
 

Abstract — The SpiNNaker system is a novel SoC design 

that aims to provide real-time simulation of very large-

scale neural networks, focusing on biologically inspired 

spiking neuron networks. In this document we describe its 

architecture, with focus on the interconnection network. 

We aim to the packet dropping mechanisms that provide 

deadlock and live-lock avoidance. The first one is based on 

the time a router keeps a packet before dropping it when 

unable to forward it. The second one is a mechanism based 

on global ages that drops a packet that has not been 

delivered after two ages. This work evaluates the largest 

configuration of the system with different values for the 

waiting time to avoid deadlock. Furthermore, taking into 

account the maximum observed latencies, we propose an 

age length to avoid live-lock. We also select the best 

performing value of the waiting time, considering the 

number of packets dropped at different injection rates. 

The obtained results show that high values of waiting time 

help reducing the amount of dropped packets when the 

injection rates are low; in contrast, it is better to keep this 

value close to zero when injection rates are close to 

saturation. System performance under different failure 

scenarios is also tested, and results show that, with failures, 

the effects of saturation appear at lower injection rates. 

Keywords — Interconnection Networks, Parallel systems, 

Performance evaluation, Real-time applications, Systems 

on Chip. 

I. INTRODUCTION 

HE SpiNNaker Massively Parallel Neural Networks 

Simulator has been designed to mimic neural 

activity [3], which is characterized by massively parallel 

processing and high levels of communication between 

processing units [1]. The system is highly scalable and 

at the largest configuration, with more than one million 

processors, will support real-time simulations with over 

one billion neurons. One possible use of this system, yet 

not the only one, is to be the mind of a robotic system 

providing real-time stimulus-response behaviour [2]. 

This paper is focused on the interconnection network 

that will support inter-processor communication to 

simulate synaptic connections. We will explore several 

parameters of the routers that compose the network, in 

order to find those values that provide the best system 

performance. The figures of merit will be the latency-

related characteristics of the system as well as the 

number of packets dropped by the network due to 

congestion. Furthermore the system performance will be 

tested under scenarios in which the network suffers of 

broken links, in order to assess the robustness of the 

system against failures. 

                                                           
1
 Authors are with the Dept. of Computer Architecture and 

Technology , The University of the Basque Country, San Sebastian, 

Spain, (contact e-mail: javier.navaridas@ehu.es). 
2
 Authors are with The Advanced Processor Technologies Group, The 

University of Manchester, Manchester, United Kingdom. 

Note that the SpiNNaker system is rather different 

from the typical architecture of regular High 

Performance Computing systems. HPC systems are 

commonly built with very fast CPUs over not-so-fast 

networks; in contrast, the SpiNNaker system is built 

with low-consumption slow CPUs working at 100MHz 

(2 orders of magnitude below regular HPC systems) and 

an over-dimensioned network that is able to 

communicate at 1 Gbps (one order of magnitude below 

current HPC networks). For this reason the kind of 

evaluation we will carry out on this network will not be 

the same we would do on a typical HPC interconnection 

system. 

The rest of this paper is organized as follows. Section 

II describes in depth the SpiNNaker system architecture. 

In Section III the models of the components in the 

simulation-based environment are shown. The results of 

the experimental work are presented and discussed in 

Section IV. We close this paper in Section V with the 

conclusions of this evaluation work, and an outlook of 

further research activities. 

II. SPINNAKER ARCHITECTURE 

SpiNNaker is a system on chip (SoC)-based 

architecture designed to support parallel distributed 

computing with high bandwidth and low-delay 

communications. In this section we will perform a brief 

description of its architecture – we encourage the 

interested reader to look at [6] for a more detailed 

description at hardware level. Moreover an overview of 

neural networks applications and systems from an 

engineering point of view is shown in [4]. 

The basic SpiNNaker chip comprises 20 embedded 

ARM968S-E processing cores, each of them with a 

tightly-coupled dedicated memory that can hold 32KB 

of instructions and 64KB of data. Processing units are 

also provided with other useful modules such as a 

Timer, Vector Interrupt Controller (VIC), 

Evaluation of a Large-Scale SpiNNaker System 

Javier Navaridas1, Mikel Lujan2, Jose Miguel-Alonso1, Luis Plana2 and Steve Furber2 

T 

ARM968

CPU

Cache

Timer

VIC

DMA

Ctrl.

Comm. Ctrl.

20

2
0

NoC

SDRAM
Boot

ROM

System

Ctrl.

Router

N S

W

E

S
E

N
W

Ethernet

20

Fig. 1. Schematic model of the SpiNNaker chip with all its 

components depicted. 



Communication Controller and DMA Controller. The 

architecture of the SpiNNaker chip is depicted in Fig. 1. 

Note that router architecture will be detailed in the 

following paragraphs.  

All the cores in a chip share a SDRAM of up to 128 

MBytes in which synaptic connection information is 

stored. Access to this shared storage space is carried out 

by means of an asynchronous Network-on-Chip (NoC) 

[8]. This network is called the System NoC and provides 

a bandwidth of 8 Gbps. It is also used to connect other 

resources in the chip, as for example the Boot ROM, the 

System Controller and the Router – note that the router 

will be accessed through the NoC just for configuration 

purposes, during regular utilization the ARM cores will 

use the communication controller to send or receive 

packets. We would like to remark that this NoC provides 

higher communication bandwidth, lower contention and 

lower consumption than any typical bus architecture [7]. 

Each chip also has a built-in Ethernet sub-module 

connected to the NoC. It will support communication 

with external systems using the common TCP/IP 

protocol stack. The Ethernet interfaces can also be used 

to increase redundancy, and thus fault-tolerance, when 

utilized to re-connect areas of the network that are split 

due to system failures. Note that although all the chips 

are provided with that Ethernet connection, only a few 

will make use of it, in order to reduce power 

consumption and minimize the computing resources 

needed to implement the protocol stack – note that one 

of the cores will have to be in charge of the Ethernet 

connection and protocols when it is in use. 

SpiNNaker chips are arranged in a 2D mesh topology 

with links to the neighbours in North, South, East, West, 

South-East and North-West. An 8x8 instance of this 

topology is depicted in Fig. 2. Note that chips at the 

network boundaries are connected by means of 

peripheral, wrap-around links that are not shown in the 

figure for the sake of simplicity. 

As stated before, each chip incorporates a router that 

allows inter-chip communication. A depiction of its 

architecture is shown in Fig. 3. It has 20 ports for 

internal use of the embedded cores and six ports to 

communicate with six adjacent chips. All ports are full-

duplex and implement asynchronous protocols. The 

organization within the router is hierarchical; ports are 

merged in three stages before using the actual routing 

engine. Note that a router is able to forward a single 

packet at once, but it works faster than the transmission 

ports. Thus, most of the time the router will be idle, and 

the router delay does not affect the pace at which 

packets are processed. 

The router is designed to support point-to-point as well 

as multicast communications. Information interchange is 

performed using small, 40-bit packets. It is important to 

indicate that routers make routing decisions based on the 

source address of the packets, i.e. packets do not contain 

information about the destination node(s), but only 

about the neuron that has been fired, being the network 

itself which will deliver the packets to all chips 

containing neurons that have synaptic connections with 

the source neuron. This information is embedded in the 

1024-word routing tables available at the routers. To 

assure that the system works properly with such a 

reduced number of entries in the routing tables, the 

routers are designed to perform a default routing that 

sends the packet to the port opposite to the one the 

packet comes from; for example, if the packet comes 

from the North it will be send to the South. This default 

routing will be performed when there is no entry in the 

table for the source chip. The expected shape of the 

routes between every two chips is by means of two 

straight lines and will only need the inflection point [5] 

(the point with these two lines are joined) to be stored in 

the routing tables. It is remarkable that the network 

topology allows two-hop routes to go from a chip to 

each one of its neighbours, see again Fig. 2. These two-

hop paths between neighbour nodes are denoted as 

emergency routes and may be invoked to handle 

transient congestion states as well as with link failures in 

order to bypass problematic links. 

The flow control of this network is very simple. When 

a packet arrives to an input port, an output port is 

selected and the router tries to transmit the packet 

through it. If, after a given amount of time, the packet 

has not been forwarded, the router will try the 

emergency routes. Finally, if these are not available, the 

packet will be dropped to avoid dead-lock. Moreover, in 

order to avoid live-lock situations, packets have an age 

 

Fig. 2. Example of an 8x8 SpiNNaker topology. Peripheral 

connections are not depicted for the sake of clarity. The regular 

route (thin and slashed line) and the two emergency routes (thick 
and dotted lines) between the two shaded nodes are shown. 

W                

E                M
e
rg
e
r

NW                  

SE                  M
e
rg
e
r

N                

S                

M
e
rg
e
r

M
e
rg
e
r

M
e
rg
e
r

M
e
rg
e
r

M
e
rg
e
r

1Gbps

D
e
c
o
d
e

R
o
u
te

S
e
le
c
t 
O
u
tp
u
t

Router

                W

                E

                  SE

                N

                S

                  NW

from

cores

2Gpbs

4Gbps

8Gbps

1Gbps

to

cores

Fig. 3. Router Architecture. Black arrows represent links outwards the 

chip. White arrows represent hard-wired links within the chip. 



field in their header; if two ages pass and the packet has 

not been delivered, it will be considered as outdated and 

will be dropped. Note that the ages are global to the 

whole system and have arbitrary length. As a 

contribution of this work, we provide bounds of the 

value for this network parameter. 

It is remarkable that, emulating the behaviour of actual 

neural networks, dropped packets are not re-sent, Packet 

loss is not a key issue if the dropping level is kept low. 

Actual synaptic signals between neurons in living beings 

can be lost due to different phenomena, but their 

nervous systems continue working properly. When the 

degree of lost packets/signals exceeds regular working 

levels, the neural network will not work properly 

regardless of being a living or simulated one. This is the 

reason to allow some degree of packet dropping, but 

being concerned about keeping it under control. 

III. EXPERIMENTAL SET-UP 

A detailed model of the SpiNNaker network has been 

implemented in our in-house developed simulator 

INSEE [9]. It contains most of the features of the router 

and also the topological description of the system. 

However, in order to be able to confront simulations of 

large-scale systems, some implementation decisions 

have been taken. INSEE is a time-driven simulator and 

that approach has been kept. We model a cycle as the 

time to route and forward a packet. As described in the 

previous section, routing is faster than transmission, so 

we allow the router to process up to six packets in a 

single cycle, provided that all the involved input and 

output ports are different. Regarding the routing tables, 

in the actual system they will be configured in an 

application basis, thus the table-based routing will not be 

used in this study; note that this also reduces the 

computing resources required to perform simulations. 

As the regular routes between chips in the actual system 

will attempt to use a minimal path with a single 

inflection point, we send the packets through a minimal 

route using Dimension Order Routing (DOR) which 

emulates the behaviour of actual communications in the 

SpiNNaker system. Note that the diagonal links will be 

considered a third dimension (Z) when applying DOR, 

thus the routes followed by packets will always be (X, 

Y), (X, Z) or (Y,Z) – a path (X, Y, Z) is not a minimal 

path. Furthermore, as all the ports from the CPUs inside 

a chip are merged, we will model all of them as a single 

injection queue. 

We have selected the largest configuration of the 

SpiNNaker system, which is composed by 64K nodes 

arranged in a 256x256 2D mesh. This system will be 

evaluated under point-to-point traffic, i.e. the multi-cast 

engine will not be used. The nodes will be modelled as 

independent traffic sources that inject packets following 

a Poisson distribution, in which the injection rate 

(packets per cycle per node) can be tuned to any desired 

value. We will evaluate the system under a wide range 

of injection rates going from 0.001 packets/cycle/node 

to 0.09 packets/cycle/node, which roughly represent 

1.6% and 144% of the system theoretical throughput 

under uniform traffic. This theoretical value is 1/16, but 

its computation is outside of the scope of this paper. 

This will allow us to have a picture of the behaviour of 

the system under different levels of communication 

requirements. Note that, in the actual system, the 

network is expected to run at 10-20% of its maximum 

capacity, but this wide range of injection rates allows the 

evaluation of the system even under peaks of network 

utilization. In this study we will consider a uniform 

distribution of packet destinations, although it is 

expected that in the actual system the mapping of the 

neurons will be optimized in such a way that the 

communicating neurons are in close proximity. Each 

node has an injection queue with room for 4 packets. If 

this queue is full and the node tries to inject a packet, the 

packet will be dropped because of the lack of room to 

store it. 

Different values of the time to wait before dropping a 

packet to avoid deadlock, from now on waiting time, 

will be tested in order to elucidate an optimal value to be 

used in the actual system. The values in our set of 

experiments are 0, 1, 2, 4 and 8 network cycles, and will 

be denoted as wait=0, wait=1, wait=2, wait=4 and 

wait=8 respectively. Note that zero-waiting means that if 

a packet can not be transmitted, it will try the two 

emergency routes and, if none of them are available, the 

packet will be dropped immediately. In the rest of the 

cases, the emergency routes will be tested in the last 

cycle, just before dropping the packet. 

The figures of merit will be the amount of packets 

dropped with the different injection rates, as well as 

average and maximum packet latency. Note that 

maximum latency figures will help to select a good 

value for the age-based packet dropping mechanism to 

avoid live-lock in the actual system. Of course, the 

lower the number of dropped packets, the better the 

configuration. Analogously, the lower the latency 

figures, the better the configuration. 

Moreover, we will test the system under different 

degrees of network failure to test the robustness of the 

design. In this work we will focus only on link failures. 

Systems with up to 4096 uniformly random link failures 

(roughly 2% of the system) will be evaluated in order to 

assess the fault-tolerance capabilities of the system. Low 

levels of system performance degradation are expected, 

even in the worst scenarios of system failure. Note that 

the random link failure may lead to nodes being 

completely disconnected from the system, with the 

corresponding loss of all the packets departing from or 

arriving to this node, as well as all the nodes that have to 

travel through it. This issue will be taken into account in 

the actual SpiNNaker system: if a node is disconnected 

to the rest of the system, it will be considered as a non-

working node and will not take part in the neural 

simulation. 

IV. EXPERIMENTAL RESULTS 

The results of our experimental work are depicted in 

Fig. 4. Graphs on the left-hand side show the dropped 

packet ratio for different values of waiting time and 

levels of failure of the network. The X axis shows the 

injection rate normalized to the theoretical throughput. 

Note that this can be over 100% because the bandwidth 

of the injection links is greater than the theoretical 

throughput of the network. In the Y axis the dropped 

packets are presented, normalized to the number of 



injected packets. Note that, in this case, values will be 

strictly in [0, 1] because it cannot happen that there are 

more packets dropped than injected, and obviously the 

number of dropped packets can not be negative. 

The graphs on the right-hand side of Fig. 4 show the 

latency-related figures for different values of the waiting 

time and levels of failure of the network. X axis is again 

the injection rate normalized to the theoretical 

throughput and Y axis shows the delay in terms of 

network cycles. 

Looking at these graphs and focusing on the 

performance of the 0-failures network, it is clear that the 

system performs correctly until it reaches saturation at 

around 80% of the (theoretical) network capacity: the 

number of packets dropped is very low (when not zero), 

and the latency is well bounded. The only exception 

appears when using zero waiting time, a very aggressive 

policy. In this case, the packet dropping reaches 

noticeable values at injected loads around 66%.  

Once the network is saturated it is obvious that the 

latency depends greatly on the waiting time. The 

latency-related figures are better for the lower waiting 

time policies. The graphs of dropped packets also show 

that, once the network reaches saturation, high waiting 

times are counterproductive because they keep packets 

on the network for too long, a situation that will cause 

the drop of newly injected packets. 

For this set of experiments the waiting time equal to 

one has shown to be the best performer, because it is the 

one with the lowest degrees of packet dropping – both 

below and over the saturation point – and also keeps low 

the latency-related figures. Higher waiting times do not 

seem to be a good idea because, although they perform 

slightly better when the network is not saturated, 

Packets Dropped SpiNNaker 256x256
Uniform traffic - 0 Link Failures

0.0

0.2

0.4

0.6

0.8

1.0

0% 50% 100% 150%

Injection Rate

D
ro
p
p
in
g
 R

a
ti
o wait=0

wait=1

wait=2

wait=4

wait=8

Latency Study SpiNNaker 256x256
Uniform traffic - 0 Link Failures

0

1000

2000

3000

0.00% 50.00% 100.00% 150.00%

Injection rate

N
e
tw

o
rk
 c
y
c
le
s

wait=0 AVG

wait=0 MAX

wait=1 AVG

wait=1 MAX

wait=2 AVG

wait=2 MAX

wait=4 AVG

wait=4 MAX

wait=8 AVG

wait=8 MAX

Packets Dropped SpiNNaker 256x256
Uniform traffic - 1024 Link Failures

0.0

0.2

0.4

0.6

0.8

1.0

0% 50% 100% 150%

Injection Rate

D
ro
p
p
in
g
 R

a
ti
o wait=0

wait=1

wait=2

wait=4

wait=8

Latency Study SpiNNaker 256x256
Uniform traffic - 1024 Link Failures

0

1000

2000

3000

0.00% 50.00% 100.00% 150.00%

Injection rate

N
e
tw

o
rk
 c
y
c
le
s

wait=0 AVG

wait=0 MAX

wait=1 AVG

wait=1 MAX

wait=2 AVG

wait=2 MAX

wait=4 AVG

wait=4 MAX

wait=8 AVG

wait=8 MAX

Packets Dropped SpiNNaker 256x256
Uniform traffic - 4096 Link Failures

0.0

0.2

0.4

0.6

0.8

1.0

0% 50% 100% 150%

Injection Rate

D
ro
p
p
in
g
 R

a
ti
o wait=0

wait=1

wait=2

wait=4

wait=8

Latency Study SpiNNaker 256x256
Uniform traffic - 4096 Link Failures

0

1000

2000

3000

0.00% 50.00% 100.00% 150.00%

Injection rate

N
e
tw

o
rk
 c
y
c
le
s

wait=0 AVG

wait=0 MAX

wait=1 AVG

wait=1 MAX

wait=2 AVG

wait=2 MAX

wait=4 AVG

wait=4 MAX

wait=8 AVG

wait=8 MAX

Fig. 4. Results of the experimental work. Left: packet dropping ratio for different degrees of network failure. Right: average and maximum delay 
in the same scenarios. 



transient saturation states may lead to an excessive level 

of packet dropping and also to latencies that could 

surpass the constraints of neural network applications. 

Regarding the experiments for scenarios with failures, 

we can see that the apparition of faults result in reaching 

saturation prematurely. Again, the longer the waiting 

time, the faster the network reaches saturation states. For 

example, in the dropped packets graph for the 1024-

failures network, the wait=1 configuration performs well 

until the network capacity reaches around 50%; beyond 

that point packet dropping figures explode. In the case 

of wait=2 the inflection point comes at around 35%. For 

wait=4 and wait=8 the measured figures are on 

saturation most of the time. However, it is worth to 

signal that, for the smallest measured values, the wait=8 

is the one that drops fewer packets. Regardless of that, 

again the wait=1 has shown to be the best overall 

performer, both in terms of dropped packets and latency 

figures. For the low injection rates in which the system 

is expected to work, wait=2 and wait=4 lead to slightly 

lower levels of packet dropping. 

In the case of 4096 failure links, the degradation of the 

network is even more noticeable – note that 2% of the 

links broken means a severely malfunctioning system. 

The saturation points for all the cases are lower than in 

the previous scenario. Again, the overall best 

configuration is shown to be wait=1, but when the 

injection rate is low both wait=4 an wait=8 drop a 

slightly smaller amount of packets. This could be of 

interest because, as stated before, the interconnection 

network is designed to run at low utilization levels. 

Latency figures are also of interest. Note that when 

high injection rates lead the network to heavy saturation, 

the ratio of dropped packet soar, but the latency figures 

drop. We have to find the explanation for this somewhat 

unexpected result in the way packets are dropped: 

usually, most survivor packets are those travelling only a 

few hops, because they stay for less time in the network 

and, therefore, the probability of going through 

problematic areas is lower. So what we see is actually a 

reduction on the average distance of delivered (non-

dropped) packets. The simulator reports that, below 

saturation, average distance traversed by packets is 

around 100 hops. In contrast, for highly congested 

situations this distance may fall to values below 50. As 

the generation of packet destinations does not change, 

we have to infer that, in saturation, packets travelling far 

away have serious trouble reaching their destinations.  

The results of our experiments may help us to select 

the length of an age in terms of cycles. This will be 

useful to have a good live-lock avoidance mechanism. 

Note that, as explained before, all packets that are in the 

network for more than two ages will be dropped. A 

length that allows dropping outdated packets as soon as 

possible, but without dropping slowly-advancing, useful 

packets is desirable. Age duration could be fixed to the 

maximum latency value obtained via simulation, which 

depends on the waiting time. Note that, as ages are 

global to the whole network, a packet that is injected in 

the last cycle of an age will be tagged with that age and, 

therefore, is under the risk of being dropped as soon as 

the next age finishes, so it will only have one age length 

plus one cycle to be delivered. Selecting a lower value 

as age length may lead to unnecessary packet dropping. 

For example, in the case of wait=1, an age length of 750 

cycles would be a good choice. However, note that in 

this case an outdated packet may wander around the 

network for up to 1500 cycles. Table I summarizes the 

maximum latencies measured, for the different waiting 

time values and levels of network failures. 

Regarding the robustness of the system, we can see 

that the SpiNNaker network manages to work properly 

with 1024 failures (about a 0.5% of the network) when 

the injection rate is not very high. With wait=1 and at 

50% of the network capacity, less than 7.5% of packets 

are dropped. In the case of 4096 failures the system still 

manages to work, but dropping 1 of each 4 packets in 

the best configuration at 50% injection rate. However 

note that this study has been performed with dimension 

order routing, a mechanism that is unaware of system 

failures, while the actual SpiNNaker routers would use 

routing tables filled ad-hoc for each application running 

on the system. This table-filling process would be aware 

of network failures, thus avoiding the non-operational 

areas of the network [5]. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have discussed the design and 

architecture of the SpiNNaker system. This system will 

be used to perform real-time simulation of spiking 

neural networks. Some goals built-in into the design are 

low power consumption and high tolerance to failures.  

In order to be a robust system the SpiNNaker 

architecture relies on redundancy both in terms of 

computing and communicating elements.  

A performance evaluation of the system focusing on 

the interconnection network has been carried out, via 

simulation, obtaining packet dropping ratios and latency 

figures. This study allows the selection of optimal values 

for some network parameters, which will be necessary at 

the implementation stage. In particular, the obtained 

values of maximum latency will be used to select the 

appropriate values for the age-based packet dropping 

mechanism, implemented to avoid live-locks.  

Our results lead to the conclusion that keeping in-

transit packets waiting for too long for the allocation of 

output ports is counterproductive. This contention 

results in a backpressure that causes the dropping of 

packets at the injection queues. In most of the 

experiments, a maximum waiting time of one cycle 

leads to the best performance both in terms of the 

number of dropped packets and latency. The most 

aggressive policy, zero-waiting, is only slightly better 

for saturated networks, a situation that is not expected to 

happen in an actual SpiNNaker system with an over-

dimensioned network.  

TABLE I. 

MAXIMUM LATENCIES MEASURED FOR DIFFERENT VALUES OF THE 

WAITING TIME AND DIFFERENT DEGREES OF NETWORK FAILURE. 

wait=0 wait=1 wait=2 wait=4 wait=8

0 faults 455 749 1035 1534 2346

1024 faults 425 717 1009 1492 2403

4096 faults 364 631 939 1406 2319  



We have performed also an evaluation of the system 

under fault scenarios. To do so, we have modelled the 

network taking into account broken (bi-directional) 

links. The SpiNNaker network performs acceptably well 

with a 0.5% of the links failing. When this value grows 

to 2% of the links, the system experiences severe 

performance degradation. However, note that our 

simulated model is unaware of the network failures, 

while the actual SpiNNaker system will be aware of 

them and will route the packets through trusted paths. 

Thus, a lower degree of degradation of the system is 

expected when using the actual system. 

As future work we expect to perform more complex 

evaluations of the system with different failure and 

traffic models. Moreover some other different 

mechanism and topologies will be evaluated in order to 

improve the behaviour of the system when running in 

correct scenarios as well as when there are failures in the 

network. 

ACKNOWLEDGEMENTS 

This work has been supported by the Ministry of 

Education and Science (Spain), grant TIN2007-68023-

C02-02, and by grant IT-242-07 from the Basque 

Government. The Spinnaker project is supported by the 

UK Engineering and Physical Sciences Research 

Council, partly through the Advanced Processor 

Technologies Portfolio Partnership at the University of 

Manchester, and also by ARM and Silistix. Steve Furber 

holds a Royal Society-Wolfson Research Merit Award. 

Javier Navaridas is supported by a doctoral grant of the 

UPV/EHU. 

REFERENCES 

[1] P Dayan and L Abbott, Theoretical Neuroscience. Cambridge: 

MIT Press, 2001. 
[2] T Elliott and N Shadbolt, “Developmental robotics: Manifesto 

and application,” Philosophical Trans. Royal Soc., vol. A, no. 

361, 2003. 
[3] S Furber, S Temple, and A Brown, “On-chip and inter-chip 

networks for modelling large-scale neural systems,” in Proc. 

International Symposium on Circuits and Systems, ISCAS-2006, 
Kos, Greece, May 2006. 

[4] S Furber, S Temple, “Neural Systems Engineering”. Journal of 

The Royal Society Interface 4(13), pp 193-206, April 2007  
[5] MM Khan et al. "SpiNNaker: Mapping Neural Networks onto a 

Massively-Parallel Chip Multiprocessor". Proc. 2008 

International Joint Conference on Neural Networks 
(IJCNN2008). 

[6] LA Plana et al. “A GALS Infrastructure for a Massively Parallel 

Multiprocessor”. IEEE Design & Test of Computers, Volume: 24 
, Issue: 5, pp. 454 - 463, Sept.-Oct. 2007 

[7] LA Plana et al. “An on-chip and inter-chip communications 

network for the spinnaker massively-parallel neural net 
simulator,” in Proc. Second ACM/IEEE International 

Symposium on Networks-on-Chip (NoCS 2008), 2008, pp. 215 – 

216. 
[8] A Rast et al. “Virtual synaptic interconnect using an 

asynchronous network-on-chip,” in Proc. 2008 Int’l Joint Conf. 

on Neural Networks (IJCNN2008), 2008. 
[9] FJ Ridruejo, J Miguel-Alonso. “INSEE: an Interconnection 

Network Simulation and Evaluation Environment”. Lecture 

Notes in Computer Science, Volume 3648 / 2005 (Proc. Euro-Par 
2005). 

 

 


