse as many Simics modules as
possible to reduce the effort of hardware modeling, and also
to simulate standard machines running unmodified operat-
ing systems. This way we avoid the error-prone effort of de-
veloping drivers and libraries. The environment we propose
in this paper enables us to show some of the difficulties we
found when integrating diverse tools, and how we were able
to overcome them. Furthermore we show some important
details to have into account in order to do a valid full-system
simulation of multicomputers, mostly related with synchro-
nization and timing. Thus, a trade-off has to be found be-
tween simulation speed and accuracy of results.

Keywords Full-system simulation · Interconnection
networks · Multicomputers · Clusters

F.J. Ridruejo · J. Miguel-Alonso (�) · J. Navaridas
Dep. of Computer Architecture and Technology, The University
of the Basque Country, P. Manuel de Lardizabal, 1, 20018
Donostia-San Sebastian, Spain
e-mail: j.miguel@ehu.es

F.J. Ridruejo
e-mail: franciscojavier.ridruejo@ehu.es

J. Navaridas
e-mail: javier.navaridas@ehu.es

1 Introduction

Supercomputing is a very valuable resource which is con-
tinuously growing in importance in business and science.
Current scientific studies rely on analysis and modeling of
different natural phenomena that require a huge amount of
computing power, which is not attainable using regular off-
the-shelf computers. For example, physicists, chemists or
pharmaceutical researchers simulate, for different purposes,
interactions between large numbers of molecules. Likewise,
in the business context, corporations demand large amounts
of computing power in order to use data mining software
over their huge data bases, with the objective of extracting
knowledge from raw data, and to use that knowledge to their
advantage. Obtaining patterns of consumer habits, boosting
sales, optimizing costs and profits, estimating stocks or de-
tecting fraudulent behavior are just a few interesting appli-
cation domains. At any rate, in both contexts, the required
computing power is only limited by the available resources.
In general, if available computing resources are doubled the
number of runs, the grain-size (whichever this means in the
particular application context), the size of the datasets or
whatever other parameter that affects execution time will be
increased in order to fully use the new resources. In other
words, the magnitude of the experiments is scaled up to the
available resources. This means that there is a permanent
demand of high-performance computers able to cope with
these challenging workloads.

A supercomputer is not only a piece of hardware. It is
actually a multipart system that integrates a large collection
of hardware and software elements. Therefore, the design of
a supercomputer is a complex task that comprises the selec-
tion and design of multiple components, such as compute el-
ements, storage, interconnection network, access elements,

mailto:j.miguel@ehu.es
mailto:franciscojavier.ridruejo@ehu.es
mailto:javier.navaridas@ehu.es

Cluster Comput

operating system, high performance libraries, parallel appli-
cations, etc. Depending on budget and availability, elements
can be designed from scratch; often, however, off-the-shelf
components are reused, either directly or modified to fulfill
tasks different to those they were designed for.

During the preliminary phases of the design of a su-
percomputer, elements are tested and evaluated separately,
in order to assess (and, if possible, improve) their perfor-
mance. These evaluations are carried out using synthetic
loads, based on statistical distributions, which allow for fast
simulations, but may not be truly representative of actual
workloads. Simulation speed is important in this phase, in
order to be able to explore a wide range of options to help in
the decision-making process, choosing the more promising
alternatives.

In subsequent design phases the simulated model grows
in complexity, and more realistic evaluations are performed,
mixing a complex model of the component under evaluation
with simpler models of the rest of the system, usually work-
ing with traces obtained in actual machines. Traces are more
realistic than synthetic workloads, but may comprise some
characteristics of the system in which they were taken that
are not valid in the system under evaluation [17].

Once system components have been chosen, a validation
of the whole design is required to confirm that the behavior
is the expected one, and to check that there are no undesir-
able interactions between components that may have passed
unnoticed before, due to the simplification of models and
simulations. This validation is usually done with full-system
simulators made from scratch or, in most cases, using differ-
ent simulators for each component of the system, and doing
some linking work to put them to operate together.

Our interest is mainly focused on interconnection net-
works for distributed memory parallel systems, a kind of
specific-purpose network that allows compute nodes to in-
terchange messages with high throughput and low latency—
which is required to run efficiently parallel applications. In
the rest of this paper we will use “IN” as the acronym for in-
terconnection network, and multicomputer as a shorter way
of naming distributed memory parallel computers.

We will describe the components that take part in a full-
system simulation of a multicomputer, making a proposal
that mixes two very different tools: Interconnection Net-
work Simulation and Evaluation Environment [29] (INSEE
for short) in charge of the IN, and Simics [13], used to sim-
ulate the compute elements. We will also discuss several ap-
proaches to interface these two classes of simulators, and
problems that may arise when doing full-system simulation,
some due to reutilization of components of the simulated
hosts, and some due to unexpected interactions between
components. Moreover, we will explain the complexity of
fine-tuning all components and their interfaces, in order to
find a trade-off between simulation accuracy and resource
usage (simulation time).

The rest of the paper is organized as follows. In Section 2
we review related work. Section 3 explains the elements that
can take part in a full-system simulation of a multicom-
puter, as well as some approaches to glue together an IN
simulator with the simulators of the compute nodes. Sec-
tion 4 discusses how to synchronize these simulators. Sec-
tion 5 introduces our proposal for full-system simulation of
multicomputers, combining INSEE with Simics. In order to
show the capabilities of this tool, a set of experiments related
with congestion control are defined in Section 6. Results are
shown and analyzed in Section 7. Finally, in Section 8 we
enumerate the conclusions of this work.

2 Related work

There are other research groups around the world inter-
ested in full-system simulation. However most of them are
only interested in either the performance evaluation of work-
loads on servers, or in the assessment of a particular micro-
architectural improvement. We can enumerate several full-
system simulators specifically designed to perform these
kinds of studies: RSIM [24], ML-RSIM [32], SimOS [31],
Simics [13], M5 [3], SIMFLEX [37], GEMS [14], and
Mambo [6]. A longer list is available in [15].

Models used for the IN are often too simplistic. These
tools implement networking systems based on Ethernet,
which is valid for most of the usual performance evalua-
tions of server systems that run OLTP (On-Line Transaction
Processing) workloads. As far as we know, none of them
implement a sophisticated IN such as those used in high-
performance clusters or massively parallel processors.

It would be possible to integrate more complex IN mod-
els into available full-system simulation tools; however, IN
simulators already exist (SICOSYS [27], the Chaos Router
Simulator [34], FlexSim [33], OPNET [23], NS [35] and
many others), and it would be easier for designers to inte-
grate available tools, instead of starting from scratch with,
for example, a collection of Simics modules for an IN. For
instance, SICOSYS can interface with RSIM to do full-
system simulation of shared-memory parallel computers,
providing an accurate timing model, as discussed in [28].
However, this setup consumes a huge amount of resources
(memory, CPU time) and only allows for the simulation of a
few tens of interconnected compute nodes.

Simics memory timing mechanism is too simplistic: all
instructions and memory accesses take the same amount of
time. Consequently several tools have been designed that ex-
tend Simics functionality to perform detailed memory sim-
ulation. Two of these are GEMS [14] and SIMFLEX [37].
GEMS was designed to study a wide variety of memory hi-
erarchies and systems ranging from broadcast-based SMPs
to hierarchical directory-based Multiple-CMP systems. It

Cluster Comput

Fig. 1 Overall design of INSEE
(from [29]). Elements with grey
background form part of
INSEE, while the remaining
parts are external modules. In
this paper we discuss the
integration with Simics

can model current high-end, non-uniform memory access
(NUMA) multiprocessor systems which have their mem-
ory controllers connected via an interconnection network,
including directory-based and snooping-based systems. It
has not been designed to provide support to large simula-
tion of multicomputers with their compute nodes connected
through another kind of IN.

SIMFLEX uses statistical sampling to accelerate simu-
lations. It estimates the performance of an application by
measuring several samples of it. Those samples are care-
fully chosen using established statistical sampling methods
from a library of application checkpoints that represent the
behavior of the whole application with a high confidence
level, depending on the number of samples being executed.
It also requires finding out the warming period previous to
the measurement of each sample. SIMFLEX can model chip
multiprocessor and distributed-shared-memory multiproces-
sor systems. However, it does not save the state or keep ac-
count of the queues in the interconnection network, it runs
the example more times to warm up the system to allow the
queues to fill into a steady state. That approach could allevi-
ate a congestion state in the interconnection network, hiding
or attenuating effects of congestion. Moreover, there may be
different execution paths when trying with different topolo-
gies and other parameters. A big effort has to be done to inte-
grate an interconnection network simulator and SIMFLEX,
and to prepare every library of samples for each benchmark.

The M5 simulator is specifically designed to conduct re-
search in TCP/IP networking and provides features neces-
sary for simulating networked hosts, including full-system
capability, a detailed I/O subsystem, bus timing, coherence
effects of network DMA transfers [2] and the ability to sim-
ulate multiple networked systems deterministically in a sin-
gle instance of the M5 simulator. M5 connects network in-
terface cards of individual systems using an Ethernet link
object, modeled as a lossless, full-duplex channel of config-
urable bandwidth and delay [3], a very simple approach to

do IN simulation. New components can be developed and
incorporated into the M5 structure.

As we can see, most of these tools are heavyweight, and
focus either on LAN technologies, or on shared-memory
machines. Our interest is on distributed-memory parallel
machines, and we already have a simulation environment
to evaluate proposals for the INs used in this kind of ar-
chitectures: INSEE [29]. This environment, depicted in
Fig. 1, includes FSIN, a time-driven, lightweight, flexible,
and functional IN simulator that allows us to simulate dis-
tributed memory parallel computers with thousands of nodes
arranged in different topologies (k-ary n-cubes, multistage
networks). The TrGen module allows synthetic traffic gen-
eration, trace based generation and, as we will describe later,
full-system simulation. The integration of INSEE with Sim-
ics, the tool of choice to provide full-system simulation of
compute elements, provides a great environment to experi-
ment with cluster and MPP technologies.

3 Interfacing IN and compute element simulators

There are many possible approaches to perform full-system
simulation of a multicomputer. In Fig. 2 we can observe a
collection of components that take part in the simulation. All
of them are software-based components, but some simulate
pieces of hardware.

A single instance of an IN simulator simulates the flow of
packets through a network. Several instances of full-system
simulators mimic in detail the operation of the compute el-
ements. The level of detail includes the simulation of the
hardware devices, as well as the ability to run unmodified
software, including operating system, support libraries (for
example, an MPI library) and parallel applications.

We will pay special attention to these elements:

• The NIC (Network Interface Card) that interfaces with the
IN; this is a software module that simulates the NIC.

Cluster Comput

• The driver, in kernel space, for that NIC.
• The protocol stack, in kernel space, providing higher-

level access to the IN.
• The support library, on top of the protocol stack, that pro-

vides the MPI API and the necessary run-time support for
parallel computing.

• A process of a parallel application.

Note that there are many instances of these elements,
at least one per simulated compute node. Additionally, the
simulation environment includes a synchronization module
that make all simulators advance in synchrony, and a traffic
manager module that allows the interchange of information
(frames, packets) between node and IN simulators, making
format translations if required.

Fig. 2 Elements taking part in a full-system simulation of a multicom-
puter

Now we focus on the different mechanisms available to
implement the traffic manager. Issues about synchronization
will be discussed later.

In order to better understand the following sub-sections,
we show in Fig. 3 several protocol stacks commonly used in
cluster environments. The first three are for Ethernet hard-
ware, commonly used in low-cost clusters: MPICH [18]
over TCP, LA-MPI [10] over UDP and LAM [11] over UDP
using lamd daemons. More expensive clusters use dedicated
system area networks such as Myrinet and Infiniband. For
Myrinet, Myricom provides two low-level interfaces (GM
and MX), and a corresponding modification of MPICH to
run over them [19]. In the case of Infiniband, the figure cor-
responds to MVAPICH, a modification of MPICH that runs
on top of either VAPI or OpenIB low-level interfaces [12].
Note that there are many other possible stacks, for differ-
ent combinations of MPI implementations (both commercial
and free) and drivers for interconnection networks.

3.1 Substitution of the NIC driver

A possible approach to interface compute nodes with IN
(obviously, in terms of simulation) would be via a substitu-
tion of the NIC driver, using another one that, in addition to
doing its regular work, intercepts network traffic and passes
it directly to the Traffic Manager. The main advantage of this
option is that we can reuse the NIC model that comes with
the full-system simulator, and also the Linux protocol stack.
However, this approach has the disadvantage of requiring us
to program a network driver for Linux that must register it-
self in the kernel as a general network driver. Furthermore,
this driver must interact properly with the protocol stack be-
cause otherwise it would be impossible to reuse this stack.
Note that the trickiest part here would be writing a driver
that, while running in a simulated machine, interacts with
an external module running in the simulation environment.

3.2 Substitution of the NIC simulated module

Another option would be to implement our own NIC mod-
ule, which would mimic the operations of the original one

Fig. 3 Examples of protocol
stacks involved in the
communication at every
compute element for different
MPI implementations and IN

Cluster Comput

while adding capabilities to interact with the Traffic Man-
ager (sending and receiving frames). This way we can reuse
protocol stack and NIC driver. However, we need to im-
plement all the details of the simulated hardware, with all
its control registers and low level accesses (writes in mem-
ory mapped registers, interruption handling, DMA accesses,
etc.) Neither this option nor the previous one requires us to
manipulate or re-implement the protocol stack.

Usually full-system simulation environments come with
default hardware and drivers for that hardware, like Ether-
net NICs. Support for other INs such as Myrinet [4], Infini-
band [25] or the torus network of the Bluegene/L [1] is not
readily available. These environments provide mechanisms
to add new, user-designed hardware modules that can be in-
tegrated into the simulators. If we have an accurate descrip-
tion of a certain NIC, and we program a module that simu-
lates this NIC, we could reuse existing software (drivers and
protocol stacks) designed to run on actual hardware. For ex-
ample, if we implement a very realistic Myrinet card mod-
ule, we could re-use the GM drivers and the MPICH-GM
MPI implementation. However, due to the difficulty of do-
ing this accurate hardware modeling, this approach is often
rejected, and multicomputer experimentation is done using
default hardware (Ethernet) and protocol stacks (TCP/IP-
over-Ethernet), drastically simplifying setting up the exper-
iments.

3.3 Substitution of the full protocol stack

The third and most complex option is to program the NIC
module for the simulator, the driver to run in Kernel space,
and a full protocol stack—including a customized MPI
implementation—on top of it. The NIC module would in-
terface with the Traffic Manager, and the driver would take
advantage of the (simulated) high-speed IN. The obvious ad-
vantage of this option is that we would have full control of
the IN; experiments could be done evaluating the hardware,
the software, the MPI implementation, or a combination of
them. Results would be very realistic, but only if we are
able to provide good-quality, bug-free software. This is, in
fact, the main drawback of this option: the implementation
effort is huge, and difficult to reuse. Any improvement in
the simulated hardware propagates upwards: it may require
driver changes, and probably MPI changes in order to take
advantage of it. We need, thus, to find a trade-off between
programming effort and flexibility. Reutilization of compo-
nents allows us to use in our experiments good quality, well-
proven software, but at the cost of using off-the-shelf com-
ponents. The accurate simulation of a completely new pro-
posal for an IN would require implementing the components
that would be required if the network hardware were real,
plus a detailed model of that hardware.

4 Synchronization mechanisms

In the previous sections we explained how full-system sim-
ulation of multicomputers is carried out via the combination
of a collection of different simulators. These simulators are
separate software entities that have different views of the
passing of (simulated) time. This means that they have dif-
ferent simulation clocks, with different time units, and may
even have different mechanisms to make those clocks ad-
vance. For example, Simics is event-driven and time is mea-
sured in CPU cycles, whose translation to actual time de-
pend on the CPU speed, while INSEE is cycle-driven and
its unit of time is a more abstract cycle: the time needed to
route and move a phit (physical transmission unit) from an
input port to an output port. Obviously, mechanisms are re-
quired to coordinate and synchronize those clocks in such a
way that simulators for compute elements and IN advance at
the same pace, as if a global clock was in use. The synchro-
nization module takes care of this task.

The synchronization model can be strict or relaxed. Strict
models are unapproachable, in terms of execution time,
when performing a full-system simulation of a multicom-
puter, because they make exploitation of available paral-
lelism (in the simulation platform) almost impossible. Thus,
we will only consider relaxed models. In order to keep dis-
cussion simple only two simulators are considered: one that
takes care of compute elements, and another one for the IN.
However, discussed mechanisms can (and will) be extended
to consider several, concurrent simulators for the compute
elements.

One synchronization alternative is to allow the simula-
tors to advance in lock-step mode. The compute elements
simulator advances for a given amount of time (let us call it
slice) and then stops. The IN simulator starts its execution
and simulates the same amount of time (an equivalent one,
if a translation of time units is required). It then stops and
the compute elements simulator resumes its operation. Note
that both simulators never run in parallel.

When a message is generated at a compute element, it
is stored (with a timestamp) at an interfacing queue. Later,
the IN simulator will simulate the same time slice. It will
process the queue, taking care of this injection, at the right
time. When the IN signals that a message has to be delivered
to a compute element, again this event is stored at an inter-
facing queue. However, we have a problem here: that queue
will not be processed until the next slice. The compute el-
ements simulator cannot process a message from the past;
therefore all messages received during a given slice will be
processed at the beginning of the next slice. In other words,
messages will suffer, due to this relaxed synchronization ap-
proach, a false delay, ranging from 0 to the duration of the
slice.

Cluster Comput

The other alternative allows the exploitation of paral-
lelism in the simulation environment. We can let both sim-
ulators advance in parallel, without interchanging informa-
tion. After consuming a slice, both simulators exchange lists
of events. The compute elements simulator passes the list
of messages generated at the slice just consumed, to be
processed by the network, and the IN simulator passes the
list of messages that have arrived to the destination compute
elements. Note how this approach introduces two artificial
delays: injection is delayed until the beginning of the next
slice. Delivery, as in the previous option, is also delayed.
Again, the importance of these delays depends on the slice
length. A second effect is that message injections into the IN
are done in bursts, at the beginning of each slice, which may
impose unnecessary contention.

In both models, a very short slice length would provide
maximum fidelity, but at the cost of stopping simulators very
often. A long slice substantially accelerates experimenta-
tion, but introduces artificial delays that can have important,
negative effects on our measurements

5 A proposal for full-system simulation
of multicomputers

As we have already stated, our tool of choice to simulate the
compute nodes that interchange packets through a network
is Simics. From the options described in Sect. 3 to inter-
change information between simulators, we have chosen the
second one: we have substituted the module that models an
Ethernet NIC (a DEC21143), using another one almost iden-
tical, but capable of communicating with an external Traf-
fic Manager module. Regarding synchronization, we use the
second of the options presented in Sect. 4: the network sim-
ulator and Simics run in lock-step mode. A certain degree
of parallel simulation is performed, but only when running
Simics—further details will be given later in this section.

INSEE provides a flexible environment to perform simu-
lations of INs. Its two main modules (see again Fig. 1) are
FSIN (a cycle-driven, functional simulator of interconnec-
tion networks) and TrGen (a traffic-generation module). The
latter allows us to feed simulations with three different kinds
of workloads: synthetic traffic patterns defined by statistical
distributions, traces obtained from actual parallel applica-
tion executions, and full-system simulations as described in
this paper.

In the experiments detailed in the next sections, we will
present results for INs built using ring topologies. The reader
should note that we have chosen rings only because they are
more prone to congestion than other kind of networks like
torus of higher dimensions or fat-trees, not because we think
this is a good choice of topology; in fact, INSEE can deal
with k-ary n-cube networks of higher degree and radix and

Fig. 4 Model of router simulated by FSIN for 1D networks, with a
detailed view of the X+ input port showing the 3 virtual channels that
share this link

even with multistage networks as fat-trees. At any rate, the
network is composed of a collection of routers, each of them
connected to several (for this work, just two) neighboring
routers and to a compute node. Figure 4 represents a model
of these routers. Three virtual channels (VCs) share each
physical channel of the router: an Escape channel (governed
by the bubble routing rules [26]), and two adaptive channels.

Note that a ring has just one minimal path from source
to destination, i.e. packets cannot adapt. Thus, the only dif-
ference between the Escape VC and the other two is that
accesses to the adaptive VCs are not restricted by the bubble
rules. Each node is able to simultaneously consume several
packets arriving to the reception port. There are two injec-
tion ports, and the interface should perform a pre-routing
decision: packets moving towards the X+ axis are stored in
the I+ injection port, and those towards X− go to the I−
injection port. Transit and injection queues are able to store
4 packets of 16 phits (unit of transit through the wires) each.
Phit length is 4 bytes and therefore the link bandwidth is 32
bits per cycle.

Regarding the simulation of the compute nodes, we use 8
instances of Simics, each one simulating 8 nodes, for a total
of 64 simulated nodes. Each node runs a full Red Hat 7.3
operating system, and can be configured to use a variety of
MPI implementations. As we use an Ethernet-like simulated
NIC, we can use either TCP/IP/Ethernet or UDP/IP/Ethernet
as low-level protocol stacks.

The process of sending a message to another different
process in a multicomputer comprises several steps. In Fig. 5
we expose the different modules performing these actions in
our environment. First, the message is segmented into net-
work (Ethernet) frames, which are encapsulated with dif-
ferent headers depending on the protocol stack used on the
multicomputer. Then, these frames are sent to the NIC driver
that injects them into the IN. Instead of injecting them on
a real IN, the Traffic Manager module extracts them from

Cluster Comput

Fig. 5 Elements of our
full-system simulation
environment that simulates an
MPI application running on top
of an INSEE (simulated)
network

Fig. 6 Synchronization
mechanism between Simics
instances and INSEE, and
message routing. Only one
computing element per Simics
instance is shown

the simulated hardware NIC and sends them to INSEE. This
Traffic Manager module is responsible for sending and re-
ceiving frames from the TrGen module of INSEE. As we use
a cluster of commodity computers to simulate a multicom-
puter, the traffic Manager sends the frames to the computer
that runs INSEE.

TrGen is in charge of providing the workload for FSIN,
the IN simulator core of INSEE. Frames received in TrGen
are further divided into packets that are put in the right in-
jection queue of the corresponding FSIN router. When the

synchronization server signals FSIN to run, it simulates how
packets travel through the network, and delivers them to
their destination routers. Once all packets of a frame have
arrived at the destination, TrGen will regenerate the frame
putting packets together and will send the frame to the cor-
responding Traffic Manager on the destination node.

The Traffic Manager injects the received frames into the
simulated hardware NIC. When the synchronization client
resumes the run of Simics, the arrival of a frame causes
an interruption that will be attended by the NIC driver. The

Cluster Comput

frame is then processed, i.e. the headers of the protocol stack
are removed and the message is rebuilt and delivered to the
application process.

The ability of running several compute nodes in each
Simics instance requires the utilization of two different syn-
chronization mechanisms. The first one is used to coordinate
all compute nodes inside a Simics instance: every node runs
a specific number of cycles (slice) and then the next compute
node and so on, in a round-robin fashion. This mechanism
is integrated into the own Simics working. The second syn-
chronization mechanism is used to coordinate the compute
nodes and INSEE. We use a client-server model in a lock-
step mode to do it. There is a synchronization server in IN-
SEE and a synchronization client on each Simics instance,
as shown in Fig. 5. When all nodes in a Simics instance have
completed a slice, the synchronization client stops that in-
stance, and then sends a timestamp signal to the synchro-
nization server asking for permission to run another slice.
During a running slice, all generated network traffic is kept
in the injection queues.

When the synchronization server has received timestamp
signals from all Simics instances, INSEE allows FSIN to
run a slice, routing the received packets up to their FSIN
router destination. When FSIN finishes its slice, it sends a
multicast timestamp signal to all synchronization clients, al-
lowing them to resume the execution of the compute nodes.
This is shown in Fig. 6.

Recall that this synchronization mechanism allows net-
work injections to be simulated precisely, but deliveries are
artificially delayed until the start of the next slice. The main
difficulty here is to find a trade-off between the high execu-
tion speed provided by long slices and the accuracy obtained
from short ones.

6 Experimental environment

As an example of the capability of our environment, our pro-
posal has been used to study the effects of network-based
congestion control in the execution speed of MPI parallel
applications. In order to better understand the experimental
work, we start this section defining the congestion control
mechanisms under study.

6.1 Network congestion control

Congestion may appear when the utilization of resources in-
side the IN is close to its limits; its negative effects include
throughput and delay degradation. If no action is taken when
congestion appears, it soon spreads through the whole net-
work. Congestion control techniques usually limit packet in-
jection as soon as the network presents signs of congestion.
There are different ways of diagnosing these signs and tech-
niques to avoid congestion [8], based on global knowledge

like in [36], distributed like RECN [5] or based on infor-
mation of the local router buffers like LBR [16]. The torus
network of the IBM BlueGene/L includes a mechanism that
works prioritizing in-transit traffic—we call this IPR (In-
transit Priority Restriction).

In an initial set of experiments, we evaluated two of these
congestion control mechanisms for INs, IPR and LBR, both
based on locally available information, with good perfor-
mance and minimal implementation costs [16]. When using
IPR, priority is given to in-transit traffic for a given number
P of cycles. In those cycles, the injection of a new packet is
only allowed if it does not compete with packets already in
the network. P may vary from 0 (no restriction) to 1 (ab-
solute priority to in-transit traffic). The Local Buffer Re-
striction (LBR) mechanism has been designed specifically
for adaptive routers that rely on Bubble Flow Control [26]
to avoid deadlock in the escape sub-network. LBR extends
the bubble restriction to all new packets that enter the net-
work. Subsequently, a packet can only be injected into an
adaptive virtual channel if such action leaves room for at
least B packets in the transit buffer associated to that virtual
channel. The parameter B indicates the number of buffers
reserved for in-transit traffic. In other words, congestion is
estimated by the level of buffer utilization.

6.2 The experimental set-up

The effects of congestion were studied on the previously de-
scribed environment. The testbed system is composed by
64 compute nodes connected through a ring network. The
number of nodes (64) is a consequence of the availability
of resources to obtain actual traces and run the full-system
simulation environment. As we stated before, the choice of
a ring (instead of a more reasonable 8 × 8 torus) is because
the ring is, for a given number of nodes, more prone to con-
gestion than a 2D torus. The system was composed by 64
Intel Pentium-4 processors, running Red Hat 7.3 with ker-
nel 2.4 at 200 MHz (1 Simics cycle = 5 ns), with 64 MB
of RAM. Unless otherwise stated, the synchronization slice
was 10000:200, meaning that 200 INSEE cycles are made
equivalent to 10000 Simics cycles; this results in a link band-
width of 128 Mb/s, approximately the speed of a Fast Ether-
net.

We used the IPR and LBR network congestion control
mechanisms. For the following experiments, we fixed the
values: P = 1 (the maximum priority) and B = 3 (inject in
an adaptive channel only when its queue is empty or almost
empty). Note that the “Base” case corresponds to both mech-
anisms being deactivated, i.e. B = 0 and P = 0.

The applications used to perform the experiments were
a subset of the A class of the NAS Parallel Benchmarks
[20] (NPB), a well-known, allegedly representative set of
parallel application workloads often used to assess the per-
formance of multicomputers. To simplify descriptions and

Cluster Comput

discussions, we have focused on three of these benchmarks:
BT, CG and IS. BT is computation-biased (although not em-
barrassingly parallel) and should show how gains at the net-
work level do not have a great impact on execution time.
In contrast, CG and IS are communication-intensive, so the
effects of network changes should be more clearly visible.

We started our study with an initial evaluation using
traces captured in a small-size cluster with 8 dual-core Intel
Xeon nodes, connected via Gigabit Ethernet. Several tasks
time-shared each processor, so that the timing information
about CPU intervals stored in the trace records is not valid.
Nevertheless, in the trace-based simulations we do not use
CPU times, just keep causal relationship between messages,
as if we were using infinite-speed processors. The mecha-
nisms used to capture the traces, as well as the methodology
to perform the simulation, are described in detail in [17,
30]. With this trace-based simulation we obtained some pre-
dictions of the maximum performance improvement achiev-
able with the use of congestion control mechanisms. Then,
we used our full-system simulation environment to verify
these predictions. Obviously, results obtained with this en-
vironment should be consistent with those predicted by the
trace-based study, but reduced in magnitude because of the
inclusion of the computation part.

As our environment allows us to use different protocol
stacks, we have tested a few, different ones: from the collec-
tion shown in Fig. 3 we have evaluated those with Ethernet
at the hardware level. When TCP is used at the transport
level, we use the usual version of TCP Reno [7].

7 Experiments and discussion of results

In this section we describe in detail the experiments car-
ried out, and analyze the results. The first set of experi-
ments consists of several full-system simulations designed
to evaluate the effects of network-level congestion control
on the execution speed of NPB applications. The results of
the trace-based study are also plotted in the figures, to com-
pare the predictions obtained this way with the results from
the full-system study. From this set we learn about the inter-
actions between end-to-end (TCP) and network-level con-
gestion control mechanism, an issue that is further studied in
the second set of experiments. The last part of this Section is
devoted to explore the effects of synchronization frequency
in simulation accuracy and execution times.

Note that all the reported results normalize execution
times to the Base case, which is, as described before, the
one without IN-based congestion control. Experiments are
repeated 10 times, and in the figures we plot the average val-
ues of results. Variances, summarized in tables, are included
too.

7.1 Trace-based simulation

The most relevant results of these experiments are plot-
ted in Fig. 7 (light-grey bars). They predict that the reduc-
tion of execution time achievable from applying conges-
tion control mechanisms should be, in the best case, a 15%
(IS benchmark). However, we should expect small perfor-
mance drops in applications such as CG: around a 3%. Both
network-level congestion control mechanisms are beneficial
for BT and IS, because their traffic patterns consist of large
messages that are able to saturate the IN. In contrast, CG
is harmed by these mechanisms, due to its traffic pattern,
which consists of sequences of small messages, arranged by
dependency chains. Thus, congestion does not appear, and
any mechanism that restricts packet injection is harmful, be-
cause it imposes unnecessary delays that accumulate and in-
crease the overall execution time.

The reader should note that the method we use to carry
out trace-based simulation exaggerates the potential advan-
tages/disadvantages of a given congestion control mecha-
nism, because we do not take into account the CPU time
(we only simulate the interchange of messages). Real appli-
cations only spend a portion of its time performing commu-
nications; hence our prediction applies only to this portion.
This limitation does not apply to full-system simulations.

7.2 Assessing the effects of network-level congestion
control

The full-system simulation did not, to our surprise, confirm
the predictions of the trace-based simulation: results (sum-
marized in Fig. 7 and Table 1, along with those obtained with
traces) were in some cases much more favorable than ex-
pected, and in some others poorer than expected. The causes
of these mismatches were some unaccounted-for interac-
tions between end-to-end congestion control (TCP incorpo-
rates its own mechanisms) and the network-level congestion
control (those under test, IPR and LBR).

In the case of experiments made with MPICH and with-
out any network congestion control mechanism, application
execution times were negatively affected by TCP’s wrong
estimation of timeouts, triggering retransmissions and con-
tinuously activating the slow start protocol [7]. Those made
the whole execution very slow in saturated networks. In con-
trast, when IPR or LBR were applied, jitter was reduced,
which helped TCP to determine its timeout values which
reduced the retransmissions and, consequently, the occur-
rences of the slow start mechanism. Therefore, both IPR and
LBR caused two overlapping effects:

– For most applications, the flow of packets through the net-
work was accelerated.

– In all cases, they helped TCP, allowing the applications to
reach higher throughput.

Cluster Comput

Fig. 7 Measured execution times relative to the base case (IPR and LBR deactivated). (a) Results obtained when IPR is activated. (b) Results
obtained when LBR is activated

Table 1 Variances of the experiments plotted in Fig. 7

Base IPR LBR

BT CG IS BT CG IS BT CG IS

MPICH 2.76E-04 8.12E-04 5.23E-04 2.70E-04 1.57E-05 6.47E-04 9.36E-04 5.85E-06 1.86E-03

LA-MPI 2.68E-04 9.31E-05 1.55E-03 2.80E-04 1.54E-03 1.41E-03 4.04E-04 1.95E-03 2.16E-03

LAM 7.96E-04 4.13E-04 4.98E-03 2.33E-04 1.03E-03 4.11E-03 4.29E-04 1.19E-03 4.40E-03

The second effect was unexpected, and was more signif-
icant than the first one. This explains the mismatch in our
predictions.

In order to avoid these interactions, we tested other MPI
implementations with protocol stacks that do not include
TCP. One of those is LA-MPI over UDP. This implemen-
tation performs error control at application level to avoid
message losses (messages are dropped when intermediate
buffers are full). This error control slightly affects the ex-
ecution time. Despite this, the absence of TCP made LA-
MPI a good platform for experimentation. However, as this
project is no longer supported, we decided to search for an-
other non-TCP based MPI implementation.

LAM over UDP routes all messages through a daemon
present in every compute element. This adds two hops to
every message. And these daemons also do the flow control
and error recovery not available while using UDP. For this
reasons this configuration is very slow and also affects the
performance in a similar way as TCP does. This can be seen
in Table 2.

We can conclude that the reutilization of components, in
this case protocol stacks, may look as a good idea, because
it reduces the time of setting-up an evaluation environment
and reduces programming errors, but the price to pay may
be too high: it may introduce unforeseen interactions that
can magnify, hide or even invalidate the results obtained. A
more detailed explanation of this issue is provided in [21].

Table 2 Simulated time needed to run an iteration of each benchmark
for different MPI implementations in the full-system simulation envi-
ronment. Average of 10 runs

BT CG IS

MPICH 4.52 s 5.89 s 4.21 s

LA-MPI 4.51 s 5.60 s 4.10 s

LAM/UDP 5.09 s 10.88 s 10.38 s

7.3 Congestion control and network speed

Once the interaction between end-to-end and network con-
gestion control mechanisms was detected, we carried out ad-
ditional experiments in order to assess the influence of these
mechanisms for different network speeds. In addition to the
experiments described in the previous section, for a network
of 128 Mb/s, we repeated the experiments on a faster net-
work of 1280 Mb/s and only with MPICH, one of the most
widely-used noncommercial MPI implementations. Results
are summarized in Fig. 8 (averages) and Table 3 (variances).

An increase in network speed makes TCP perform even
worse when there is no network-based congestion control
mechanism. When the traffic is not enough to fill up the net-
work and the network speed is high, TCP estimates correctly
its timers, and is able to deliver traffic with high throughput
levels. However, in those phases where contention for net-
work resources appears, because the traffic pattern requires

Cluster Comput

Fig. 8 Measured execution times relative to base case (IPR and LBR deactivated). (a) Obtained in a 128 Mb/s network. (b) Obtained in a
1280 Mb/s network

Table 3 Variances of the experiments plotted in Fig. 8

128 Mb/s 1280 Mb/s

BT CG IS BT CG IS

Base 2.76E-04 8.12E-04 5.23E-04 4.90E-05 2.94E-03 1.38E-02

IPR 2.70E-04 1.57E-05 6.47E-04 8.32E-05 2.24E-04 3.90E-04

LBR 9.36E-04 5.85E-06 1.86E-03 1.03E-04 3.84E-04 8.17E-05

it, packets slow down. Some of them even “get lost” from the
point of view of TCP, because they arrive too late. This jitter
activates TCP’s flow control and error recovery mechanism.
This activation slows down the performance in the same
way as a slower network because the slow-start algorithm
is network independent. Again, the utilization of network-
level congestion control reduces jitter, and improves perfor-
mance. As we can see, the effect of IPR/LBR is more ben-
eficial at higher network speeds, not only in terms of aver-
age values but also in reduction of variance; this means that
the adverse behavior of TCP gets worse in faster networks.
Note the great differences in performance for the CG and IS
benchmarks, those that are more communication-intensive.

7.4 The simulation speed/accuracy trade-off

We explained in previous sections that an issue when link-
ing two different simulators is to fine-tune the synchroniza-
tion among them. In particular, we need to define the slice
duration: the period of time in which a given simulator ad-
vances without synchronizing with the rest. The duration of
the slice affects both the accuracy and the simulation perfor-
mance. The longer the slice, the larger the delay and jitter,
hence the accuracy decreases. In addition, every time the
simulators synchronize, a penalty has to be paid; therefore
simulation performance is better for longer slices because
the actual time to run the simulation is shorter. The effect
of a short slice is just the opposite: more synchronization

overhead, but better accuracy because delay and jitter are
reduced.

We ran another set of experiments to measure the accu-
racy versus performance relation due to the synchronization
mechanism. We used an MPICH over TCP protocol stack,
fixed the network speed at 128 Mb/s, and used three dif-
ferent synchronization values: 100000:2000, 10000:200 and
1000:20. We took the time reported by the simulator to ex-
ecute an iteration of the benchmarks under study (BT, CG
and IS) with and without IPR, and also the wall-clock time
that the simulator required to perform the experiment. Re-
sults are plotted in Fig. 9.

Figure 9a shows that, in terms of simulator-reported time,
there is little difference in terms of simulated time per itera-
tion between the highly synchronized case (1000:20) and the
one in which synchronization frequency is reduced to one
tenth of that (10000:200), in which benchmark execution is
at worst only 3.28% slower (BT Base). This small difference
can be explained because of the additional delays introduced
by the lock-step synchronization. In the 10000:200 case, a
packet generated at a node may need to wait up to 9999
Simics cycles (50 µs) before being injected into the network.
This resulted in large delay variations. In the 1000:20 exper-
iments, the worst-case additional delay was reduced to 999
Simics cycles (5 µs)—reducing jitter and allowing TCP to
perform better.

When synchronization is infrequent, as in the 100000:2000
case, results change in a significant way. Huge delays and

Cluster Comput

Fig. 9 Time measurements for each benchmark with different synchronization parameters. Results relative to the most synchronized case
(1000:20) (a) Simulated time to complete each iteration. (b) Actual time to simulate a second

jitter are artificially introduced, as we force packets to wait
up to 99999 Simics cycles (500 µs). With these unstable,
long delays TCP cannot make good estimations of delays,
and activate too often the slow-start mechanism.

Besides, we could unnecessarily saturate the IN. The
maximum injection rate of a Fast Ethernet is of 148.800 [9]
frames of minimum size (72 Bytes, that will require 2 FSIN
packets) per second without collisions, which gives us an
injection rate of a frame every 1344 Simics cycles, using
the parameters of our simulation environment. This means
that, at every synchronization step, every node could have
up to 70 frames pending for injection, which could heavily
saturate the network. It must be taken into account that our
environment uses a regular device (Fast Ethernet) on top of
regular protocols (MPICH/TCP/IP/Ethernet) over a custom
IN, which is not designed for them. Therefore, simulation
artifacts are triggering mechanisms of TCP that should not
operate, generating inaccurate results.

Figure 9b represents the wall-clock time to simulate a
second of each benchmark. This time is inversely propor-
tional to the slice length. The longer the slice, the shorter
the time needed to simulate a second, up to only 20% of the
time needed if we compare the longer slice (100000:2000)
with the shorter slice (1000:20) for the IS base case. The
savings of time can be between 10% up to 60% if we in-
crease a magnitude the slice duration. Therefore, it is clear
that a carefully study is needed to choose the synchroniza-
tion slice duration. We must choose a slice short enough to
get reliable and correct results, and long enough to complete
simulations in a reasonable time. In our case, the 10000:200
slice appears to be a good choice, because we only loose a
3% on accuracy on the worst case, and the simulation lasts
up to 60% less time than the case with the shortest synchro-
nization slice.

In summary, as a performance study requires many sim-
ulation runs, researchers are encouraged to spend some time

exploring this speed/accuracy trade-off, searching for those
slice durations that provide faster simulation runs but with-
out sacrificing truthfulness of results. Actual values to ex-
plore depend on factors such as (relative) speeds of proces-
sors and network, so we cannot provide a rule of thumb to
get the right durations. Also, some precision can be sacri-
ficed in initial simulation runs, switching to slower set-ups
when accuracy is essential.

8 Conclusions

Full-system simulation is a very complex matter, complex-
ity that is greatly increased when trying to simulate not
just a computer, but a collection of networked machines—
especially if the network and the interfaces differ from the
traditional LAN devices available in simulation environ-
ments. It is also an intensive resource-consuming task. The
simulation of a cluster of computers may require an actual
machine with similar characteristics to the one under study,
but the speed at which we obtain performance results would
be several orders of magnitude slower.

In this paper, we show that full-system simulation of INs
requires a large collection of interrelated (software) compo-
nents, which, in many cases, have to be done from scratch, or
re-used from those provided by the simulation environment
being used. The reutilization allows for important reductions
of implementations effort and errors, but implies some risks
of using, for a given purpose, components designed for dif-
ferent (although related) purposes, and may lead to inaccu-
rate or even invalid simulation results. The synchronization
between parts of the simulation environment needs also to be
carefully designed, in order to find a good trade-off between
simulation fidelity and execution time of the experiments.
We have presented our proposal of combining INSEE with
Simics, which has allowed us to learn, by experience, about

Cluster Comput

the plethora of factors that have an effect on the quality of
results: protocol stacks, MPI implementations, drivers, syn-
chronization modules, etc. Still, this environment allows us
to evaluate, on realistic scenarios, the effects of network-
level congestion control, and the interactions between end-
to-end and network level mechanisms. As far as we know,
no other tool (or combination of tools) is available provid-
ing the same set of features.

As future lines of work, we plan to improve our toolset
including models of the hardware NICs used in current
super-clusters; in particular, our target is to have a model of
an Infiniband HCA, and to add models of Infiniband net-
works into FSIN. Also, as full-system simulation is very
slow, we are working in improving the other, significantly
faster, traffic-generation modules of INSEE (synthetic pat-
terns and traces), with special focus on synthetic traffic that,
while algorithmically generated, is inspired in actual appli-
cations [22].

Acknowledgements This work has been supported by the Ministry
of Education and Science (Spain), grant TIN2007-68023-C02-02, and
by grant IT-242-07 from the Basque Government. Mr. Javier Navaridas
is supported by a doctoral grant of the UPV/EHU.

References

1. Adiga, N.R., et al.: Blue Gene/L torus interconnection network.
IBM J. Res. Dev. 49(2/3) (2005)

2. Binkert, N.L., Hallnor, E.G., Reinhardt, S.K.: Network-oriented
full-system simulation using M5. In: Sixth Workshop on Com-
puter Architecture Evaluation using Commercial Workloads
(CAECW), Feb. 2003

3. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G.,
Reinhardt, S.K.: The M5 simulator: modeling networked systems.
IEEE Micro 26(4), 52–60 (2006)

4. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz,
C.L., et al.: Myrinet. A gigabit per second local area network.
IEEE Micro 15(1), 29–36 (1995)

5. García, P.J., Quiles, F.J., Flich, J., Duato, J., Jhonson, I., Naven,
F.: Efficient, scalable congestion management for interconnection
networks. IEEE Micro 26(5), 52–66 (2006)

6. IBM: IBM full-system simulator for the cell broadband
engine processor. Available at http://alphaworks.ibm.com/
tech/cellsystemsim (May 2008)

7. Jacobson, V.: Congestion avoidance and control. Comput. Com-
mun. Rev. 18(4), 314–329 (1988)

8. Jain, R.: Congestion control in computer networks: issues and
trends. IEEE Netw. 4(3), 24–30 (1990)

9. Karlin, S., Peterson, L.: Maximum packet rates for full-duplex eth-
ernet. Technical Report TR–645–02, Princeton University (Febru-
ary 2002)

10. LA-MPI Home Page: The Los Alamos message passing interface.
Available at http://public.lanl.gov/lampi/ (May 2008)

11. LAM/MPI Home Page: LAM/MPI parallel computing. Available
at http://www.lam-mpi.org/ (Apr. 2008)

12. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI
implementation over infiniBand, Int. J. Parallel Program. (2004)

13. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D.,
Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A., Werner, B.:
Simics: a full system simulation platform. IEEE Comput. 35(2),
50–58 (2002)

14. Martin, M.M.K., et al.: Multifacet’s general execution-driven mul-
tiprocessor simulator (GEMS) toolset. Sigarch Comput. Archit.
News 33(4), 92–99 (2005)

15. Mauer, C.J., Hill, M.D., Wood, D.A.: Full-system timing-first sim-
ulation. In: ACM SIGMETRICS, June 2002

16. Miguel-Alonso, J., Izu, C., Gregorio, J.A.: Improving the perfor-
mance of large interconnection networks using congestion-control
mechanisms. Perform. Eval. 65, 203–211 (2008)

17. Miguel-Alonso, J., Navaridas, J., Ridruejo, F.J.: Interconnection
network simulation using traces of MPI applications. Int. J. Paral-
lel. Program. (to appear). DOI 10.1007/s10766-008-0089-y

18. MPI Forum: MPICH home page. Available at http://www-unix.
mcs.anl.gov/mpi/mpich/ (May 2008)

19. Myricom Documentation and Software Downloads. Available at
http://www.myri.com/scs/ (May 2008)

20. NASA Advanced Supercomputing (NAS) division: NAS
Parallel Benchmarks. Available at http://www.nas.nasa.gov/
Resources/Software/npb.html (May 2008)

21. Navaridas, J., Ridruejo, F.J., Miguel-Alonso, J.: Evaluation of
interconnection networks using full-system simulators: lessons
learned. In: Proc. 40th Annual Simulation Symposium, Norfolk,
VA, March 26–28, 2007

22. Navaridas, J., Miguel-Alonso, J., Ridruejo, F.J.: On synthesizing
workloads emulating MPI applications. In: The 9th IEEE Inter-
national Workshop on Parallel and Distributed Scientific and En-
gineering Computing (PDSEC-08). April 14–18, 2008, Miami,
Florida, USA

23. OPNET Technologies, Inc. corporate web page, available at
http://www.opnet.com (May 2008)

24. Pai, V.S., Ranganathan, P., Adve, S.V.: RSIM: an execution-
driven simulator for ILP-based shared-memory multiprocessors
and uniprocessors. In: IEEE TCCA New., Oct. 1997

25. Pfister, G.F.: Aspects of the InfiniBand(tm) architecture. In: Third
IEEE International Conference on Cluster Computing (CLUS-
TER’01), October 2001, pp. 369

26. Puente, V., Izu, C., Gregorio, J.A., Beivide, R., Vallejo, F.: The
adaptive bubble router. J. Parallel Distrib. Comput. 61(9), 1180–
1208 (2001)

27. Puente, V., Gregorio, J.A., Beivide, R.: SICOSYS: an integrated
framework for studying interconnection network in multiproces-
sor systems. In: Proceedings of the IEEE 10th Euromicro Work-
shop on Parallel and Distributed Processing, Gran Canaria, Spain
(2002)

28. Puente, V., Gregorio, J.A., Vallejo, F., Beivide, R.: Immunet: a
cheap and robust fault-tolerant packet routing mechanism. In: In-
ternational Symposium on Computer Architecture (ISCA), June
2004, pp. 198–211

29. Ridruejo, F.J., Miguel-Alonso, J.: INSEE: an interconnection net-
work simulation and evaluation environment. In: Proc. Euro-Par
2005. Lecture Notes in Computer Science, vol. 3648, pp. 1014–
1023

30. Ridruejo, F.J., Gonzalez, A., Miguel-Alonso, J.: TrGen: a traf-
fic generation system for interconnection network simulators. In:
International Conference on Parallel Processing, 2005. 1st. Int.
Workshop on Performance Evaluation of Networks for Parallel,
Cluster and Grid Computing Systems (PEN-PCGCS’05). ICPP
2005 Workshops, 14–17 June 2005, pp. 547–553

31. Rosenblum, M., et al.: Complete computer system simulation: the
SimOS approach. IEEE Parallel Distrib. Tech. 3(4), 34–43 (1995)

32. Schaelicke, L., Parker, M.: ML-RSIM reference manual. Tech. Re-
port 02-10, Department of Computer Science and Engineering,
Univ. of Notre Dame, Notre Dame, ID (2002)

http://alphaworks.ibm.com/tech/cellsystemsim
http://alphaworks.ibm.com/tech/cellsystemsim
http://public.lanl.gov/lampi/
http://www.lam-mpi.org/
http://dx.doi.org/10.1007/s10766-008-0089-y
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.myri.com/scs/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.opnet.com

Cluster Comput

33. SMART group at the U. of Southern California. FlexSim 1.2.
Available at http://ceng.usc.edu/smart/FlexSim/flexsim.html (May
2008)

34. The Chaotic Routing Project at the U. of Washington. Chaos
Router Simulator. Available at http://www.cs.washington.edu/
research/projects/lis/chaos/www/chaos.html (May 2008)

35. The Network Simulator ns-2. Available at http://www.isi.edu/
nsnam/ns/ (May 2008)

36. Thottethodi, M., Lebeck, A.R., Mukherjee, S.S.: Exploiting global
knowledge to achieve self-tuned congestion control for k-ary n-
cube networks. IEEE Trans. Parallel Distrib. Syst. 15(3), 257–272
(2004)

37. Wenisch, T.F., Wunderlich, R.E., Ferdman, M., Ailamaki, A., Fal-
safi, B., Hoe, J.C.: SimFlex: statistical sampling of computer sys-
tem simulation. IEEE Micro 26(4), 18–31 (2006)

Fco. Javier Ridruejo obtained his
MEng in Computer Engineering
from the University of the Basque
Country, Gipuzkoa, Spain, in 2001.
He is currently pursuing his PhD at
the Department of Computer Archi-
tecture and Technology of the same
university. His research interests in-
clude high-performance computing
infrastructures, interconnection net-
works for parallel and distributed
systems, and performance evalua-
tion of parallel systems.

Jose Miguel-Alonso received the
PhD in computer science from the
University of the Basque Coun-
try, Gipuzkoa, Spain, in 1996. He
is a Full Professor at the Depart-
ment of Computer Architecture and
Technology of the University of the
Basque Country. His research in-
terest include interconnection net-
works for parallel systems, network
(cluster, grid) computing, perfor-
mance evaluation of parallel and
distributed systems, and scheduling
for parallel processing.

Javier Navaridas obtained his MEng
in Computer Engineering from the
University of the Basque Country,
Gipuzkoa, Spain, in 2005. Since
then he is pursuing his PhD at the
Department of Computer Architec-
ture and Technology of the same
university. His research interest in-
clude interconnection networks for
parallel and distributed systems, and
performance evaluation of parallel
architectures, with emphasis on sim-
ulation and characterization of ap-
plication’s behaviour.

http://ceng.usc.edu/smart/FlexSim/flexsim.html
http://www.cs.washington.edu/research/projects/lis/chaos/www/chaos.html
http://www.cs.washington.edu/research/projects/lis/chaos/www/chaos.html
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Full-system simulation of distributed memory multicomputers
	Abstract
	Introduction
	Related work
	Interfacing IN and compute element simulators
	Substitution of the NIC driver
	Substitution of the NIC simulated module
	Substitution of the full protocol stack

	Synchronization mechanisms
	A proposal for full-system simulation of multicomputers
	Experimental environment
	Network congestion control
	The experimental set-up

	Experiments and discussion of results
	Trace-based simulation
	Assessing the effects of network-level congestion control
	Congestion control and network speed
	The simulation speed/accuracy trade-off

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

