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ABSTRACT — Interconnection networks based on the k-ary n-tree topology are widely used in high-

performance parallel computers. However, this topology is expensive and complex to build. In this paper 

we evaluate an alternative tree-like topology that is cheaper in terms of cost and complexity because it 

uses fewer switches and links. This alternative topology leaves unused upward ports on switches, which 

can be rearranged to be used as downward ports. The increase of locality might be efficiently exploited 

by applications. We test the performance of these thin-trees, and compare it with that of regular trees. 

Evaluation is carried out using a collection of synthetic traffic patterns that emulate the behavior of 

scientific applications and functions within message passing libraries, not only in terms of sources and 

destinations of messages, but also considering the causal relationships among them. We also propose a 

methodology to perform cost and performance analysis of different networks. Our main conclusion is 

that, for the set of studied workloads, the performance drop in thin-trees is less noticeable than the cost 

savings. 
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1 INTRODUCTION 

The k-ary n-tree topology  [22], based on the classical fat-tree topology introduced by Leiserson  [17], is often the 

topology of choice to build low latency, high bandwidth and high connectivity interconnection networks (hereafter 

IN) for parallel computers. Its main characteristics are the low mean path length and the multitude of paths from a 

source to a destination node, which increases exponentially with the distance between nodes (in number of hops). 

This high path diversity provides a good performance rate for almost all kind of workloads, independently of their 

spatial, temporal and length distributions. 

However, its design does not take into account that parallel applications usually arrange their processes in such a 

way that communicating processes are as close as possible (in terms of process identifier) to each other, trying to 

obtain advantages from locality in communication. A network design that ignores locality could be a good option 

because, in some of the largest parallel systems currently operating, schedulers see processors as an unstructured 

pool of resources, and assigns them to parallel jobs without guaranteeing that neighbor processes (i.e., consecutive 

identifiers) run in neighboring compute nodes (attached to the same or adjacent switches). The result is a random 



mapping of processes to nodes that may require high bandwidth at all network levels, because many nodes will 

generate messages addressed to distant. Not all the schedulers function this way: there are a few that are topology-

aware and schedule applications in consecutive partitions of the network, thus allowing for an effective exploitation 

of locality. In these cases, for most applications, the bisection bandwidth would no longer be the main performance 

limiting factor, and the upper levels of network would be under-utilized. 

We can reduce cost and complexity of the IN by reducing the ratio between the number of links connected to 

upper levels and those connected to lower ones. This can be done reducing the radix of the switches or, alternatively, 

increasing the locality by rearranging the upward ports and making them downward. In both cases the total cost of 

the system is reduced: fewer switches, fewer links and, in the former case, switches of lower complexity. If parallel 

applications are correctly placed, performance should not suffer. They could even experience an improvement due to 

the increased locality of the latter case. In this paper we propose to use thin-trees to, this way, reduce cost and 

complexity of interconnection networks by doing what we have just described. Thin-trees are directly derived from 

the k-ary n-tree topology, reducing the number of upward ports of all switches. 

In order to test the different networks, we have performed a throughput study for uniform traffic, both analytically 

and via simulation. Ideally we would evaluate performance using real traces taken from actual scientific applications 

running on very large systems but, as large traces are difficult to obtain and not very manageable, we have used a 

collection of synthetic workloads that emulate their behavior. This mimicry is done not only in terms of spatial 

patterns, but also in terms of the causality of the injected messages. Some of the communication patterns replicate 

the way collectives are implemented in common MPI libraries. Others reproduce data interchanges performed in 

applications that rely on virtual topologies—usually, meshes—commonly used in matrix calculus. The length of the 

messages and the number of nodes can be specified as parameters. 

We have selected some instances of the topologies under study, fed the simulator with the proposed workloads for 

a variety of message lengths, and measured their performance. A comparison of alternatives is done using raw 

performance or a performance/cost ratio. As performance is application-dependent, we define a model to compute a 

performance indicator that can be tailored to fit the characteristics of a given supercomputing center. We will see 

that, in terms of this indicator, the k-ary n-tree shows its superiority as a general-purpose topology, although slimmed 

topologies perform equally well for some relevant application mixes. If cost is considered too, the complexity of the 

k-ary n-trees plays against them and the thin-tree is the clear winner: cost is lower and performance is good – in some 

cases, even better than that of the regular tree, due to a better exploitation of locality. 

The rest of this paper is organized as follows. In Section 2 we discuss some topologies in use in former and 

current high performance computers and also some schedulers and their job placement policies. In Section 3 we 

present the topologies we will evaluate. The experimental environment—model of the elements, selected topologies 

and proposed workloads—is explained in Section 4. In Section 5 we show the experimental work and analyze results 

taking into account only the raw performance. To obtain a fairer comparison of the different topologies, we make a 

proposal of cost and performance functions, and carry out a performance/cost study in Section 6. We close this work 

with some conclusions and a future work outlook in Section 7. 



2 RELATED WORK 

Indirect interconnection networks have evolved noticeably from the first multi-stage networks as those proposed 

by Clos in  [7]. Those networks were built with low-radix switches (typically 4 or 8) and aimed to interconnect at 

most a few hundred nodes. Current spines, as that on the Mare Nostrum supercomputer  [5], have switches with 

hundreds of ports and are able to interconnect thousands of nodes. Former trees were low-radix: the CM-5  [18] had a 

radix-8 data network. Current ones use switches with higher radices, as those radix-24 of the Cray XD1  [9]. There 

are also recent tree-like proposals as the Black Widow Clos network  [11] that takes advantage of the high availability 

of ports (radix-64 switches) to add side-links to the common tree-like arrangement. However, the most noticeable 

change in these networks is that former indirect networks were built ad hoc for the target systems, whereas current 

high-performance networking technologies as QsNet  [21], Myrinet  [19] or InfiniBand  [15] have favoured building 

super-clusters with off-the-shelf components. 

Network bandwidth and latency have experienced notable improvements during the last 10 years, from the 

800Mbps of the ASCI Red (1997)  [26] to the 20Gbps currently available in InfiniBand  [15] when using 4X, dual-

data-rate connections, or the 10Gbps by Myri-10G and 10Gb Ethernet, both offered by Myricom  [19]. Soon we will 

see offers of 100-120 Gbps (100G Ethernet, InfiniBand 12X-QDR). This takes us to a network bandwidth 

improvement over 100 times in 10 years. The latency of the full protocol and the network in the ASCI Red (taking 

into account message passing library) is 12µs. Both Myri-10G and InfiniBand latencies are around 2µs. Thus, latency 

has been improved (around 6 times), but not as noticeably as bandwidth has. 

Taking a look at the most current Top500 list  [12], we can see two clear trends. On the one hand, the choice of 

topology for custom-made, massively parallel computers is the 3D cube. On the other, commodity-based systems 

(super-clusters) are built around the class of trees discussed in this paper. Most of the machines in the middle 

positions are arranged this way, which justifies our interest in tree-like topologies. 

We stated in Section 1 that common schedulers do not take into account the underlying network topology. The 

only supercomputer we have found that tries to maintain locality is the BlueGene family (3D tori), whose scheduler 

 [3] puts tasks from the same application in one or more mid-planes (8x4x4). On the contrary, the scheduling strategy 

 [1] of Cray XT3/XT4 family (also 3D tori) gets the first available compute processors. Some of the other job queuing 

and scheduling managers like Sun Grid Engine  [27], Load Leveler  [14], or MOAB  [8] do not offer locality-aware 

politics, but provide mechanisms to implement them. 

3 TOPOLOGIES UNDER STUDY 

In this section we will describe two different multi-stage, tree-based topologies. In these descriptions we assume 

that all switches used to build a given network have the same radix. For the purpose of this paper we leave 

unplugged the upward ports of the topmost level of switches. This assumption has advantages in terms of simplicity 



in the descriptions, and also provides scalability. The disadvantage is in terms of cost, because some resources are 

unused; this is particularly relevant for those topologies with more switches in the top level. In practical 

implementations, all ports of the highest switch level may be used as downward ports, eventually resulting in a larger 

network size. Alternatively, we may consider a single switch as an aggregation of lower radix virtual switches, which 

results in a smaller number of switches in the topmost stage of the system. 

3.1 Definitions 

In the graphical representations of the topologies (see Fig. 1), boxes represent switches and lines represent links 

between them. Note that we show neither the compute nodes connected to the first level switches and their links, nor 

the last level of upward links (which, as we stated before, are unplugged). These elements are hidden for the sake of 

clarity. 

Throughout this paper we will use n to denote the number of levels in a network, and N to denote the number of 

compute nodes (leaves) attached to it. We will denote the total number of switches in a topology as S, and the number 

of switches at level i as Si. The total number of links will be denoted as L. The switch radix will be denoted as R. LB 

will denote the link bandwidth, BB the bisection bandwidth, and BC the number of channels in the bisection. We will 

denote the theoretical, ideal throughput for uniform traffic as Θ. We call the relation between the number of 

downward ports of a switch and the number of upward ports the slimming factor. For example, taking a look at the 

switches in the topology shown in Fig. 1b, four ports are downward ports, linked to switches in the next lower level. 

The remaining two ports of each switch are upward ports that connect to switches in the next higher level; therefore 

the slimming factor is 2:1. 

In the topological descriptions that follow, we denote each switch port within the system as the level where the 

switch is, the position of the switch in that level, and the number of the port in that particular switch. We call the 

lower level of switches (those attached to compute nodes) level 0; obviously, level n-1 is the one on the top of the 

tree. We number the switches in each level from left to right, starting from 0. Ports in a switch are denoted as upward 

(↑) or downward (↓), and numbered from left (0) to right. Thus, a port can be addressed as a 4-tuple <level, switch, 

port, direction>. 

Given two ports P and P’, they are linked (P↔P’) when there is a connection (link) between them. As links are 

full-duplex, in the expressions concerning linkage we avoid the redundancy of showing downward connections. We 

will call level, switch and port the address components of a given port, and nlevel, nswitch and nport the address 

components of the port to which it is connected (its upper neighbor). Therefore, 

↓><↔↑>< ,,,,,, nportnswitchnlevelportswitchlevel  

Along this paper, we will refer to heavy and light workloads. Light workloads are those in which the number of 

messages circulating simultaneously through the network is low, and the length of the messages is short. In contrast, 

heavy workloads are those in which most of the nodes are injecting messages at once so that the network will 

experience peaks of congestion; this situation would be worse if messages are addressed to distant destinations. 



3.2 k-ary n-tree 

This is the best-known of the topologies considered in this study. It will be the yardstick to compare the thin-tree 

against. k-ary n-trees  [22], where k is half the radix of the switches—actually, the number of links going upward (or 

downward) from the switch—and n the number of levels, will de denoted through this paper as k:k,n-tree. Note that 

in this case the slimming factor is 1:1. 

A k-ary n-tree is typically built in a butterfly fashion between each two contiguous levels, Fig. 1a shows a 

depiction of a 4-ary 3-tree. The topological neighborhood description is as follows: 
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The main advantages of this topology are the high bisection bandwidth and the large number of routing 

alternatives for each pair of source and destination—a path diversity that can be exploited via adaptive routing. 

Nevertheless, they might be expensive and complex to deploy, because of the large number of switches and links.  

Note that bandwidth remains constant in all levels. Most parallel application exhibit some level of locality in 

communication. This means that, in actual scenarios, the higher the level, the lower is the utilization of resources in 

that level. This is what supports the utilization of slimming strategies: an attempt to reduce complexity in the upper 

levels without sacrificing application performance. 

3.3 k:k’-ary n-thin-tree 

We define a thin-tree as a cut-down version of a k-ary n-tree in which we apply a given slimming factor. We will 

denote them as k:k',n-tree, being k the number of downward ports, k' the number of upward ports and n the number of 

levels. The slimming factor is, obviously, the ratio between k and k’. k does not need to be a multiple of k’ so that we 

can produce a thin-tree with arbitrary values of k and k’. It is remarkable that a k-ary n-tree is actually a k:k-ary n-

thin-tree.  

A 4:2-ary 3-thin-tree is depicted in Fig. 1b. Removed switches and links from a full-fledged k-ary n-tree are 

shaded. The topological neighborhood relationship between ports in a thin-tree is described as follows: 

 
a) 

 
b) 

Fig. 1. Samples of the topologies under study to build 64 nodes networks. a) 4,3-tree. b) 4:2,3-thin-tree. 
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In this topology the bisection bandwidth has been reduced, as well as the number of switches and links (i.e., cost 

and complexity). We want to investigate how applications suffer this reduction. Thin-trees are easier to deploy than 

regular trees and, if k and n values are kept, the radix of switches is smaller. 

3.4 Theoretical Throughput 

We open this sub-section with Table 1, which summarizes the relations between network parameters (n, k and k’), 

number of elements (N, S, Si, L, R) and topological properties (BB, BC, Θ) for the topologies under study. The 

computation of Θ for both topologies—a common way to evaluate interconnection networks performance—is done 

in the following paragraphs, via an analytical study.  

As the real throughput of a system depends on the link bandwidth, we will focus the study on the accepted load 

relative to the maximum load a node is able to inject. To do this, we assume that the link bandwidth is constant 

trough the whole network. This way, as every node is connected to the network via a single link, the throughput 

should be in (0, 1]. Note that zero-throughput means the absence of connectivity. 

TABLE 1.  
TOPOLOGICAL CHARACTERISTICS OF THE TOPOLOGIES 
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As stated in chapter 3 of  [10] the upper boundary of the throughput of a given topology could be expressed as the 

ratio between the bisection bandwidth and the number of nodes. Therefore, the theoretical ideal relative throughput 

(hereafter ideal throughput) is: 
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 (1) 

As the link bandwidth is constant, the number of channels in the bisection is calculated as: 

B

B
C

L

B
B =  (2) 

From (1) and (2) we obtain: 

N

Bc⋅
=Θ

2  (3) 

In both cases, the number of channels in the bisection is half the number of links at the last stage, i.e.: 

2

1 kS
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C

⋅
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This way, we can compute the ideal throughput for uniform traffic as: 

N
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Thus, from (5) and looking at the values of Si in Table 1, the ideal throughput of a k-ary n-tree is: 
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And the ideal throughput of a k:k’-ary n-thin-tree is: 
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4 EXPERIMENTAL SET-UP FOR SIMULATION-BASED EVALUATION 

We use INSEE  [23] to evaluate some different tree-like networks, feeding them with a collection of application-

inspired synthetic workloads. The simulator measures time in terms of cycles, the time required by a phit to traverse 

one switch (switching plus transmission). 

4.1 Switches 

For this work, we have used simple input-buffered switches whose radices range from 9 to 16, depending on the 

topology. In order to keep things simple, we do not use virtual channels, except if explicitly indicated. The arbitration 

of each output port is performed in a random way, that is, every time an output port is free it randomly chooses 



among all the input ports that have requested this resource. Transit queues are located in the input ports and are able 

to store 4 packets. A schematic model of the switch is depicted in Fig. 2. 

In this work we model the node as a traffic generation source with one injection queue, which is able to store 8 

packets. It is also the sink of the arrived messages. When generating traffic, we consider reactive sources, meaning 

that the reception of a message may trigger the release of a new one. This way we can model the causality inherent 

to actual application traffic. Messages are split into packets of a fixed size of 16 phits. One phit is the smallest 

transmission unit, fixed to 128 bits. If a message does not fit exactly in an integral number of packets, the last packet 

contains unused phits. 

The switching strategy is virtual cut-through. Routing is adaptive (but restricted to shortest paths in order to avoid 

deadlock) using a credit-based mechanism, being the credit the space in the queue of the neighbor’s input port. This 

mechanism works as follows: when several output ports are feasible, the one with more available credits (more room 

in the neighboring queue) is selected, if several ports have the same amount of credit, one of them is selected at 

random. Credits are communicated out-of-band, so they do not interfere with regular traffic. The use of adaptive 

routing allows taking the best of each of the topologies, which in turn allows for a fairer comparison among them. 

Reader should note that optimal static routing functions are application-dependent and have established a line of 

research by themselves. An interesting contribution that is in line with the contents of this paper is the static routing 

algorithm presented in  [25] which was used with the kind of trees studied in this paper. 

4.2 Networks under Study 

In this work we have performed three sets of evaluations for the topologies under study. In the first evaluation, 

which revolves around the theoretical throughput, we have fixed the number of downward ports per switch (set to 8), 

the slimming factors (set to 8:6, 8:4 and 8:2) and the target number of connectable compute nodes (set to 4096). With 

these restrictions, we have worked with the following topologies: 8:8,4-tree, 8:6,4-tree, 8:4,4-tree and 8:2,4-tree. 

The second set of experiments used traffic from some kernels of applications to feed a wide variety of networks, 

all of them using switches with 8 downward ports. All the possible slimming factors have been used, from 8:8 (the 

complete tree) to 8:1. Futhermore we have tested three different scales of the system, able to connect 64 nodes (2 

levels), 512 (3 levels) and 4096 nodes (4 levels). All the evaluated topologies and some of their characteristics are 

summarized in Table 2. 

 
Fig. 2. Model of the switch used in the simulations given a radix r. 

Ports at the left are input ports and those at the right are output ports. 



As we have just stated, all the switches have 8 downward ports. However, the actual radix of the switches is not 

always the same, being smaller in the more slimmed topologies. Thus, in these two evaluations the complete tree has 

advantage compared with the thinner alternatives: it uses more links, and more switches that also are larger. Thus 

performance measurements are biased towards the 8:8,4-tree. 

In the last evaluation set we have fixed the radix of the switches (set to 12), and used all the feasible slimming 

factors (from 11:1 to 6:6). Under these restrictions we have created the smallest topologies capable to connect at least 

64, 512 and 4096 nodes. The result of the evaluations would be fairer than in the previous set, because all the 

switches have the same radix. Note how thinner topologies have lower bandwidth and path diversity than regular 

trees, but in return locality is increased. Unfortunately, the proposed networks have different sizes, in terms of the 

number of compute nodes they can connect. As we are using workloads that emulate a fixed number of tasks, we are 

not capable of using all the trees’ leaves. Table 3 summarizes some characteristics of the networks in this third 

evaluation set. For example note how it is possible to build a 8:4,4-thin-tree with exactly 4096 nodes, but the 

complete 6:6,5-tree built with 12-port switches has 7776 leaf-nodes. In terms of cost this plays against the topologies 

that provide the worst fit to the target number of nodes. 

TABLE 2. 
CHARACTERISTICS OF THE TOPOLOGIES IN THE SECOND SET OF EXPERIMENTS 

a) 8:1,2-tree 8:2,2-tree 8:3,2-tree 8:4,2-tree 8:5,2-tree 8:6,2-tree 8:7,2-tree 8:8,2-tree 

Nodes 64 64 64 64 64 64 64 64 
Switchs 9 10 11 12 13 14 15 16 
Radix 9 10 11 12 13 14 15 16 
Links 72 80 88 96 104 112 120 128  

b) 8:1,3-tree 8:2,3-tree 8:3,3-tree 8:4,3-tree 8:5,3-tree 8:6,3-tree 8:7,3-tree 8:8,3-tree 

Nodes 512 512 512 512 512 512 512 512 
Switchs 73 84 97 112 129 148 169 192 
Radix 9 10 11 12 13 14 15 16 
Links 584 672 776 896 1032 1184 1352 1536  

c) 8:1,4-tree 8:2,4-tree 8:3,4-tree 8:4,4-tree 8:5,4-tree 8:6,4-tree 8:7,4-tree 8:8,4-tree 

Nodes 4096 4096 4096 4096 4096 4096 4096 4096 
Switchs 585 680 803 960 1157 1400 1695 2048 
Radix 9 10 11 12 13 14 15 16 
Links 4680 5440 6424 7680 9256 11200 13560 16384  

a) 64-node systems. b) 512-node systems. c) 4096-node systems. 

TABLE 3. 
CHARACTERISTICS OF THE TOPOLOGIES IN THE THIRD SET OF EXPERIMENTS 

a) 11:1,2-tree 10:2,2-tree 9:3,2-tree 8:4,2-tree 7:5,3-tree 6:6,3-tree 

Nodes 121 100 81 64 343 216 
Switchs 12 12 12 12 109 108 
Radix 12 12 12 12 12 12 
Links 132 120 108 96 763 648  

b) 11:1,3-tree 10:2,3-tree 9:3,3-tree 8:4,3-tree 7:5,4-tree 6:6,4-tree 

Nodes 1331 1000 729 512 2401 1296 
Switchs 133 124 117 112 888 864 
Radix 12 12 12 12 12 12 
Links 1463 1240 1053 896 6216 5184  

c) 11:1,4-tree 10:2,4-tree 9:3,4-tree 8:4,4-tree 7:5,5-tree 6:6,5-tree 

Nodes 14641 10000 6561 4096 16807 7776 
Switchs 1464 1248 1080 960 4440 5184 
Radix 12 12 12 12 12 12 
Links 16104 12480 9720 7680 31080 31104  

a) 64-node systems. b) 512-node systems. c) 4096-node systems. 



4.3 Workloads 

First of all we fed the networks under study with synthetic uniform traffic with independent sources to perform a 

classic throughput evaluation. This set of experiments will show us a first estimation of the networks’ potential, and 

their capacity to handle heavy workloads. It also will validate the analytical study performed in Section 3.4. 

As we stated in the introduction, we would also like to test the selected networks with realistic traffic, ideally 

taken from traces obtained from applications running in actual supercomputers. Since it is difficult to obtain and 

handle traces of applications running on thousands of nodes, we decided to create instead some synthetic traffic 

generators which emulate data interchanges typically used in scientific parallel applications. 

The patterns of choice will be described in the following paragraphs. In the descriptions that follow, N is the 

number of processes in the parallel application, identified from 0 to N-1. Note that we assume a mapping of one 

process to one compute node attached to one leave of the network, which results in the consecutive allocation of the 

tasks into the nodes—i.e. task n goes to node n. The graphical representation of these patterns is depicted in Fig. 3. In 

this depiction, blue arrows and squares represent processes, likely, black arrows represent messages. Note that the 

circle-end of the arrow represents a message sent, the arrow-end represents that the node must stall until the 

reception. The time flows from left to right. 

For all patterns each node starts with an initial set of messages that have to be injected into the network. The 

length of these messages is configurable. Messages must be packetized before injection, thus long messages generate 

a burst of packets. The reception of a message may trigger the release of some additional ones; this means that 

patterns include causal relationships. In the simulator, we start with an empty network and measure the time used to 

consume the initial collection of messages, plus all additional messages generated by causal relationships, until the 

network is empty again. 

We have generated these patterns for fixed network sizes of N=64, N=512 and N=4096 compute nodes and 

message lengths of 40KB—as will be explained later, in waterfall pattern the size of the actual messages is much 

smaller. Most of the patterns in use in this work were further defined and justified in  [20]. 

 

b) Example of Mesh c) Example of Butterfly d) Example of Binary tree e) Example of Waterfall

a) Example of Wavefront

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

 
Fig. 3. Graphical representation of the traffic patterns: Time flows from left to right. Blue lines and squares represent nodes. Each 

black arrow start means a message send. The end of the black arrows means that the node has to stop until receiving the 
corresponding message. a) Wave-front (Green) in a 3x3 2D-mesh. b) Neighbor interchange in a 4x4 2D-mesh. c) Butterfly that 
emulates N-to-N collectives (8 nodes). d) Binary tree that emulates N-to-1 collectives (8 nodes). e) Waterfall pattern (9 nodes). 



The 2D and 3D wave-front patterns (W2 and W3) perform a diagonal sweep from the first node to the last one in 

MPI virtual square (or cubic) meshes, and then returns to the first node. The simulation of this patterns starts with 

two (three for W3) messages in node 0, and ends with the finalization of the return sweep. These patterns are 

considered light—note that there are only a few nodes injecting at once—but create some contention in the 

destination nodes because they have to receive data from several neighbors. We can observe this pattern in 

applications implementing the Symmetric Successive Over-Relaxation (SSOR)  [6] algorithm—used to solve sparse, 

triangular linear systems. 

The 2D and 3D mesh patterns (M2, M3) perform data movements in MPI virtual square (or cubic) meshes from 

every node to all its neighbors; after that, each node waits for the reception of all messages from its neighbors. 

Simulation starts with all nodes injecting one message per direction (2-4 for M2, 3-6 for M3), and ends once all 

messages arrive. These patterns impose a very heavy load on the network, because all nodes inject simultaneously 

several messages at once before stopping to wait for the receptions. These patterns can be observed in applications 

using finite difference methods  [2]. 

The butterfly pattern (BU) provides an efficient implementation of MPI N-to-N collectives (MPI_Alltoall, 

MPI_Allreduce, etc.)  [28]. It is also known as “recursive doubling”. Simulation of BU starts with a message at each 

node, and ends when defined by the pattern. This is a heavy pattern because all the nodes inject at once, and also in 

the last stages of the butterfly the messages have to traverse the whole network, which may exhacerbate congestion. 

The binary tree pattern (BT) provides an efficient implementation of some N-to-1 MPI collective operations, such 

as MPI_Reduce and MPI_Gather  [16]. Simulation of this pattern starts with a message at odd-numbered nodes, and 

ends when node 0 receives the messages from all power of two nodes (included 2
0
=1). This is the lightest of the 

patterns because there is almost no contention in the delivery of the messages. 

The waterfall traffic pattern (WF) is inspired in a pattern we have observed in the NAS Parallel Benchmark LU 

 [24]. It consists of a large collection of small messages, with causal dependencies. For this pattern, we define a total 

number of bytes to transmit (length) and, instead of starting with a single 40KB message; a burst of 40 messages of 

1KB length is generated. WF can be seen as a burst of W2s (actually, LU uses SSOR) but using small messages of 

fixed length. Node 0 starts a burst of messages that flood the network. The simulation ends when the last burst 

arrives to node N-1. The main characteristic of WF is the presence of causality chains. Latencies in the delivery of 

messages accumulate at the end of the chain. We can consider this pattern heavy because during the execution mean 

time, most of the nodes are injecting messages at once, however it is not as heavy as BU or M2 and M3 because the 

causality chains throttle the injection of messages. 

5 EXPERIMENTS AND ANALYSIS OF RESULTS 

In this section we will evaluate the networks describe above. In the initial set of experiments we feed the networks 

with uniform traffic from independent traffic sources. These preliminary, non-realistic tests could make us think that 



thin-trees are not a good topological choice. However, a deeper study using a selected mix of workloads that mimic 

applications behavior tells us a different story: when taking into account that high performance applications’ 

processes synchronize and maintain causal relationships, the load that traverses the last stages of a tree-like topology 

is smaller than that traversing the first stages; therefore, we can build trees that are thinner at the upper stages without 

adversely affecting the execution time of applications—but with a very positive impact in terms of budget. 

5.1 Throughput 

The first set of experiments to evaluate the performance of the topologies under test will be by means of a 

classical throughput measurement for uniform traffic from independent traffic sources. We will plot the accepted load 

versus the offered load to, this way, have a first estimation of how fast the networks reach saturation and how much 

performance could we expect from them under heavy loads. We perform these measurements via simulation using 

the following methodology. First of all, there is a fixed warm-up period of 30K cycles. After that, a convergence 

phase is started. In this phase we measure the average load every 1K cycles. When four consecutive measurements 

are within a range of 5%, we consider that the convergence phase is finished and that the simulation has reached a 

stationary phase. After this point, the throughput measurement is started. This is the last phase in which 10 batches 

of 5K cycles each are captured. The result shown is the average accepted load of these ten batches. Note that the 

standard deviation of the average accepted load of the batches in all experiments is lower than the 0.5% of the 

average value. 

We plot in Fig. 4 the throughput evaluation for the four networks under study. As stated in Chapter 13 of  [10], 

when using virtual channel flow control the average throughput of the network is increased due to contention 

reduction. Thus, in order to compare and validate the analytical study in sub-section 3.4, we also plot the results for 
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Fig. 4. Relative throughput for networks under study with uniform traffic with independent traffic sources. With 1, 2 
or 4 VC and the upper boundary of the throughput. Note the difference in the axis ranges of each topology. 



the same topologies using 2 and 4 virtual channels (denoted as 2VC and 4VC respectively) and the computed ideal 

throughput curve.  

We can observe that the k-ary n-tree topology is not able to reach the ideal limit, not even when using 4 VC. Note 

that the ideal limit of 1 means that all nodes send and receive one phit per cycle which is the maximum allowed by 

any link attaching a node to the network. Any form of contention, including that at destination nodes, will reduce the 

actual throughput. The utilization of multiple VCs can help reducing unnecessary contention, but it cannot be 

completely eliminated. In the case of the thin-trees (8:6,4-tree 8:4,4-tree and 8:2,4-tree), nodes can still inject up to 

one phit per cycle, which is much higher that the theoretical throughput limit. Consumption is never a bottleneck, 

and the utilization of a few virtual channels allows the network to reach the ideal throughput. 

The reader should note the difference in the axis range for the three experiments. This is because the ideal 

throughput for the networks under study is 1 for the 8,4-tree, ~0.42 for the 8:6,4-tree, 0.125 for the 8:4,4-tree and 

~1.6E-2 for the 8:2,4-tree. 

This first performance evaluation say us that thin-trees are not a good idea if we have to deal with random traffic 

from independent sources. However, in the next subsections we will study the networks with workloads that mimic 

actual parallel applications. 

5.2 Experiments with Same Size Networks 

In this set of experiments we have gathered the time (in simulation cycles) used by the networks to deliver all the 

messages of each of the application-kernels. As these times differ widely, due to the characteristics of the patterns, 

we have normalized them, using the times for the complete trees as the reference. These normalized times are 

represented in Fig. 5.  

The reader can observe that most thin-tree networks perform acceptably well in light traffic patterns (BI, W2 and 

W3). With them, the k-ary n-tree cannot take advantage of its high bandwidth and path diversity, just because the 

network occupancy is low and so is the probability of two packets competing for an output port in a switch. In 

contrast, under heavy loads, the high bandwidth of the k-ary n-tree topology is able to handle the high amount of 

packets inside the network. In the slimmed networks, still, there is too much contention due to the bandwidth 

reduction between each level so the packet delivery is slower. This is especially noticeable in the large-scale 

configuration in which delivery of the messages may suffer a slowdown of up to 41. 

Regarding the slimming factors, the topologies with the 8:7 slimming factor show delays in therms of the delivery 

times that were always below 13% and in most cases below 5%. 8:6 slimmed topologies were always below 21% 

and in most cases below 10%. 8:5 slimmed topologies were always below 50% and in most cases below 30%.The 

8:4 slimmed topologies are showed to be the inflection point of performance, the slowdown values of the networks 

with more aggressive slimming factors rocket to values that may be intolerable. 

Obviously, the smaller is the network, the less noticeable is the effect of thinning the topology, but, as we will see 

later, the reduction in terms of cost are also smaller. It is also noticeable that the behaviour of the networks does not 

scale with the size of the network. 

Comentario [y1]:  



We can conclude from this set of experiments that the k-ary n-tree is the best-performing topology in almost all 

experiments (combinations of pattern and message length). Nonetheless, in many cases thin-trees with reduced 

slimming factors (up to 8:5 or 8:4, depending on the workload) performs equally well. Additional slimming causes 

excessive network contention, so results are noticeably worse (over 40 times in the largest configuration). 

5.3 Experiments with Same Radix Switches 

In this subsection we analyze the results of the experiments comparing topologies built with switches with the 

same radix (12 ports). Results are plot in Fig. 6. In general, they confirm what we learned from the previous set of 

experiments. Nevertheless, in this case, the slimmed topologies have an additional advantage: the increased ability to 

exploit locality in communication. A switch in a 6,5-tree uses 6 ports as downward ports, and 6 ports as upward 

ports. In contrast, the same switch in a 8:4,4-thin-tree has 8 downward and 4 upward ports. In other words, in the 
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c) 4096-node workloads 

Fig. 5. Normalized time to perform all communications of each traffic pattern in the same-sized networks. 



slimmed topologies the unused upward ports are rearranged to work as downward ports. To a certain extent, this 

compensates the reduction of links and switches in the upper levels. The result is that slimmed topologies may 

outperform the complete trees. For example, the BU pattern is one of the heaviest workloads, and the 8:4,2-tree is 

able to deliver it in less time than the 6:6,3-tree. 

The W2 and W3 patterns require specific attention. Note the excellent performance of thin-trees. The high 

causality of this pattern does not allow the utilization of all the resources of the complete trees, but allows for a 

productive exploitation of additional levels of locality—for instance, 7:5,5-tree and 8:4,4-tree deliver both workloads 

faster than the 6:6,5-tree. 

Again, the slimming factor should not go very far. The performance of the thinnest topologies (9:3,4-tree and 

thinner) is too low for the heavier workloads, reaching slowdowns of up to 90 times in the largest configuration.  
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Fig. 6. Normalized time to perform all communications of each traffic pattern in the networks with radix-12 switches. 



To summarize this section, we can state that for the lighter workloads, there is almost no difference between 

topologies—again, ignoring cost. For heavy loads, networks with 1:2 slimming factor, perform as well as, or even 

better, than those with 1:1. Growing up to higher slimming factors is counter-productive. 

6 PERFORMANCE/COST ANALYSIS 

In the previous section we have carried out a comparison of topologies taking into account only their raw 

performance. We have ignored the costs of the networks under evaluation. These costs differ widely from network to 

network, and must be taken into account if we want to make a fair comparison. We propose a methodology to 

compare the networks. It takes into account that it is necessary to measure the performance of the network by 

evaluating it with appropriate workloads. 

6.1 Characterizing Performance 

If we had unlimited (financial) resources we could just select the best-performing option, but that option may not 

be the most cost-effective. Here we propose a means to measure the effectiveness of a network that takes into account 

the workloads using it. 

Actual workloads vary widely from site to site, depending on the applications in use. In this work we are not using 

actual applications, but a collection of synthetic—but representative—workloads. We describe a network-efficiency 

function in the context of these workloads that can be extended with further workload types.  

For each given workload simulation reported a (relative) time TW. For example, we have a certain execution time 

TBU for butterfly. Note that these values are relative to the complete trees: consequently they are always 1 for this 

topology. Depending on the application mix of interest in a particular computing center, we may apply a weighting 

factor to each workload wW. This weight should be large for those applications that are used often. For a given 

network, we define its performance φ as follows: 

∑
=

W

WW Tw ·

1
ϕ

 

Note that for a given application mix (and a set of weights) a higher value of φ represents a better-performing 

network. As in this work we can neither identify all representative application mixes nor even use actual 

applications, we decided to use a constant value of one for all the weights, with the solely purpose of illustrating the 

TABLE 4. PERFORMANCE OF THE SAME SIZE NETWORKS 

a) φ 

8:1,2-tree 0.4419 
8:2,2-tree 0.6970 
8:3,2-tree 0.8354 
8:4,2-tree 0.9094 
8:5,2-tree 0.9539 
8:6,2-tree 0.9791 
8:7,2-tree 0.9900 
8:8,2-tree 1.0000  

b) φ 

8:1,3-tree 0.1410 
8:2,3-tree 0.4272 
8:3,3-tree 0.6746 
8:4,3-tree 0.8273 
8:5,3-tree 0.9088 
8:6,3-tree 0.9523 
8:7,3-tree 0.9695 
8:8,3-tree 1.0000  

c) φ 

8:1,4-tree 0.0628 
8:2,4-tree 0.3157 
8:3,4-tree 0.5164 
8:4,4-tree 0.7243 
8:5,4-tree 0.8569 
8:6,4-tree 0.9276 
8:7,4-tree 0.9647 
8:8,4-tree 1.0000  

a) 64-node systems. b) 512-node systems. c) 4096-node systems. 



proposed methodology. With this constant weight, the denominator in our efficiency value is just the addition of the 

(relative) times obtained in the experiments. This yields a value of φ=1/7 for the k-ary n-tree. We further normalize 

this value to be in the range [0, 1]. Table 4 and Table 5 show the normalized performance values for the two sets of 

experiments. Note how, using this criterion, the best performing networks are the complete trees, however some 

configurations of thin-trees have similar φ value. 

6.2 Cost of the Networks 

Performing an exhaustive cost analysis of a complete system is, clearly, a difficult task that requires the 

knowledge of a large number of parameters, including the choice of technologies and physical placement of the 

elements of the system (nodes, racks). A proper cost evaluation should take into account both deployment and 

maintenance costs. Deployment cost must consider the number of switches and links, that may, and probably will, 

have different characteristics—for instance, the use of wires of different length would be needed for most plant 

organizations. Maintenance costs include the power consumption and the heat dissipation. 

At any rate, all this concerns are outside of the scope of this paper. For this reason, we will consider three simple 

functions to compute the cost of each network in order to be able to carry out a performance/cost comparison. Note 

that these functions bear in mind some different aspects of the design of a system and, consequently the actual cost 

function may be a mixture of these three.  

In these functions, S represents the total number of switching elements of the network and R their radix. Note that 

in our topological model the upward ports of the topmost stage are unplugged, and therefore the last levels of the 

trees are formed by switches with a smaller radix. However, for the sake of simplicity, we will consider that all the 

switches have the same radix. Furthermore, to simplify these functions, the number of links is not taken into account 

as it depends on the number of switches and ports. 

The considered cost functions are the following: 

� In the first function cC, the cost of the switch is constant regardless of its radix, ScC = . Several aspects of 

the manufacture of the network scale linearly with the number of switches independently of their radix, 

such as the cost related to the plant area, the rack space or the packaging of the switch. 

� In the second function cL, the cost of the switch depends linearly on the radix, RScL ·= . For instance the 

the number of links scales linearly with the radix, as well as the cost of the hardware associated to each 

port. 

TABLE 5. PERFORMANCE OF THE SAME RADIX NETWORKS 

a) φ 

11:1,2-tree 0.3491 
10:2,2-tree 0.6277 
9:3,2-tree 0.7341 
8:4,2-tree 0.9969 
7:5,3-tree 0.8644 
6:6,3-tree 1.0000  

b) φ 

11:1,3-tree 0.0980 
10:2,3-tree 0.3105 
9:3,3-tree 0.5135 
8:4,3-tree 0.8653 
7:5,4-tree 0.7453 
6:6,4-tree 1.0000  

c) φ 

11:1,4-tree 0.0441 
10:2,4-tree 0.1667 
9:3,4-tree 0.3633 
8:4,4-tree 0.7359 
7:5,5-tree 0.6411 
6:6,5-tree 1.0000  

a) 64-node systems. b) 512-node systems. c) 4096-node systems. 



� In the third function cQ, the cost increases quadratically with the radix, 2·RScQ = . Note that the heart of a 

switch (the crossbar) scales quadratically with the number of ports  [13]. 

Using the characteristics of the networks previously introduced in Table 2, we have computed the cost of the same 

size systems using each of the three cost functions. Furthermore, using the performance figures shown in Table 4 we 

have shown the cost-efficiency of the systems, calculated as the performance divided by the cost, and normalized to 

that of the complete tree. All these values are collected in Table 6. Note that measuring the cost of the same radix 

networks would be a bit tricky—and probably unfair—because every configuration has a different number of nodes. 

For this reason we will restrict the evaluation of the performance/cost efficiency to the same size networks. 

For the small-scale configuration, we can see how the performance/cost efficiency of the 8:2,2-tree is the highest 

for the linear and quadratic cost functions, being 8:3,2 the most efficiency when considering the constant cost 

function. This is because its performance is good, but the cost is reduced almost to one half compared with the 

complete tree. In this case all the configurations have better efficiency than the complete tree regardless of the used 

cost function. The only exception is the 8:1,2-tree with the constant cost function, whose loss in terms of 

performance is not compensated by the reduction in number of switches. 

In the case of the medium-scale configuration, the 8:4,3-tree is the best contender when using the constant cost 

function, while the 8:3,3-tree wins for the other two cost functions. In this case, not all the thinned topologies are 

able to beat the complete tree, 8:1,3-tree only does for the quadratic cost function. 

If we focus on the large-scale configuration, we can notice that things are not as clear as before. The 8:4,4-tree is 

the most cost-effective for the linear and constant cost functions, but its performance is reduced considerably, around 

30% lower than that of the complete tree. The 8:5,4-tree may be a better option due to a noticeable boost in terms of 

performance, even when its cost-efficiency is not as high as the 8:4,4-tree’s. Finally, it is remarkable that, even an 

TABLE 6. PERFORMANCE/COST EFFICIENCY OF THE SAME SIZE NETWORKS 

a) 8:1,2-tree 8:2,2-tree 8:3,2-tree 8:4,2-tree 8:5,2-tree 8:6,2-tree 8:7,2-tree 8:8,2-tree 

cC 9 10 11 12 13 14 15 16 
φ/cC 0.7857 1.1152 1.2152 1.2125 1.1740 1.1190 1.0560 1.0000 

cL 81 100 121 144 169 196 225 256 
φ/cL 1.3967 1.7843 1.7675 1.6166 1.4449 1.2789 1.1264 1.0000 

cQ 729 1000 1331 1728 2197 2744 3375 4096 
φ/cQ 2.4831 2.8549 2.5709 2.1555 1.7783 1.4616 1.2015 1.0000  

b) 8:1,3-tree 8:2,3-tree 8:3,3-tree 8:4,3-tree 8:5,3-tree 8:6,3-tree 8:7,3-tree 8:8,3-tree 

cC 73 84 97 112 129 148 169 192 
φ/cC 0.3708 0.9765 1.3352 1.4182 1.3527 1.2354 1.1014 1.0000 

cL 657 840 1067 1344 1677 2072 2535 3072 
φ/cL 0.6592 1.5623 1.9421 1.8910 1.6648 1.4119 1.1748 1.0000 

cQ 5913 8400 11737 16128 21801 29008 38025 49152 
φ/cQ 1.1719 2.4997 2.8249 2.5213 2.0490 1.6136 1.2531 1.0000  

c) 8:1,4-tree 8:2,4-tree 8:3,4-tree 8:4,4-tree 8:5,4-tree 8:6,4-tree 8:7,4-tree 8:8,4-tree 

cC 585 680 803 960 1157 1400 1695 2048 
φ/cC 0.2197 0.9509 1.3171 1.5452 1.5167 1.3569 1.1656 1.0000 
cL 5265 6800 8833 11520 15041 19600 25425 32768 

φ/cL 0.3906 1.5214 1.9158 2.0602 1.8668 1.5508 1.2434 1.0000 
cQ 47385 68000 97163 138240 195533 274400 381375 524288 

φ/cQ 0.6944 2.4342 2.7866 2.7470 2.2976 1.7723 1.3262 1.0000  

a) 64-node systems. b) 512-node systems. c) 4096-node systems. 



awful-performing configuration, the 8:2,4-tree, with a measured performance of 0.32, overtakes the complete tree 

when using the quadratic cost function. 

The reader should note that the network is only a part of the system, so that the execution time depends (greatly) 

on the behavior of the other components, and the interactions between all of them. In other words, the advantages or 

disadvantages of a given network might not be as clear as shown in our evaluations. This is an argument against the 

better-performing, more-expensive networks, because in real set-ups the benefit of using them will be diluted. The 

extent of this dilution depends on the applications and their data-sets, as well as on the architecture of the system. 

Furthermore, the collection of workloads used in this analysis might not be representative—and probably is not—of 

all actual workloads used at supercomputing centers. A thorough study should be customized for a particular site, 

taking into account their applications and fine-tuning their relative weights. 

7 CONCLUSIONS AND FUTURE WORK 

In this paper we have described and characterized a slimmed version of k-ary n-trees: the k:k’-ary n-thin-trees. A 

thin-tree can be seen as a k-ary n-tree after removing some links and switches. A thin-tree costs a fraction of the price 

of a complete tree, in terms of deployment and maintenance. In terms of performance, thin-trees with low slimming 

factor perform as well as comparable k-ary n-trees. Excessive slimming (beyond 2:1 in our workbench) results in bad 

performance results. A qualitative comparison of performance/cost ratios turns out to be very favorable for the thin-

trees in the studied cases. 

Thin-trees are obviously cheaper than the complete tree, but their bandwidth in the upper levels is greatly reduced. 

After removing links and switches in the upper levels, performance can be maintained (or even increased) due to an 

effective exploitation of locality. Using fixed-radix switches, a thin-tree devotes more ports to downward links, so 

more nodes can communicate without using the upper levels.  

At least three super-clusters that are in positions #1 (RoadRunner), #41 (Tsubame) and #70 (Thunderbird) of the 

June 2009 edition of this list were built with InfiniBand networks arranged as thin trees—actually, narrowed spines. 

In Thunderbird the slimming factor is 2:1; RoadRunner and Tsubame goes further, to 4:1 and 5:1 respectively. We 

have not found any evaluation work providing the rationale behind those decisions. However, in this work we have 

shown that, compared to full-fledged k-ary n-trees, thinner topologies provide comparable performances at much 

lower cost. The savings in the number of networking elements could be invested in other ways to improve the system 

(faster CPUs, better performing networking technology, enlarge the system, etc) 

This study opens several lines for future work. We want to further explore the workload generation mechanism, to 

make it mimic the characteristics of parallel applications as accurately as possible. One interesting place to start is 

 [4], were 13 “dwarfs” are identified as representative scientific applications (an extension of the original “seven 

dwarfs” introduced by Phil Colella).  



The scheduling problem is also of interest. The advantage of slimmed topologies is obtained through an efficient 

exploitation of locality—something that is impossible to achieve under the flat-network assumption in commonly 

used schedulers. As in the case of the BlueGene  [3], we need to make scheduler’s topology-aware. 
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