
Simulation Modelling Practice and Theory 19 (2011) 494–515
Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
Simulating and evaluating interconnection networks with INSEE

Javier Navaridas ⇑, Jose Miguel-Alonso, Jose A. Pascual, Francisco J. Ridruejo
Department of Computer Architecture and Technology, The University of the Basque Country, P. Manuel de Lardizabal 1, 20018 Donostia, Spain

a r t i c l e i n f o
Article history:
Received 12 May 2010
Received in revised form 13 July 2010
Accepted 17 August 2010
Available online 22 August 2010

Keywords:
Interconnection networks
Modeling and simulation
Performance evaluation
1569-190X/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.simpat.2010.08.008

⇑ Corresponding author.
E-mail addresses: javier.navaridas@ehu.es (J. Nav

ridruejo@ehu.es (F.J. Ridruejo).
a b s t r a c t

This paper describes INSEE, a simulation framework developed at the University of the Bas-
que Country. INSEE is designed to carry out performance-related studies of interconnection
networks. It is composed of two main modules: a Functional Simulator of Interconnection
Networks (FSIN) and a TRaffic GENeration module (TrGen), together with several other
modules that extend INSEE’s functionality. The router models and topologies implemented
in FSIN are included in this description. Likewise, the available methods to generate traffic
are described thoroughly. Finally, the resource consumption of INSEE when managing dif-
ferent systems and workloads is also evaluated. INSEE has been used to conduct a variety of
studies, including evaluation of novel topologies, diagnosis of causes of network congestion
and evaluation of parallel scheduling algorithms.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Supercomputing is a very valuable resource which is continuously growing in importance in business and science. Most
current scientific studies rely on modeling and analyzing different natural phenomena and/or technological processes, which
often require a huge amount of computing power impossible to attain using regular off-the-shelf computers. For instance,
physicists, chemists or pharmaceutical researchers simulate, for different purposes, interactions between huge amounts
of molecules. Likewise, in the business context, corporations demand large amounts of computing power in order to use data
mining software over large databases, with the objective of extracting knowledge from raw data, and to use that knowledge
to their advantage. Obtaining patterns of consumer habits, boosting sales, optimizing costs and profits, estimating stocks or
detecting fraudulent behavior are just a few interesting application domains. At any rate the required computing power is
only limited by the available resources. In general, when resources are increased then the number of runs, the grain-size
(whichever this means in the particular application context), the size of the datasets or any other parameter that affects exe-
cution time is increased accordingly to fully utilize the compute power. In other words, the magnitude of the experiments is
scaled up to the available assets. Briefly, there is a permanent demand of supercomputers able to cope with these challenging
workloads.

A supercomputer is not only a piece of hardware. It is actually a multipart system that integrates a large collection of
hardware and software elements. Therefore, the design of a supercomputer is a complex task that comprises the selection
and design of multiple components, such as compute elements, storage, interconnection network, I/O infrastructure, oper-
ating system, high performance libraries and parallel applications. The performance of all these components has to be prop-
erly evaluated in order to select the most effective (again, the exact meaning of effective depends on the context) taking into
account the purpose of the system and the workloads that are planned to be executed on them. Furthermore, the complete
. All rights reserved.

aridas), j.miguel@ehu.es (J. Miguel-Alonso), joseantonio.pascual@ehu.es (J.A. Pascual), franciscojavier.

http://dx.doi.org/10.1016/j.simpat.2010.08.008
mailto:javier.navaridas@ehu.es
mailto:j.miguel@ehu.es
mailto:joseantonio.pascual@ehu.es
mailto:franciscojavier.ridruejo@ehu.es
mailto:franciscojavier.ridruejo@ehu.es
http://dx.doi.org/10.1016/j.simpat.2010.08.008
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 495
system has to be evaluated as a whole, because unexpected interactions among components can make the system suffer se-
vere performance losses.

The interconnection network (IN, in short), a specific-purpose network that allows compute nodes to interchange mes-
sages with high throughput and low latency, is a key element of any supercomputer because its performance has a definite
impact on the overall execution time of parallel applications, especially for those that are fine-grained and communication
intensive. Any delay suffered by the messages while traveling through the network will harmfully affect the execution time
of applications. This is the reason why we should not decide lightly about the network that interconnects compute nodes in a
high-performance computing site. The evaluation of an IN is a complex task that requires, among other concerns, deep
knowledge about how parallel applications make use of the network.

Our interest revolves exactly around this topic: the evaluation of INs. In our research, simulation is the key means to eval-
uate them. The tool to carry out these simulations is INSEE, an Interconnection Network Simulation and Evaluation Environ-
ment. A preliminary description of the design of INSEE was performed in a previous paper [40]; however, INSEE has evolved
noticeably since then. Some of the features explained in that paper were planned, and now they are a reality. Enhancements
and modifications have improved markedly the usefulness of the tool in many aspects: execution speed, memory require-
ment, router models and topologies, workload generators, attainable statistics, etc. For this reason in this paper we review
the updated version of INSEE, describing all its current features. We also include references to several research works in
which INSEE has been used as the main evaluation tool.

The two main characteristics of INSEE when compared to other simulation tools are flexibility and frugality in the use of
resources. As will be seen throughout the paper, INSEE can be used to simulate a wide variety of topologies and router mod-
els, and the networks can be fed using traffic models with different degrees of fidelity to actual application traffic. This flex-
ibility may tip the scale in favor of INSEE when it comes to select a simulation tool. Furthermore, the requirements to build
and use INSEE, in terms of memory and CPU speed are frugal, and therefore it may be the environment of choice for quick
deployment and fast obtention of results. It provides the capability to simulate, on a desktop computer, systems composed
by tens of thousands of nodes in reasonable time, hours or a few days at most.

INSEE basically consists of a set of ANSI-C source files that can be compiled with any compliant compiler. It can be built
and executed without problems in both POSIX and Microsoft Windows environments. Most simulation parameters are given
at execution time, so that only a few decisions have to be taken at compilation time, which, in turn, simplifies compilation.
These decisions affect the complexity of the data structures included in the simulation, which increase memory needs. For
example, as trace-driven and execution-driven simulation require specialized data structures for their operation (as will be
described later), giving support to these modes is optional and can be defined at compilation time. The source code of INSEE
(released under GPL) together with the required information for its operation (user manual) can be found at SourceForge
[50].

For trace-based studies, the availability of a customized MPICH implementation is needed only to obtain the traces [22],
but not to use them. A Simics installation is required for full-system simulation. Special care has been taken regarding mem-
ory footprint, in order to be able to cope with large-scale networks. The amount of required memory varies depending on the
characteristics of the simulation (number of routers, virtual channels, buffer sizes, complexity of injected traffic, etc.). Some
extreme configurations simulated in an off-the-shelf desktop computer were: a massively parallel high-performance system
with the size of the largest BlueGene/L (64 � 32 � 32 nodes) [9], a complete SpiNNaker network (256 � 256 nodes) [24], and
tree-like topologies connecting over 16 K nodes [26]. It is to be said that the main limiting factor is the amount of RAM (2 GB
in our environment), as the simulation were executed quite fast (in the order of hours). With more RAM (a resource that is
increasingly cheap and available) it would be possible to deal with even larger configurations; note that, in that case, the
TrGen

FSIN

Synthetic
traffic

Trace Driven Exec. Driven

(Modified)
MPICH

(Modified)
Simics

Topology Router Model Other
Parameters

(Synthetic)
Kernels

Trace
file

Fig. 1. Overall design of INSEE.

496 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
execution time may become the main limiting factor. For more details on resource requirements of INSEE, reader can refer to
Section 5.

INSEE is composed of two main modules: FSIN and TrGen. A schematic depiction of the structure of INSEE is shown in
Fig. 1. FSIN, described in Section 2, is a Functional Simulator of Interconnection Networks that allows modeling different
topologies and routers. TrGen is a TRaffic GENeration module that is in charge of feeding FSIN with the desired traffic model.
INSEE also includes some other additional modules that interface with TrGen to provide application-driven workloads: a
modified MPICH library to obtain traces, and some modules implemented within Virtutech’s Simics to carry out full-system
simulation. TrGen and its companion modules are explained in Section 3. Section 4 discusses the limitations of our environ-
ment. A performance evaluation of the simulation environment is performed in Section 5, in which we show the memory
requirement and execution time of several configurations of interest in our research. Section 6 performs a review of several
related simulation environments, showing how they differ from INSEE. Finally, Section 7 closes the paper with some con-
cluding remarks and an outlook of future plans to improve INSEE.
2. FSIN

The core of our environment is FSIN, a flexible, lightweight functional simulator (meaning that the router functionality is
modeled in detail, but the hardware is not) that allows us to rapidly assess the performance of large-scale systems. Time is
measured in terms of an abstract cycle, defined as the time required by a routing element to route and forward a phit (phys-
ical transfer unit). FSIN is able to simulate a wide variety of router models and topologies; we review those in this section.
We want to remark that FSIN can be expanded in functionality by means of code additions/modifications. For example, to
add a new topology, the only requirement is to formulate neighborhood and routing functions (using the C programming
language). Other additions of higher complexity, such as adding a new router model, may require a deeper knowledge of
the internal data structures.

2.1. Topologies

Several topologies, both direct and indirect, have been implemented in FSIN. Some of them are widely used in actual sys-
tems and thoroughly studied by the community. Some others are not as well known, and have been the subject of our own
research work.

2.1.1. Direct topologies
Direct topologies are those in which every switching element or router is connected to a compute node. FSIN has topo-

logical models of standard meshes and tori for 1, 2 and 3 dimensions. Furthermore models for several alternative topologies
have been added: two- and three-dimensional twisted tori, the Midimew topology and the SpiNNaker topology. All these
Fig. 2. Examples of the direct topologies implemented in FSIN: (a) 4 � 4 mesh; (b) 4 � 4 torus; (c) 13-node midimew; (d) 4 � 4 twisted torus with skew 2
and (e) 4 � 4 SpiNNaker topology.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 497
topologies will be discussed in the following paragraphs, and are depicted in Fig. 2. In these graphs, nodes (and their corre-
sponding routers) are represented by dark circles and links are represented by lines between them. Note that in FSIN all di-
rect topologies (but meshes) can be built using unidirectional or bidirectional links.

The implemented direct topologies are the following:

� A mesh [11] is probably the simplest direct topology; nodes are arranged in a d-dimensional array and identified by their
Cartesian coordinates. Some links at the peripheral nodes are disconnected—there are no wrap-around links. A 4 � 4
mesh topology is shown in Fig. 2a. This topology was historically used in high-performance computing systems because
of its ease to scale up, as new nodes can be attached to the unconnected links. Currently, this topology has been aban-
doned in this context, in favor of networks with better topological characteristics, such as the torus. It is noticeable that
the mesh topology is gaining popularity in the context of networks-on-chip because of the simplicity to deploy in silicon
[23].
� The torus [11] is another well-known topology that has been historically used to interconnect massively parallel proces-

sors. Nodes in a torus are arranged in a d-dimensional array and identified by their Cartesian coordinates. In opposition to
the mesh, the nodes in the boundaries of the topology are connected among them by means of wrap-around links. A 4 � 4
torus is shown in Fig. 2b.
� The midimew [7]—standing for MInimal DIstance MEsh with Wrap-around links—is a two-dimensional symmetric topol-

ogy based on circulant graphs. It provides the best distance-related characteristics for any given number of nodes using
routers of radix 4. A representation of a 13-node midimew network is shown in Fig. 2c.
� The twisted torus [9] is an optimization of the regular torus as it provides, for the same number of nodes, better topological

characteristics: bisection bandwidth, average and maximum distance. An interesting property of this topology is that, for
mixed-radix networks in which the number of nodes in one dimension doubles the number of the other dimensions
(2a � a and 2a � a � a) symmetry can be maintained, which help balancing the use of the channels of the different
dimensions: the network does not present bottlenecks. A representation of a 4 � 4 twisted torus with a twist of 2 from
dimension Y over dimension X is shown in Fig. 2d.
� The SpiNNaker topology [34] is a triangular toroidal network, in other words, a torus network with additional diagonal

links to add redundancy to the design. This redundancy is deliberately devised to be exploited for fault-tolerance. A
4 � 4 instance of the SpiNNaker topology is represented in Fig. 2e.

2.1.2. Indirect topologies
Indirect topologies comprise all topologies in which there are switching elements that are not directly attached to

computing nodes. This includes multi-stage and multi-level topologies. In multi-stage interconnection networks (MINs)
all the traffic within the network flows in the same direction (usually represented from left to right) and the distance
between every pair of nodes is the same: the number of stages of the network. In contrast, in multi-level topologies, the
traffic must go up from the source to one minimal common ancestor of source and destination, and then down to the
destination. This way, the distance between two nodes depends on the number of levels needed to reach a common
ancestor.

Two indirect, tree-based multi-level topologies are implemented in FSIN, the k-ary n-tree and a reduced version of this
well-known topology that we have called k:k0-ary n-thin-tree. In the graphical representations of the topologies (see
Fig. 3), boxes represent switches and lines represent links between them. Note that we neither show the compute nodes con-
nected to the first-level switches and their links, nor the last-level of upward links (which are left unplugged). These ele-
ments are hidden for the sake of clarity. We call the relation between the number of downward ports of a switch and the
number of upward ports the slimming factor. For example, taking a look at the switches in the topology shown in Fig. 3b,
four ports are downward ports, linked to switches in the next lower level. The remaining two ports of each switch are up-
ward ports that connect to switches in the next higher level; therefore the slimming factor is the relation between 4 and 2,
that is, 2:1 (or simply 4:2). Details of the indirect topologies implemented within FSIN are as follows:
Fig. 3. 64-Node example networks of the multi-stage topologies: (a) 4-ary 3-tree and (b) 4:2-ary 3-thin-tree.

498 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
� In k-ary n-trees [33], k is half the radix of the switches—actually, the number of links going upward (or downward) from
the switch—and n the number of levels. They can be seen as particular cases of the thin-trees (to be formally defined
later), with a slimming factor 1:1. Fig. 3a shows a depiction of a 4-ary 3-tree. The main advantages of this topology
are the high bisection bandwidth and the large number of routing alternatives for each pair of source and destination
nodes—a path diversity that can be exploited via adaptive routing. Nevertheless, it might be expensive and complex to
deploy, because of the large number of switches and links required.
� We define a k:k’-ary n-thin-tree [26] as a cut-down version of a k-ary n-tree in which we apply a given slimming factor. k is

the number of downward ports, k0 is the number of upward ports and n is the number of levels. The slimming factor is,
obviously, the ratio between k and k0. Note that k does not need to be a multiple of k0 so that we can produce a thin-tree
with arbitrary values of k and k0. A 4:2-ary 3-thin-tree is depicted in Fig. 3b. Note the shadowed switches and links, that
represent those elements that would be removed from a complete 4-ary 3-tree to form the thin-tree. In this topology the
bisection bandwidth has been reduced, as well as the number of switches and links. For this reason, thin-trees are easier
to deploy than regular trees and, if k and n values are kept, the radix of switches is smaller.

2.2. Modeled routers

Models of several router architectures with different purposes have been implemented in FSIN. The Dally router and the
bubble router are designed to be used in direct networks, arranged in the typical 2D or 3D topologies commonly used in mas-
sively parallel processors (MPPs). The multi-stage switch allows the simulation of tree-based, indirect topologies, such as
those used in many large-scale clusters. Finally the SpiNNaker router is a bespoke router architecture designed for fault-tol-
erance and low power consumption.

2.2.1. Dally router
A router architecture designed to be used in toroidal k-ary n-cube topologies was introduced by Dally in [10]. This archi-

tecture, which we call Dally router, uses a virtual channel scheme that allows deadlock-free routing using two virtual chan-
nels as Escape channels following oblivious dimension-order routing (DOR). The cycles embedded in each dimension ring are
eliminated by means of restrictions in the use of the Escape channels, which cut the physical cycle into non-cyclic combi-
nations of virtual channels. In Fig. 4, a depiction of the behavior of several modes of this scheme is shown. Adaptivity is pos-
sible increasing the number of virtual channels: two virtual channels (usually 0 and 1) are used as Escape channels (using
deadlock-free DOR) while adaptive routing can be used in the remaining ones. The overall arrangement (according to Duato’s
theorem [13]) is an adaptive, but deadlock-free routing algorithm. Several strategies to route packets are implemented in
FSIN to be used together with the Dally router:

� In trc all packets are injected in the same Escape channel. Packets remain in that channel, until reaching the wrap-around
link of a toroidal topology. Then, it is switched to the other one. In other words, the cycle is transformed into a spiral (acy-
clic) as can be seen in Fig. 4b.
� In basic those packets that have to cross the wrap-around links of a dimension—let us call them PW—circulate through one

Escape channel in that dimension. Those that do not have to use the wrap-around links—denoted PD—use the other Escape
channel. This way, the physical ring is split into two separate virtual chains, which do not include cycles, see Fig. 4c.
Virtual channel 0

Virtual channel 1

(a) A cycle embedded in a ring.

(b) Acyclic spiral - trc

Virtual channel 1

Virtual channel 0

(c) Two disjoint chains (acyclic) - basic

Virtual channel 0

Fig. 4. Dally scheme to avoid deadlock in a unidirectional ring. (a) A cycle in a ring. (b) The cycle is cut by changing the virtual channel at crossing the wrap-
around link (trc policy). (c) The cycle is removed by splitting the physical ring into two separate virtual chains (basic policy).

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 499
� Improved is an optimization of the basic policy to obtain better balancing in the utilization of both VCs. PW packets
are forced to transit by one of the Escape channels. PD packets can use any of the two Escape channels. This way, PW

packets cannot block PD packets, and thus PD packets eventually will use the other channel and reach their destina-
tion. Note that this policy may lead to starvation of PW packets, as PD packets may make intensive use of the two
Escape channels.
� Adaptive works as the improved policy, but adding routing adaptation capabilities. Two virtual channels work as Escape

channels following the improved policy and the remaining virtual channels are used as adaptive channels (always using
minimal paths). The packets randomly select a viable adaptive output port and, only in the case that no adaptive channel
is available, the packets try to use an Escape channel as dictated by the improved strategy (PW packets are restricted to
one of the Escape channels, while PD packets are free to use any of the two Escape channels).

The modeled router has queues in the input ports, and a crossbar that interconnects input and output ports as depicted in
Fig. 5. Note that the crossbar has as many ports as virtual channels (plus additional ports for injection and consumption).
Therefore, the utilization of VCs increases crossbar complexity.
2.2.2. Bubble router
The bubble router [39] is also designed to be used in k-ary n-cube topologies, having the same internal architecture of the

Dally router (see again Fig. 5) but follows a different approach to avoid deadlocks; instead of avoiding cycles, this scheme
avoids all the buffers in a ring (cycle) becoming full. To do so, packets can only enter an Escape channel from injection or
from other channel when there is room to store at least two packets, one for the entering packet and another one to ensure
that there is, at least, one free slot (bubble) to be used by the packets inside the Escape channel. This behavior, depicted in
Fig. 6, requires a single Escape channel to avoid deadlock. In the depiction, only node 0 and node 3 can inject into the ring, as
they have room enough in the queues of the ring to comply with the bubble restriction. Alternatively, the other two nodes
(node 1 and node 2) are not allowed to inject as they do not comply with that restriction. Adaptivity can be easily incorpo-
rated by adding additional virtual channels with adaptive routing, but always checking the bubble restriction when moving
packets from an adaptive channel to the Escape channel.

The bubble router can route packets following several strategies to decide, when a packet is awaiting at the head of the
input queue (or at the injection queue), to which output VC a request will be made to forward the packet.

� With oblivious request mode all VCs follow the bubble restrictions (all of them behave as Escape channels), using DOR
routing. Once a packet enters into a VC, it never abandons it—in short, there is no adaptivity.
� When using the random request mode, the router tries to route packets waiting at an input port through the output port

of the same VC. If this is not available, any profitable adaptive VC can be requested, choosing it randomly. Finally, if no
profitable adaptive VC is available then packets try the Escape channel.
� The shortest request mode works as the previous one but, when trying a profitable adaptive VC, selection is done con-

sidering the space available in the channel’s queue, choosing the one with more room.
� If the smart request is selected, a packet is injected initially into a random channel and tries to continue in the same

dimension and virtual channel. If this is not possible, then it is moved to a profitable adaptive virtual channel in another
dimension. If no adaptive, profitable channel is found, the packet tries to move to the Escape channel. This strategy tries to
avoid congested links by changing the traveling dimension every time it reaches a port that is in use.
Crossbar

Local

Fig. 5. Architecture of Dally and bubble routers for a 2D topology and two virtual channels per physical link.

Bubble Bubble Bubble Bubble

Fig. 6. Bubble scheme to avoid deadlock in a unidirectional ring. Grey arrows represent allowed data movements. Dotted arrows represent not allowed data
movements.

500 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
Several other experimental strategies have been implemented for the bubble router but are not discussed here for the
sake of brevity.

2.2.3. Multi-stage router
Routers for multi-stage INs are simpler than those for k-ary n-cubes, as routing in multi-stage topologies is deadlock-free

provided that acyclic routing algorithms (such as up�/down� [44]) are used. The router has a centralized crossbar and can
have any arbitrary number of ports and virtual channels. Queues are located at the input ports. The model of the router
for multi-stage topologies is depicted in Fig. 7. Routing can be static or adaptive, but in both cases shortest path routing
is used to guarantee deadlock-freedom:

� In static routing the upward path is defined statically and depends on the source of the packet (source_id mod k). The
downward path is also static and depends on the destination of the packet (destination_id mod k). Furthermore, if physical
links are split into several virtual channels, one virtual channel is randomly selected at injection and the packet never
leaves it.
� When using adaptive routing the downward path is static and depends on the destination, but the packets can adapt

when traveling upwards. A credit-based adaptive routing is used, which works as follows: a packet at the head of an input
queue tries to go through the profitable output channel with most available room in the queue of the neighbor input port
(credit). If several output channels have the same credit, one of them is selected randomly. Note that it is assumed that
credit transmission is performed out-of-band and, therefore, does not interfere with regular traffic.

2.2.4. SpiNNaker router
The SpiNNaker router [34] is also implemented within INSEE. This is a specific-purpose router designed for a large-scale ma-

chine with austere hardware constraints. The main focus of the SpiNNaker system is on low power consumption and fault-tol-
erance, and the design of the router also follows these concerns. As crossbar-based routing engines require excessive hardware
resources, they can not be part of the SpiNNaker router; therefore, it was designed using a more frugal approach. All the ports of
the router are hierarchically merged in such a way that the routing engine is accessed by a single packet at once. This way, a
packet that can not be forwarded will force all the packets in the router to wait until it is forwarded or discarded, an undesired
effect known as Head-of-Line blocking. Fortunately, as the routing engine is relatively faster than the transmission ports, this
situation is unlikely to happen. A depiction of the architecture of the router is shown in Fig. 8.
Fig. 7. Architecture of a multi-stage router with eight ports and one virtual channel per physical link.

to
 c

or
es

N
S
E
W
NE
SW

M
er

ge
r

M
er

ge
r

M
er

ge
r

M
er

ge
r

fro
m

co

re
s

M
er

ge
r

M
er

ge
r

M
er

ge
r

1G
bp

s

2G
bp

s

4G
bp

s

8G
bp

s

D
ec

od
e

Pa
ck

et

R
ou

te
 P

ac
ke

t

O
ut

pu
t S

el
ec

t

Routing
Table

N

S

E

W

NE

SW

Routing Engine

Fig. 8. Architecture of the SpiNNaker router.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 501
Routing is performed by means of the routing tables inside each router. However instead of being destination-based, the
routing tables choose the output port(s) for a given packet taking into account the source of the packet. This behavior makes
the source nodes and the packets unaware of the destination node(s). The way routing tables are filled is application-
dependent.

2.2.5. Other router parameters
The phit length (physical transfer unit, measured in Bytes) and the packet length (measured in phits) can be set to

any arbitrary value. Note that the packets have a fixed length and when a smaller packet is required, it will carry
some empty phits. The transit queue length and the injection queue length (measured in terms of room to store packets)
can be set to any arbitrary value larger than one packet. Similarly, any desired number of virtual channels can be
used.

The arbitration of output ports (selection among all the requesting input queues) can be performed in several ways; some
of them are unaware of the traffic, and some others take into account some attributes of the packets to give priority to certain
flows. The arbitration policy can be defined for all the router models except the SpiNNaker router, because it treats packets
once at a time. The defined policies are the following:

� Round Robin arbitration.
� Random arbitration selects randomly among all the requesting input ports.
� FIFO arbitration selects the first input port that requested the output.
� Longest arbitration selects the input port having the highest queue occupation.
� Age arbitration selects the input port containing the oldest packet, measured since the packet was injected into the

network.

Furthermore, we have implemented and evaluated several congestion control mechanisms around the Dally and the bubble
routers. Two of them are local mechanisms in which routers detect congestion taking into account only the state of their own
queues. The other one is a global mechanism that throttles the injection taking into account the state of the whole system.
These mechanisms are described as follows:

� In-transit Priority Restriction (IPR). For a given fraction P of cycles, priority is given to in-transit traffic, meaning that, in
those cycles, injection of a new packet is only allowed if it does not compete with packets already in the network. P may
vary from 0 (no restriction) to 1 (absolute priority to in-transit traffic). This mechanism can be used along with the two
router models and is the method applied in the IBM’s BlueGene/L torus network [2].
� Local Buffer Restriction (LBR) mechanism was designed specifically for adaptive bubble routers. A previous study showed

that the bubble restriction, in addition to guaranteeing deadlock-freedom, also provides congestion control for the Escape
sub-network [17]. LBR extends this mechanism to all new packets entering into the network. That is, a packet can only be
injected into an adaptive virtual channel if such action leaves room for at least B packets in the transit buffer associated to
that virtual channel. The parameter B indicates the number of buffers reserved for in-transit traffic. In other words, con-
gestion is estimated by the local buffer occupancy.
� Global Congestion Control (GCC) estimates network congestion by examining the status of the whole network. Injection is

stopped when network occupancy reaches a given threshold G, which is given as a fraction of the whole network capacity.
In our implementation, the network utilization is measured every T cycles (being T a simulation parameter), and then
transmitted out-of-band to all nodes, in such a way it does not interfere with application packets.

502 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
2.3. Node model

In INSEE, nodes are modeled in a rather simplistic way: a traffic generator/consumer plus an arbitrary number of injection
queues or injectors. In the case of direct topologies, nodes are attached to the routers through a specialized connection. Sev-
eral injection policies are implemented to be used with direct topologies:

� Shortest is the simplest injection policy. It inserts a newly generated packet into the injection queue with more
room.
� When using dor policy, there is a dedicated injection queue per network dimension/direction, which significantly reduces

Head-of-Line blocking effects [17]. A dimension-order pre-routing phase is carried out to decide in which queue will be
injected the new packet. If the selected queue is not available, the injection will be stopped.
� The dor + shortest policy tries to inject using the dor policy but, if the selected injection queue is full, then it uses the short-

est policy.
� In the shortest profitable policy, the packet will be injected in the valid queue (once pre-routed) that has most empty

space.
� Longest path policy injects packets in the queue associated to the direction through which the packet has to travel a larger

number of hops.

Furthermore, the specialized connection of direct routers allows for two alternative consumption modes:

� Single consumption policy considers the consumption port as a regular output port following the selected port-arbitration
strategy.
� Multiple consumption policy assumes a consumption port wide enough to accept simultaneously a phit from each input

port, meaning that several packets can be consumed simultaneously.

In the case of indirect topologies, nodes are connected to the network through regular links with the same characteristics
of the links within the network. For this reason, both injection and consumption are serialized and do not allow any special
policy (shortest injection and single consumption).

2.4. Output data generated by FSIN

Depending on the kind of research work that is being carried out with INSEE, different types of results are needed:
throughput/delay analysis, channel utilization, time to deliver a workload, dropped packets, system evolution, etc. For this
reason FSIN is able to capture and report a wide variety of statistics from the performed simulations. These statistics can be
captured for the whole simulation or, in contrast, can be averaged from different time intervals. For debugging purposes,
cycle-by-cycle information can be generated as well. As the execution of FSIN is deterministic (given a seed used to generate
random numbers, if needed), a summary report of the input simulation parameters is printed in order to allow repeating a
given execution.

2.4.1. Run-time statistics
Run-time summaries of statistics can be obtained at pre-configured time intervals. This allows us to follow the evolution

of the system. Note that applications usually pass through different stages of communication patterns and, therefore, of
network usage. The statistics captured along the execution are the following (always related to the measurement time
interval):

� Injected and accepted load: The average injection and consumption rates of network nodes, measured in phits/node/cycle.
� Packets: The number of packets that have been injected, consumed and dropped due to different reasons (blocked at the

head or tail of injection queues and/or dropped in-transit).
� Network utilization: The average number of packets in the queues of the system.
� Distance: The (averaged) distance traversed by consumed packets.
� Latency: Several latency-related measurements are captured including: average, standard deviation and maximum laten-

cies. Note that latencies are measured since the moment at which packets are generated, as well as since the moment
they are injected into the network.

2.4.2. Traffic evolution mode
Using this mode, the wandering of packets and phits can be shown in order to have a better understanding of how the

network evolves. Its main interest, though, is for debugging purposes. Selecting packet evolution, the simulator will show
in its output the following events: packet generation, packet injection, packet arriving to a node, packet leaving a node, pack-
et dropping and packet consumption. For phit evolution, the output of simulator will show the following events: phit gener-
ated, phit moved, phit dropped and phit consumed.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 503
2.4.3. Final report
Once the simulation is concluded, FSIN shows a comprehensive report with a summary of the whole simulation. All the

previously discussed figures are averaged for the whole simulation. In order to allow a better understanding of the results,
the standard deviation and the maximum of all these figures are also shown, as well as the total simulation time, measured
in cycles. The actual time required to perform the simulation is also provided.

If requested, FSIN can capture statistics to allow an even more detailed understanding of the simulation. A histogram of
the queue occupancy along the simulation can be shown, which is useful to understand which (and how) network queues
were occupied. This can be used, for example, to diagnose anomalies in network utilization.

A map of the load managed by each (virtual) port of the system can also be generated. This is useful to find network bot-
tlenecks, and also to understand the virtual channel management strategy used by the system.

If our interest revolves around the distances traversed by packets, FSIN can show a histogram of distances, as well as a
map showing pair to pair communication. Both histogram and map are generated for the distance distributions at the injec-
tion and at the consumption. If the captured data for injection and consumption are notably different, this can suggest that
there are nodes that are suffering starvation. Note that the pair-to-pair map gives more information, but may require exces-
sive memory if the system is large, as the memory requirements scales quadratically with the number of system nodes.

2.4.4. Using the results generated by FSIN
Performance data generated by a single run of FSIN can be useful for some studies, but often many runs with different

random seeds are required in order to obtain statistically meaningful results. Additionally, for many studies a parameter
sweep is required. It is up to the researcher to combine the results of the simulation runs in the form of suitable tables
and graphs, although FSIN helps by means of outputting structured text files (in CSV format) that can be easily imported into
spreadsheets and other data analysis tools. For illustrative purposes, Fig. 9 depicts some graphs obtained from FSIN results,
which are similar to those used in our research works.

2.5. Validation of results

Given that, in most cases, we do not have access to the systems we simulate with INSEE, a direct comparison of the behav-
ior of actual versus simulated systems can not be carried out. However, the results obtained with INSEE have been cross-val-
idated with mathematical models of the different implemented topologies. These mathematical models include throughput
(a) Throughput Analysis

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.10 0.20 0.30
Injection rate (pkt/node/cycle)

C
on

s.
 lo

ad

(p
kt

/n
od

e/
cy

cl
e)

accepted load

(b) Latency Analysis

0

250

500

750

1000

0.00 0.05 0.10 0.15
Injection rate (pkt/node/cycle)

A
vg

. l
at

en
cy

 (
cy

cl
es

)

latency

(c) Application Performance Analysis

0.8

0.9

1.0

1.1

1.2

1.3

1.4

A
pp

1

A
pp

2

A
pp

3

A
pp

4

A
pp

5

A
pp

6

A
pp

7

A
pp

8

A
pp

9

N
or

m
al

iz
ed

 T
im

e

Conf. 1
Conf. 2
Conf. 3

(d) Network Balance Analysis

X+
X+X- X-

Y+

Y+

Y-

Y-

0.0

0.2

0.4

0.6

0.8

1.0

Conf. 1 Conf. 2

A
vg

. c
ha

nn
el

 u
se

(e) Distance Distribution Analysis

0

10

20

30

40

50

0 50 100 150
Distance

P
ac

ke
ts

 (
×

10
00

)

consumption
injection node 0

node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9

node 10
node 11
node 12
node 13
node 14
node 15

n0 n1 n2 n3 n
4

n
5

n
6

n
7

n
8

n
9

n
10

n
11

n
12

n
13

n
14

n
15

60K pkts

40K pkts

20K pkts

0 pkts

(f) Task-to-Task Communication Analysis

(g) Fault-Tolerance Analysis

1.E-09

1.E-06

1.E-03

1.E+00

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of Failures

D
ro

pp
ed

 p
kt

 r
at

io

(p
kt

/n
od

e/
cy

cl
e)

dropped packets

(h) System Evolution Analysis

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000
Simulation Clock (cycle)

C
on

s.
 lo

ad

(p
kt

/n
od

e/
cy

cl
e)

0

200

400

600

800

1000

A
vg

. l
at

en
cy

 (
cy

cl
es

)

consumed load

average latency

0
3

6
9

12
15

0
3

6
9

12
15
6
9
12
15
18
21
24

in
j.

pa
ck

et
s

(×
10

00
)

X
coordinate

Y
coordinate

(i) Injected packets analysis

21-24
18-21
15-18
12-15
9-12
6-9

Fig. 9. Examples of IN analysis supported by INSEE: (a) throughput analysis; (b) latency analysis; (c) application performance analysis; (d) network balance
analysis; (e) distance distribution analysis; (f) task-to-task communication analysis; (g) fault-tolerance analysis; (h) system evolution analysis and (i)
injected packets analysis.

504 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
analysis for uniform traffic as well as distance-related characteristics of the topologies. In some of our previous works, the
reader can find examples of those validations for different topologies: twisted tori [9], regular tori [21], 2D triangular torus
such as the SpiNNaker topology [24] and tree-like topologies [26]. Interestingly, in [9], an erroneous mathematical model for
the network throughput when managing uniform traffic was detected using INSEE.

We have also carried out cross-validation with other simulation tools, specially with SICOSYS [36,48], see details in Sec-
tion 6. Results obtained with INSEE have always been consistent with those obtained with other tools, for similar configu-
rations and parameters.
3. TrGen

TrGen—standing from TRaffic GENerator—is the module in charge of feeding the simulation with the desired kind of traf-
fic. It interfaces with FSIN and passes the traffic in the form of network packets. TrGen is capable of generating purely syn-
thetic traffic patterns, as well as of extracting communication patterns from traces or from the actual execution of parallel
programs in a simulated computing environment (interfacing with Simics).
3.1. Some considerations about workloads

When it comes to evaluate the interconnection network of parallel or distributed systems, the way we model the work-
load imposed to the network is of crucial importance. In the first phases of the design of a system, it may be desirable to
obtain results as fast as possible, even if they are not fully accurate. Alternatively, a complex model providing high fidelity
may be required in the last phases just before deployment, to ensure that all the pieces of the system perform as expected
when they are put together and also that the applications make efficient usage of the underlying hardware.

Synthetic traffic patterns from independent sources [11] provide a good first approach to evaluate a network, because
they allow us to rapidly asses the raw performance of a network, and because it can be supported by any of the previously
discussed analytical studies. Very often, randomly generated traffic is used to evaluate systems: uniform, hot region and hot
spot traffic patterns have been used in a large collection of studies. Other commonly used patterns are those that send pack-
ets from each source node to a destination one as indicated by a certain permutation, defined as a function that takes as input
the address of the source.

Nevertheless, actual applications that communicate internally using patterns like these synthetic ones, in which traffic-
generating nodes produce messages without coordinating among them, are rare. For this reason, trace-driven simulation is
often preferred, in order to perform a more realistic evaluation of a system. Feeding a simulator with a trace is not an easy
task. To evaluate only the network of a parallel system we could implement a dummy model of the processing node, allowing
it to inject messages into the network as fast as it can, ignoring the causality of messages and the computation intervals. This
approach is a stress test of the network, because of the contention caused by all nodes injecting at the maximum pace.

Alternatively, it would be more realistic to maintain the causal relationship between the messages in the trace; in other
words, if the trace states that there is a reception before a send, the node has to wait for that reception to be completed be-
fore starting with the send. This mechanism provides more fidelity than the inject-at-will model. To further improve the sim-
ulation accuracy, compute intervals (periods in which nodes do not inject load into the network) should be taken into
account, maybe applying a CPU-scaling-factor in order to simulate a system with faster (or slower) CPUs than those used
to capture the trace.

Still, there are some problems with the trace-driven approach that we should not ignore. Firstly, the information captured
within the trace could be inexact due to the intrusion effects of the trace logging mechanism. Secondly, traces may reflect
some of the characteristics of the system in which they have been obtained. Finally, traces from actual applications running
in a large set of processors are difficult to obtain, store and manage, and these are precisely the ones of interest in our per-
formance evaluation studies.

A hybrid between the utilization of synthetic traffic patterns and traces is the estimation of probability distributions for
destinations, inter-generation times and message lengths, using data extracted from actual traces to feed some distribution-
fitting program. For example, the spatial distribution of several application prototypes were shown in [5]. Once we have the
distributions that model the application used to obtain a trace, we can generate random traffic resembling it. However, as
stated before, in actual applications causal relationships among messages are common, and this technique does not capture
them. And, again, the inexactitudes of the information within the trace (due to the characteristics of the system in which the
trace was captured, and the intrusion of the logging process) may generate estimated distributions, or parameters of those,
that are not valid.

In order to introduce causality in the simulation, and to fill the gap between trace-driven simulation and independent
sources traffic, a bursty traffic model can be used. This model uses the previously discussed synthetic traffic patterns, but
emulates application causality using a coarse-grained approach. The message generation process passes through a certain
number of bursts or steps, during which nodes can inject at will until the burst finishes, and then stall until the starting
of the next burst. Synchronization among nodes is included in this model, but in a very primitive way (roughly a barrier);
fine-grained synchronization among messages/tasks are not considered.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 505
A further refinement of the bursty model is by means of application kernels. These kernels are implemented using point-
to-point synchronization and communication primitives, and can include different levels of causality such as long chains of
dependencies. Application kernels emulate the behavior of small parts of actual applications, but when compared with reg-
ular traces they are more flexible because they are fully configurable in terms of number of communicating tasks, message
size, task coupling, etc. This gives an advantage when compared to traces, as the latter are difficult to capture and manage for
large-scale systems. Furthermore, as kernels are only small parts of applications, their execution is orders of magnitude fas-
ter than trace-based configurations, while still providing a reasonable level of accuracy. These application kernels are in-
spired in communication patterns observed in actual applications. In some cases they reproduce virtual topologies, or
implementations of collective communication primitives, while in others they reproduce programming models such as mas-
ter–slave.

Finally, the most accurate methodology to evaluate a parallel computer would be running a detailed full-system sim-
ulation that includes the interconnection network, the compute nodes, the operating system, some support libraries and
the applications running on them. This is a very complex, error-prone task, as well as a high resource-consuming meth-
odology that could need a system similar in dimension to the one we want to evaluate. These are the main reasons to
justify the limited utilization of execution-driven simulation to evaluate medium-to-large size distributed memory parallel
computers.

Table 1 closes this section summarizing the methodologies to generate traffic to fed simulations. Columns show the spa-
tial pattern of the workload, the causality among messages, the complexity of generating, managing and performing simu-
lation, and the kind of evaluation supported by the traffic model. Note that all these workload generation modes are
supported by TrGen.
3.2. Synthetic workloads

Our simulation environment provides a wide variety of synthetic workloads that can be used to measure the performance
of the communication infrastructure. These workloads have different levels of fidelity to actual application workloads, in
terms of spatial and temporal/causal patterns.

3.2.1. Independent traffic sources
A widely accepted and used mechanism to feed simulations is the use of synthetic traffic patterns from independent

sources [11]. This kind of workload allows tuning the injection rate of nodes; they try to inject at this rate, following a Ber-
noulli distribution. There is no causality among receptions and injections. When using this kind of traffic, the simulation run
is split in three phases. The first phase simulates a given number of cycles without capturing statistics and is used as a warm-
up phase. When warm-up finishes, a phase in which convergence is checked starts. During this second phase network sta-
tistics are captured every a given number of cycles (convergence intervals). If three consecutive intervals are within a given
range, it is assumed that convergence has been reached. Finally a statistics-capturing phase starts. During this phase a given
number of samples or batches are run, capturing the statistics during these phases, showing their average and their standard
deviation.

The spatial traffic patterns supported by TrGen are the following:
Table 1
Description of different traffic models used for simulation-based evaluation of parallel systems.

Traffic model Spatial pattern Causality Complexity Evaluates

Independent traffic sources
Random Random No Very low Raw performance
Permutation Worst case No Very low Raw performance
Estimation of distributions Application-like (origin-

dependent)
No Low/

medium
Selected application (origin-
dependent)

Bursty traffic sources
Random Random Coarse-grained Very low Raw performance
Permutation Worst case Coarse-grained Very low Raw performance
Estimation of distributions Application-like (origin-

dependent)
Coarse-grained Low/

medium
Selected application (origin-
dependent)

Application-based
Application kernels Application-like Application-like Low/

medium
Usual communication patterns

Trace-driven (inject-at-will) Application-like (origin-
dependent)

No Medium Raw performance when congested

Trace-driven (causal) Application-like (origin-
dependent)

Application-like (origin-
dependent)

Medium/
high

Selected application (origin-
dependent)

Execution-driven Actual application Actual application Very high Selected application

506 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
� Random: When a packet is generated at a node (the source), the destination is randomly selected following a given prob-
ability distribution. The built-in modes are uniform (UN), in which all the nodes have the same probability of being
selected as destination, and the non-uniform hot spot (HS) and hot region (HR), in which a given node or group of nodes,
respectively, have higher probability of being selected as destination, increasing the risk of generating congestion in some
regions of the network. In local (LO), the probability of selecting destination nodes decreases with the distance (so that
most packets are sent to nearby nodes). Furthermore, TrGen can read and follow user-defined distributions (for example
extracted from actual applications) which can be introduced as a histogram or as a population.
� Distribution: Distribution patterns send packets sequentially to each one of the remaining nodes. The initial destination

node can be the next one in order of identifier (SD), or can be selected randomly (RD).
� Permutation: Given a source node, the destination node is always the same, and is computed as a permutation of the

source node identifier (generally bit permutations) [11]. The permutations implemented in TrGen are the following:
Bit Complement (BC), Bit Reversal (BR), Bit Transpose (BT), Butterfly (BU), Perfect Shuffle (PS) and Tornado (TO). Their
mathematical descriptions are shown in Table 2. Identifiers of source and destination are denoted as s and d, respectively.
For bit permutations, l is the number of bits, si and di are the ith bit of the source and the destination respectively. For the
tornado permutation nx is the number of nodes in the X and Y dimension of a 2D cube topology. hsx, syi and hdx, dyi are the
Cartesian coordinates in the 2D cube of the source and destination nodes, respectively.
� In some scenarios we study the performance of a parallel job composed of a collection of communicating tasks that uses

only one part of the network. This job could run in solitary, while the non-used processors are empty. However, it would
be more realistic if the job experienced interference from other jobs sharing the machine. To model these scenarios, is it
possible to combine application-based (or application-inspired) workloads to realistically simulate the target job, while
using traffic from independent sources (normally, random traffic) to emulate background network utilization. We used
this combination in some studies on parallel application mapping [31].

3.2.2. Reactive traffic
As part of the evaluation of the SpiNNaker system we have implemented a traffic model that resembles biologically plau-

sible neural traffic [29]. The definition of this traffic model is quite simple: simple independent traffic in which nodes may
generate, with a given probability, a packet (or a collection of packets) after the reception of a packet. The parameters for this
kind of simulation are the same that for the independent traffic (spatial pattern and injection rate) plus a probability to trig-
ger new traffic and the number of packets triggered (given as an interval). Note that this behavior models the activation and
firing of a neuron.

3.2.3. Bursts
Bursty traffic sources provide a simple model to introduce system-level synchronization when managing synthetic traffic,

emulating the execution of a barrier synchronization operation every b packets. To do so, nodes are allowed to inject b pack-
ets as fast as they can, and then stall until all packets of the burst have been injected and consumed by all the nodes. Note
that small values of b resemble tightly-coupled applications while large values of b resemble loosely-coupled applications. In
this mode, the figure of merit to measure network performance is normally the time taken to deliver all the packets in one or
several bursts, being the faster the better. All the spatial patterns discussed in Section 3.2.1 can be used with bursty traffic
sources. This burst-synchronized behavior avoids starvation of nodes, as all of them are allowed to inject exactly the same
amount of traffic into the network.

3.2.4. Application-inspired workloads
One of the contributions of our group, within the INSEE environment, is a set of synthetically generated traffic patterns

that resemble the way actual scientific applications communicate. These traffic patterns are a further refinement of bursty
traffic in which point-to-point synchronization is supported. They can be considered application micro-kernels as they mi-
mic different communication patterns widely used on parallel applications. This mimicry is done both in terms of spatial
patterns and causality. The utilization of this kind of workloads is based on the same infrastructure used for trace-based sim-
ulation, described later. A (standalone) INSEE module takes the appropriate parameters and generates a synthetic trace file.
This file can be used in a simulation as a regular trace file.
Table 2
Mathematical description of the permutation patterns implemented in TrGen.

Pattern Destination Example

Bit Complement 8i : 0 6 i 6 l� 1; di ¼� si BC(11011000) = 00100111
Bit Reversal 8i : 0 6 i 6 l� 1; di ¼ sl�i�1 BR(11011000) = 00011011
Bit Transpose 8i : 0 6 i 6 l� 1; di ¼ sðiþ1=2Þmod l BT(11011000) = 10001101
Butterfly dl�1 ¼ s0; d0 ¼ sl�1 BU(11011000) = 01011001
Perfect Shuffle 8i : 0 6 i 6 l� 1; di ¼ sði�1Þmod l PS(11011000) = 10110001
Tornado [46] dx ¼ nx

2 þ sx
� �

mod nx; dy ¼ sy TO8�8(h3, 2i) = h7, 2i

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 507
We can arrange the application-inspired workloads into three different groups. Some of them are reproductions of the
way MPI collective operations are implemented relying on point-to-point communications (this is, when hardware support
for collectives is not available), taking into account optimized as well as non-optimized implementations. The second group
includes communication patterns that mimic those applications that rely on virtual topologies, passing messages to imme-
diate neighbors. The third group is more generic, implementing different modes of random generation of synchronized inter-
changes of messages. The exact definition of all these kernels can be found in [25,27] and is not discussed here for the sake of
brevity. Application micro-kernels provide a reasonable level of accuracy at a reduced cost in terms of computing power re-
quired by the simulator. Moreover, they have the capability of generate workloads with thousands of communication nodes
which are difficult, if not impossible to obtain with application-guided workloads (described next).

3.3. Application-guided workloads

Synthetic sources provide very useful insights into a network’s potential. However, obtained performance metrics can be
unrealistic as applications use more sophisticated communication patterns than synthetic models. For this reason TrGen can
also use traces from applications to perform trace-driven simulation, and even interact with Simics to perform full-system
simulation. This subsection is devoted to discuss these execution modes.

3.3.1. Traces
We use a modified version of MPICH [20], one of the most popular implementations of MPI, to obtain trace files

usable with TrGen. MPICH includes an easy-to-use mechanism to obtain trace files from running applications. However,
these traces are not useful for our purposes because collective operations (such as barriers, broadcasts and reductions)
appear as such in the trace files, that is, the actual interchange of messages necessary to implement those operations in
networks without native support for collectives is not reflected. Internally, MPICH implements collective operations
using point-to-point operations (when no better alternative is available). We modified MPICH in order to make those
point-to-point operations visible, registering them in the trace files along with the corresponding collective operation.
The intervals of time between MPI operations are considered as computation intervals. A CPU-scale factor can be applied
to these intervals in order to simulate processors faster or slower than those of the system in which traces were
captured.

Trace files are slightly pre-processed before using them with TrGen. Only a few, relevant fields are selected (event type,
source node, destination node, message size and tag) and organized in a simplified format more suitable for TrGen. It would
be possible to use this format to feed simulations with traces obtained from sources different to MPICH, a network sniffer
being a good example, just building the right pre-processor.

To reproduce the causal relationships between events in the trace files, TrGen requires a special data structure to store
past and future events, shown in Fig. 10. Each node of the simulated applications has an event queue, which is fed from
the trace file. A packet is sent to the network when an S (send) event is in the queue’s head. If an R (receive) event is in
the head, it is necessary to access the pending notifications queue to check if the expected event has happened already;
otherwise, processing of events is blocked until the network notifies the awaited reception. The pending notifications queue
at each node, thus, stores reception events that arrive before the application requests them, and it is a crucial element to keep
event causality. The complete process of trace-driven simulation is as follows:

(1) Enqueue in each node’s event queue all the events it has to execute.
(2) Initialize the pending notifications list as an empty list.
(3) Nodes sequentially execute the events in their event queue.
(a) If the first event is a send, remove the event and inject the corresponding message into the network.
TrGen

NODE 0
S 15
S 15
R 15
S 1 R 15

Pending
notifications

NODE 15
R 2
R 0
S 0
R 1 R 1Pkt. Recv.

Pending
notifications

…

Trace
file

FSIN

Event
queue

Pkt. sent
Notification

Event
queue

Fig. 10. Data structure used to maintain causality in the trace-driven simulation.

508 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
(b) If it is a reception, check if a corresponding message (matching origin, destination, tag and size) is in the pending
notification list. If it is there, remove both entries. Otherwise, keep in this state until the required message is
received by the node and is accordingly found in such list.

(c) If it is a computation event, put the node on hold for the required period of time, using if selected a CPU-scale
factor.
(4) When the simulator delivers a message, put it in the pending notifications list.

An example of this procedure is depicted in Fig. 10, note that R represents a reception and S represents a send; compu-
tation events (C) are not considered for the sake of simplicity. In the figure, node 0 cannot advance, because it is waiting for a
message from node 1, even if a message from node 15 has been already received. In contrast, node 15 can advance because
the required message from node 1 has been delivered. This mechanism reproduces the actual way messages were inter-
leaved when running the application, complying with the causal order between a reception and the subsequent sends it
may trigger.

Traces obtained from one system are often used to evaluate via simulation the performance potential of another, differ-
ent, target system. However, this approach has some drawbacks. In the context of IN design and evaluation, traces obtained
with the same collection of nodes running a parallel application with two different INs A and B may be different, because
properties of A and B differ, and those properties have an influence on the way nodes interchange messages. For this reason,
performance results obtained with traces may not be totally accurate [14]. A thorough discussion of the design, limitations
and issues of the trace-driven simulation within the INSEE environment was carried out in [22].
3.3.2. Interaction with Simics
TrGen can interface with Virtutech’s Simics [19] to perform a full-system simulation. Simics is in charge of simulating a

cluster of multiprocessors, while INSEE simulates the IN. In our experimental environment, each Simics instance is executed
in a different computer and can simulate up to eight compute nodes (limited by the available RAM of our machines). A single
instance of INSEE simulates the network that interconnects all the simulated nodes. In order to perform a correct simulation
of the parallel system, a set of interfacing modules were implemented, some for INSEE and some others for Simics. These
modules implement the following functions:

� Transference of application traffic from Simics instances to FSIN, and vice versa.
� Synchronization among all the elements taking part in the simulation (FSIN and the collection of Simics instances).

Every simulated computing node has a simulated Ethernet network interface card which is instrumented to put the mes-
sages into the Traffic manager of its Simics instance. The Traffic manager sends meta-information about the messages to
TrGen and is in charge of sending the complete message to the corresponding Simics instance and node, once it has reached
its destination in the simulated network. In Fig. 11 we can see a depiction of all the elements involved in the execution-dri-
ven simulation.
Parallel App.

User space

Kernel space

Protocol stack

NIC driver

Traffic
manager

Simics instance 0

FSIN

TrGen

Sync. serverSync. client

Simics
timing

C
lu

st
er

 n
od

e
0

...

...

Simulated hw. NIC

Hardware

INSEE

Cluster node 7

Simics
instance 7

Fig. 11. Elements of our full-system simulation environment. Black elements belong to INSEE.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 509
It is remarkable that Simics gives support to the synchronized execution of all the nodes within a given instance. Still, we
need to add a synchronization client to keep synchronization among the different Simics instances, and also between them
and FSIN. To this purpose INSEE is complemented with a synchronization server which keeps the whole simulation running
at the same pace.

The interchange of application traffic is managed by TrGen, which stores meta-information of each message taking part in
the simulation. TrGen is also in charge of injecting traffic into FSIN and of monitoring it to recognize when a message has
arrived to its destination. Once a message arrives to its destination in FSIN, TrGen sends a confirmation to the source Simics
instance in order to send the complete message to the destination instance and node. The traffic manager inside each Simics
instance is in charge of storing the complete message and sending it to the destination node. When the Traffic manager re-
ceives a message to a simulated node it injects the message into the NIC module of the proper node.

Synchronization is fairly more complex as a two-level mechanism is implemented in order to synchronize the multiple
elements taking part on the simulation. On the one hand, all the nodes simulated within a Simics instance are executed in a
step-wise fashion: nodes go to execution sequentially for a given number of CPU cycles (slice) and, once the running one fin-
ishes its slice, the next node enters into execution for the same amount of simulated time. This mechanism is part of Simics.
A synchronization client implemented inside each Simics instance is in charge of sending a message to TrGen to make it
know that it has finished its slice; this is carried out when all the simulated nodes finish their corresponding slices. Once
this message is sent, the synchronization client suspends the execution until a message from TrGen is received, allowing
the execution of a new slice. The synchronization server, implemented within TrGen, waits until all Simics instances have
finished their slices and then makes FSIN run for a period of time equivalent to the Simics slice. After FSIN finishes its slice,
TrGen sends a multicast message to the Simics instances, allowing them to resume their execution. The ratio between Simics
and FSIN slices (one measured in Simics cycles and the other one in FSIN cycles) determines the bandwidth of the simulated
network.

Further details about performing execution-driven simulation within INSEE can be found in [41]. This work includes a
thorough description of the full-system simulation in INSEE, and discusses several different approaches that may be followed
in order to obtain usable results from this kind of simulation. Emphasis is put on where to capture the traffic in the simulated
node, and also in synchronization, showing the need to fine tune the value of the slices in order to obtain a balance between
simulation accuracy and execution time. Furthermore it discusses some issues encountered when setting up the simulation
environment and carrying out performance-related experiments.
3.4. Task placement

An important consideration to take into account when launching parallel applications is the mapping of application tasks
onto computing resources. Parallel applications are usually implemented following spatial distributions that can be
exploited effectively by means of an adequate allocation onto the nodes. Furthermore, supercomputing sites are often used
by many users that share machine resources, with several applications being executed simultaneously on different system
partitions. Our previous research showed that a bad application placement may slow down the communication of applica-
tions sharing a parallel computing up to 10 times [28]. We also showed that an improvement of 10–15% in execution time of
applications, obtained through a good placement policy, can compensate the high cost of a topology-aware scheduling [32].

When dealing with application (or application-inspired) traffic, INSEE has the ability of arranging the tasks of a workload
onto the whole network, or onto network partitions, following different policies. It can also execute several application in-
stances concurrently, to measure the effects of the interactions among them. Currently, INSEE supports only the simulta-
neous execution of several instances of the same application [28].

Some examples of the different placement strategies available for direct networks are depicted in Fig. 12. In the depic-
tions, four applications, composed by four nodes each, share the network (these applications are represented by white, grey,
black and crossed circles, correspondingly). Similarly, some example depictions of the different strategies for tree-like topol-
ogies are shown in Fig. 13. The definitions of the placement policies are as follows:
Fig. 12. Placement strategies for direct topologies: (a) row; (b) shift 2; (c) column and (d) quadrant.

Fig. 13. Placement strategies for tree-like topologies: (a) consecutive; (b) shift 2 and (c) shuffle.

510 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
� Consecutive/row: Tasks and applications are placed consecutively—note that in the case of cube topologies this means fill-
ing rows in order. For example if we have an application of n nodes, it will be placed from nodes 0 to n � 1, being its tasks
arranged in order. Examples of these placements are plotted in Fig. 12a for cubes and Fig. 13a for trees.
� Shift: This policy is like the previous one, but adding a given shift s to the allocated node, that is, task t is located in node

t + s. Examples of these placements are plotted in Fig. 12b for cubes and Fig. 13b for trees.
� Shuffle: Tasks are placed in order in the nodes attached to the first port of each switch, then to those nodes attached to the

second port of each switch, and so on. If in each switch there are p ports connected to compute nodes, then the tasks will
be placed in nodes: 0, p, 2p, . . . , 1, p + 1, 2p + 1, and so on. An example of this placement is plotted in Fig. 13c. Note that
this policy only makes sense in those topologies with many compute nodes attached to each network element, i.e. indi-
rect topologies.
� Column: This policy only makes sense in cube-like topologies with, at least, two dimensions. Assignment is done selecting

the nodes by columns, which can be seen as partitioning the network in rectangular sub-networks, taller than wide. An
example of this placement is plotted in Fig. 12c.
� Quadrant: This policy only makes sense in cube-like topologies with, at least, two dimensions. When using several appli-

cation instances, we can partition the network in perfect squares (or cubes). Within each square an application is placed
following consecutive order. An example of this placement is plotted in Fig. 12d.
� Random: All the tasks are randomly placed along the network independently of their application. To do so, we generate a

random permutation of the network nodes.
� File: INSEE can read the mapping information from a file. The format of this file is very simple: hnode, task, applicationi,

meaning that the task task from the application application is mapped onto node node. Note that this mode allows us
to test more complex mapping techniques, such as optimized task-to-node placement [31].

4. Limitations of INSEE

Although INSEE has proven to be a useful tool to evaluate interconnection systems, it has some limitations that we should
not forget. Some of these limitations are easily solvable, but may require considerable effort in terms of implementation
time. Additionally, some modifications may increase excessively memory requirements and/or execution times, something
that would go against the philosophy of INSEE. Still, in this section we discuss some modifications that could increase the
usefulness of this environment.

FSIN uses internally a time-driven engine that it is not suitable to simulate workloads with long computation times
between communication events, because it wastes too much time doing nothing but making the clock advance. We are
currently developing an event-driven engine for FSIN which would accelerate the simulation with low density of
events.

The node model, simulated as a simple traffic generator and consumer without any internal structure, is too simplistic.
We designed it this way because we are interested in the behavior of the IN, and this model is sufficient for this purpose.
Another limitation closely related to this one is that INSEE only allows allocating a single task per node. This is not very real-
istic because, in current systems, nodes attached to the network are actually multiprocessors. The simulation of multipro-
cessor nodes can be implemented in TrGen just by allowing several application tasks (from Simics, traces or application
kernels) to share a FSIN node. However it will require making some implementation decisions: how to arbitrate the injection
infrastructure and how to perform intra-node communication. The added complexity would result in slower simulation
times and larger footprints.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 511
When performing trace-driven simulations, the causality of the messages is maintained, but the MPI semantics are not
followed accurately by TrGen. For instance, all messages sends are treated equally, regardless of them being immediate,
rendevouz, one-sided, etc. Implementing MPI semantics accurately would require increasing the complexity of the node
which, as stated before, is not desirable. Furthermore, MPI has very complex (and precise) semantics, and implementing
every operation supported by the standard would require huge efforts in terms of fully understanding the involved details
and coding them within TrGen.

A remarkable limitation of INSEE is that FSIN does not include detailed models of some state-of-the-art networking tech-
nologies such as InfiniBand [45] or Myrinet [8]. The reason for this is two-folded. On the one hand, implementing these tech-
nologies would require a deep knowledge of every detail of them, as well as a non-negligible effort in terms of coding. On the
other hand, given the complexity of these technologies, it would not be possible to perform large-scale simulations because
of the associated requirements in terms of computing resources.

An arguably less significant limitation is that INSEE does not allow for parallel or distributed simulation. Although FSIN
could be easily extended in this line—note that its time-driven engine is split into two separate loops and, in each loop, iter-
ations are completely independent among them—this has not been done for two simple reasons. The first one is that the low
footprint of INSEE allows for large-scale simulations in a single off-the-shelf computer, and therefore we did not need to par-
allelize it, even when we have parallel computers. This leads to the second reason: in our evaluations we usually require the
execution of many experiments (hundreds, even thousands), modifying parameters such as network size, workload, place-
ment and random seed, without any dependency between the different runs. The utilization of a cluster as a high-throughput
computing resource is enough for this purpose.
5. Performance evaluation of INSEE

As stated before, INSEE is a lightweight tool that has been developed with resource scarcity in mind. In this section we
show how the resource requirements scale with the size of the system to simulate, using a collection of realistic experiments
in which we vary those parameters that affect memory and CPU usage. The values plotted in the figures correspond to the
average value of 10 runs. Confidence intervals (99%) are three orders of magnitude below the average and therefore are not
plotted.
(a) k -ary 2-tori

10

100

1000

10000

100000

4 6 8 12 16 24 32 48 64

Torus Size (k × k)

E
xe

cu
tio

n
T

i m
e

(S
ec

.)

1

10

100

1000

R
eq

ui
re

d
R

A
M

 (
M

B
)

Mem. Req. Exec. Time 1 hour 1 day

(b) 2-ary n -trees

10

100

1000

10000

100000

4 5 6 7 8 9 10 11 12

Tree Stages (n)

E
xe

cu
tio

n
T

im
e

(S
ec

.)

1

10

100

1000

R
eq

ui
re

d
R

A
M

 (
M

B
)

Mem. Req. Exec. Time 1 hour 1 day

(c) Ports

10

100

1000

10000

100000

k=2, n=12 k=4, n=6 k=8, n=4 k=16, n=3

k -ary n -tree Configuration

E
xe

cu
tio

n
T

im
e

(S
ec

.)

1

10

100

1000

R
eq

ui
re

d
R

A
M

 (
M

B
)

Mem. Req. Exec. Time 1 hour 1 day

(d) Traces

10

100

1000

10000

100000

256B 512B 1KB 2KB 4KB 8KB 16KB

Message Length

E
xe

cu
tio

n
T

im
e

(S
ec

.)

1

10

100

1000

R
eq

ui
re

d
R

A
M

 (
M

B
)

Mem. Req. Exec. Time 1 hour 1 day

Fig. 14. Resources needed to perform simulation.

512 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
The simulation runs used in this section use parameter values that are commonly used in our day-to-day research. Tori
use 2D bubble routers using the smart request strategy, while trees use the adaptive routing strategy. All physical channels
are split into two virtual channels, each of them with a queue with room for storing four packets of 16 phits (physical units –
4 bytes). Fig. 14 shows plots of simulation time and memory footprint obtained from a series of simulation runs performed in
an Intel(R) Pentium(R) 4 CPU working at 3.00 GHz with 1.5 GB of RAM. Note that the instrumentation introduced to obtain
these measurements has a negative effect on them, and also that executions on more recent processors would be signifi-
cantly faster.

In the plots both X and Y axis show logarithmic values. Two dotted lines representing respectively an hour and a day are
added as hints to better understand the reported times.

A first study whose results are depicted in Fig. 14a, shows the scalability of INSEE when simulating tori. Systems arranged
in a wide variety of sizes, from 4 � 4 (16 nodes) to 64 � 64 (4096 nodes), are studied,with a workload modeled as uniform
traffic from independent sources at the maximum possible pace. We can see how execution time and memory consumption
scale roughly linearly with the number of nodes. This is because the main memory consumption is due to the room in the
queues, and the number of queues depends on the number of nodes.

In the case of the trees, depicted in Fig. 14b, we simulated 2-ary k-trees with the k parameter varying from k = 4 (16
nodes) to k = 12 (4096). The workload was also uniform traffic from independent sources at full pace. The number of
switches scales in O (n log n) with the number of nodes and, therefore, so do memory consumption and execution time,
as can be seen in the figure.

In Fig. 14c, four different fat-tree topologies, all able to connect 4096 nodes, are fed with uniform traffic from independent
sources. We can see how the choice of topology affects noticeably the resources required to perform a simulation. In this
case, both memory usage and execution time can increase up to a 400% just by using one topology or another. In the plot
we can clearly seen that the sweet spot seems to be the 4-ary 6-tree.

Finally, in Fig. 14d, we generated several instances of butterfly, an application inspired workload, all of them for 4096
nodes but varying the message length from 256 bytes (1 packet) to 16 kB (64 packets). We run these workloads in a 2D torus
with 64 nodes per dimension. In the plot we can see how the message size affects linearly the execution time, but the mem-
ory does not change from configuration to configuration. This is because the size of the data structures used to store mes-
sages in trace-driven simulation do not depend on the length of the (simulated) messages. However, as the simulation
operates at the phit level, longer messages translate on more phits managed by the network, and this requires more time.

In general, we can conclude that INSEE’s memory requirements grow roughly linearly with the number of simulated
ports, which in turn depends on the number of switches and their complexity. Execution time grows with the number of
ports too, but also strongly depends on the characteristics of the simulated workload. At any rate, authors want to highlight
that INSEE’s footprint and execution speed in current computers (more up-to-date than the one used in this evaluation) are
austere: most of our experiments are completed in a few hours, using only a few hundred MB of RAM. In other words, INSEE
does not have prohibitive requirements.
6. Related work

We want to remark that INSEE is only one of the network simulators available to the community. In the literature we can
find references for many of them. Let us review a small selection, pinpointing the main differences with INSEE. Note that, as
explained before, the main characteristics of INSEE are its flexibility and its low resources requirement, and therefore it out-
performs in these two aspects to most of the tools revised here.

SICOSYS [36,48], developed at the University of Cantabria, has very detailed models of several router architectures, which
allows obtaining very accurate performance measurements, close to those obtained with a hardware-level simulator, but at a
fraction of the required computing resources. It is noticeably more complex and resource-demanding than INSEE and, there-
fore, it is restricted to simulate networks composed by a few hundred nodes at most. SICOSYS is implemented in C++, and has
been used for evaluations focusing on performance and on fault-tolerance of networks-on-chip. In addition, it allows feeding
the simulator with several traffic models with different levels of detail: synthetic traffic and traces of MPI or ccNUMA appli-
cations. It can also interface with RSIM [30] and SIMOS [43] to perform full-system simulation of INs.

The Chaos router simulator [51], from the University of Washington, has detailed models of k-ary n-cube networks
(meshes, tori and hypercube); tree-like topologies are not implemented. Switching can be both packet-switching and worm-
hole. Routers can implement dimension-order oblivious routing or, alternatively, Chaotic adaptive routing [18]. It also incor-
porates a wide variety of synthetic traffic patterns to feed the simulation. A distinguishing characteristic of this simulator is
that it may also run in animated mode, in which the temporal evolution of the simulation is graphically represented. One of
the main drawbacks of this simulator is that all the changes in the design of the network to evaluate must be done at com-
pilation time, in other words, every change in the model requires the application re-compilation. It is remarkable that, as far
as we know, development of this simulator was stopped in 1996, but its source code is still available.

FlexSim [49], developed at the University of Southern California, is a C-based simulator for k-ary n-cube networks with
any number of dimensions greater or equal than 2, any power of two number of nodes per dimension, and any arbitrary
number of virtual channels. It has support for several router models, synthetic traffic patterns and failure models. This sim-
ulator has been used to conduct research in fault-tolerance and deadlock-free routing.

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 513
MARS [12] is a simulator of parallel systems developed at IBM and based on the OMNeT++ simulation framework [52]. Its
design is oriented to the evaluation of parallel systems and parallel applications, and to that purpose it includes detailed
models of both the communication side and the compute nodes. MARS allows us to use several multi-stage topologies,
and a variety of switching and routing functions. It supports multi-core configurations in which each processing core has
its own MPI stack. The main difference between MARS and INSEE trace-driven simulations is the model of the node, and
the conformity to MPI semantics; these differences make INSEE faster, while MARS is a priori more accurate.

MINSimulate [47], developed at the Technical University of Berlin, is a simulator designed to evaluate multi-stage INs. It
implements Clos and Delta networks and supports both wormhole and store and forward switching. Note that currently IN-
SEE does not support this kind of networks but their inclusion would require insignificant efforts as an implementation of a
multi-stage switch is already available.

The NS-2 simulator [15], from the University of Southern California, is designed to research on wired and wireless TCP-
based communication networks. Although high-performance computing systems use to rely on high performance intercon-
nects such as InfiniBand [45] or Myrinet [8] for parallel computing, most of them support Ethernet-based networks for stor-
age and control purposes. Furthermore, new versions of Ethernet 10 GB or the early-to-come 100 GB Ethernet can be used as
low-cost INs. For these reasons we include NS-2 in this review.

BigNetSim [53], developed at the University of Illinois at Urbana Champaign, is a trace-driven parallel discrete event sim-
ulator. It simulates, with reasonable detail, an integrated model for computation (processors) and communication (network).
The simulator allows different levels of detail to evaluate the IN: from simple latency models to detailed models of the net-
work including k-ary n-cubes and k-ary n-trees. One of the main advantages of this system is its extreme modularity, with
easy mechanisms to model new topologies and routing algorithms. BigNetSim has a parallel implementation that allows car-
rying out large simulations of current and future systems, and to study the behavior of applications developed for those sys-
tems. In contrast with INSEE, in which system configuration is given as parameters at execution time, BigNetSim is
configured at compilation time, in such a way that any change in the models require to re-compile the target modules.

Dimemas [6], developed and maintained at the Barcelona Supercomputing Center, was designed with the evaluation of
applications behavior in mind. It can reconstruct the execution of a parallel application in any supported architecture using a
trace of that application. Dimemas philosophy is similar to INSEE: keep it simple. Dimemas models computing elements with
accuracy but models the INs in a rather simplistic way: a collection of buses. The workloads used with Dimemas are modeled
in detail, with lots of significant states available for each application thread. A drawback of this workload’s complexity is that
obtaining traces with sufficient level of detail requires an instrumented kernel. Dimemas is designed to search for bottle-
necks and/or unbalances that may harm the performance of parallel applications. Note that while INSEE can be used for this
purpose, it is not specifically designed for this function.

The COTSon Infrastructure for system-level simulation by HP Labs [4] provides a simulation environment very similar to
that given by the combination FSIN+ Simics, but based on AMD’s SimNow [3]. The tool has been open sourced in January
2010. It is able to simulate multi and many-core machines, and also clusters using a functional simulator of a network
switch. We plan to further study the potential of its pluggable architecture, in order to check if FSIN could be integrated into
this infrastructure.

We close this section with Table 3, in which the differences among the discussed simulators are summarized. Note that
the NS-2 is not included because of its completely different nature.
7. Final remarks and future work

In this paper, we have thoroughly described INSEE, our Interconnection Network Simulation and Evaluation Environment
[50]. This description includes all the router architectures and network organizations currently implemented in FSIN, our
Functional Simulator of Interconnection Networks, as well as all the accepted router parameters and captured statistics. Fur-
thermore, all the traffic models and procedures to generate workloads provided by TrGen, our traffic generator module, are
Table 3
Summary of the characteristics of the reviewed simulators.

Family of topologies Level of detail Traffic models Resources requirement

Cube Tree-like Multi-stage Network Nodes Synthetic Traces Full-system

INSEE
p p � High Low

p p p
Low

SICOSYS
p � � High Low

p p p
High

Chaos
p � � High Low

p � � Medium
Flexsim

p � � High Low
p � � Medium

Mars � p p
High High � p � High

MINSimulate � � p
High Low

p � � Medium
COTSon

p p p
Low Very high � � p

Very High
BigNetSim

p p p
Variable Variable � p � Variable

Dimemas
p p p

Low High � p � Low

514 J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515
explained in detail. The workloads can be synthetic, with different degrees of fidelity to actual applications, or application-
based using traces and full-system simulation.

INSEE tools have been successfully used in our research group to carry out a wide variety of studies in the field of per-
formance evaluation of INs, including: the effect of Head-of-Line blocking at injection [17], the impact in the performance
of several injection interfaces as congestion control mechanisms [16], the performance of local congestion control mecha-
nisms [21,42], the evaluation of several topological proposals [9,24,26], and the effect of task and node allocation on the per-
formance of parallel applications [28,31], among others. A remarkable feature of INSEE is that it allows simulating large-scale
networks of up to 64 K nodes in a regular off-the-shelf desktop computer with 2 GB of RAM.

We plan to add new features and operation modes to the environment. Some of them will be driven by the requirements
of our research work. Some others are oriented to improve the behavior of the environment. These new additions include,
but are not limited to the following.

� A new, event-driven simulation engine for FSIN is under development, in order to allow faster simulation of applications
while properly modeling the network. This implementation will be further extended to be used in the field of job sched-
uling, allowing running together several applications as well as their management. Together with the integration of this
new engine, we plan to add the capability to simulate several processing units in each compute node in order to properly
simulate current clusters and supercomputers.
� We plan to model new router architectures. For example, a more detailed model of the SpiNNaker router will be added to

perform a more realistic evaluation using neural-activity workloads for this target system. Other router architectures than
can be added to INSEE are the HPAR router [37] or the rotary router [1]. Other subsystems to be modeled are the Immunet
[38] and ImmuCube [35] fault-tolerance schemes.
� We will continue with our work on characterizing realistic workloads, in order to increase our collection of application

kernels. These kernels will be used in future evaluation studies in which realistic traffic models are required to provide
accurate results. One interesting starting point is the review of typical high-performance computing applications that can
be found in [5], in which 13 dwarves are identified. Each of these dwarves represents a prototype of application because of
the communication patterns, the coupling of the task or several other details.
Acknowledgements

This work has been supported by the Ministry of Education and Science (Spain), Grant TIN2007-68023-C02-02, and by
Grant IT-242-07 from the Basque Government. Dr. Navaridas is supported by a post-doctoral grant of The University of
the Basque Country. Mr. Pascual is supported by a doctoral grant of the Basque Government.

References

[1] P. Abad, V. Puente, P. Prieto, J.A. Gregorio, Rotary router: an efficient architecture for CMP interconnection networks, in: Proceedings of the 34th Annual
International Symposium on Computer Architecture, San Diego, CA, USA, June, 2007, pp. 116–125. doi: 10.1145/1250662.1250678.

[2] N.R. Adiga, M.A. Blumrich, D. Chen, P. Coteus, A. Gara, M.E. Giampapa, P. Heidelberger, S. Singh, B.D. Steinmacher-Burow, T. Takken, M. Tsao, P. Vranas,
Blue Gene/L torus interconnection network, IBM Journal of Research and Development 49 (2/3) (2005).

[3] Advanced Micro Devices Inc., AMD SimNow Simulator. <http://developer.amd.com/cpu/simnow>.
[4] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, COTSon: infrastructure for full system simulation, ACM SIGOPS Operating Systems Review

43 (1) (2009) 52–61.
[5] K. Asanovic, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, K.A. Yelick, The Landscape of Parallel

Computing Research: A View from Berkeley, EECS Department, University of California, Berkeley, Technical Report No. UCB/EECS-2006-183, December
18, 2006. <http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf>.

[6] R.M. Badia, J. Labarta, J. Gimenez, F. Escale, DIMEMAS: Predicting MPI applications behavior in Grid environments, Workshop on Grid Applications and
Programming Tools, June, 2003.

[7] R. Beivide, E. Herrada, J.L. Balcazar, A. Arruabarrena, Optimal distance networks of low degree for parallel computers, IEEE Transactions on Computers
40 (10) (1991) 1109–1124, doi:10.1109/12.93744.

[8] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, W.K. Su, Myrinet: a gigabit-per-second local area network, IEEE Micro 15 (1)
(1995) 29–36, doi:10.1109/40.342015.

[9] J.M. Camara, M. Moreto, E. Vallejo, R. Beivide, J. Miguel-Alonso, C. Martinez, J. Navaridas, Twisted torus topologies for enhanced interconnection
networks, Accepted for Publication in the IEEE Transactions on Parallel and Distributed Systems, in press. doi: 10.1109/TPDS.2010.30.

[10] W.J. Dally, C.L. Seitz, Deadlock-free message routing in multiprocessor interconnection networks, IEEE Transactions on Computers 36 (5) (1987) 547–
553, doi:10.1109/TC.1987.1676939.

[11] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann Series in Computer Architecture and Design, 2004. ISBN:
0-12-200751-4.

[12] W.E. Denzel, J. Li, P. Walker, Y. Jin, A Framework for End-to-End Simulation of High Performance Computing Systems, SIMUTools’08, Marseille, France,
March 3–7, 2008.

[13] J. Duato, A necessary and sufficient condition for deadlock-free adaptive routing in wormhole networks, IEEE Transactions on Parallel and Distributed
Systems 6 (10) (1995) 1055–1067, doi:10.1109/71.473515.

[14] S. Goldschmidt, J. Hennessy, The accuracy of trace-driven simulation of multiprocessors, in: ACM Sigmetrics Conf. on Measurement and Modeling of
Computer Systems, May, 1993, pp. 146–157. doi: 10.1145/166962.167001.

[15] Information Science Institute, Network Simulator ns-2. <http://www.isi.edu/nsnam/ns/>.
[16] C. Izu, J. Miguel-Alonso, J.A. Gregorio, Evaluation of interconnection network performance under heavy nonuniform loads, in: Lecture Notes in

Computer Science, Proc. ICA3PP, vol. 3719/2005, 2005, pp. 396–405.
[17] C. Izu, J. Miguel-Alonso, J.A. Gregorio, Effects of injection pressure on network throughput, in: Proc. PDP 2006 14th Euromicro Conference on Parallel,

Distributed and Network Based Processing, Montbéliard-Sochaux, France, February 15–17, 2006. doi: 10.1109/PDP.2006.32.
[18] S. Konstantinidou, L. Snyder, The Chaos router, IEEE Transactions on Computers 43 (12) (1994) 1386–1397, doi:10.1109/12.338098.

http://developer.amd.com/cpu/simnow
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://dx.doi.org/10.1109/12.93744
http://dx.doi.org/10.1109/40.342015
http://dx.doi.org/10.1109/TC.1987.1676939
http://dx.doi.org/10.1109/71.473515
http://www.isi.edu/nsnam/ns/
http://dx.doi.org/10.1109/12.338098

J. Navaridas et al. / Simulation Modelling Practice and Theory 19 (2011) 494–515 515
[19] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation
platform, IEEE Computer 35 (2) (2002) 50–58, doi:10.1109/2.982916.

[20] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. <http://www-unix.mcs.anl.gov/mpi/standard.html>.
[21] J. Miguel-Alonso, C. Izu, J.A. Gregorio, Improving the performance of large interconnection networks using congestion-control mechanisms,

Performance Evaluation 65 (3) (2008) 203–211, doi:10.1016/j.peva.2007.05.001.
[22] J. Miguel-Alonso, J. Navaridas, F.J. Ridruejo, Interconnection network simulation using traces of MPI applications, International Journal of Parallel

Programming 37 (2) (2009) 153–174, doi:10.1007/s10766-008-0089-y.
[23] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, M. Pedram, An empirical investigation of mesh and torus NoC topologies under different routing algorithms

and traffic models, in: Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, Lübeck, Germany,
August 29–31, 2007, pp. 19–26. doi: 10.1109/DSD.2007.28.

[24] J. Navaridas, M. Luján, J. Miguel-Alonso, L.A. Plana, S.B. Furber, Understanding the interconnection network of SpiNNaker, in: proceedings of the 23rd
International Conference on Supercomputing, Yorktown Heights, NY, USA, June 8–12, 2009, pp. 286–295. doi: 10.1145/1542275.1542317.

[25] J. Navaridas, J. Miguel-Alonso, Realistic evaluation of interconnection networks using synthetic traffic, in: 8th International Symposium on Parallel and
Distributed Computing, Lisbon, Portugal, June 30–July 4, 2009.

[26] J. Navaridas, J. Miguel-Alonso, F.J. Ridruejo, W. Denzel, Reducing complexity in tree-like computer interconnection networks, Accepted for Publication
in the International Journal on Parallel Computing, in press. doi: 10.1016/j.parco.2009.12.004.

[27] J. Navaridas, J. Miguel-Alonso, F.J. Ridruejo, On synthesizing workloads emulating MPI applications, in: The 9th IEEE International Workshop on Parallel
and Distributed Scientific and Engineering Computing, Miami, Florida, USA, April 14–18, 2008. doi: 10.1109/IPDPS.2008.4536473.

[28] J. Navaridas, J.A. Pascual, J. Miguel-Alonso, Effects of job and task placement on parallel scientific applications performance, in: Proc 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing. Weimar, Germany, February 18–20, 2009, pp. 55–61. doi: 10.1109/
PDP.2009.53.

[29] J. Navaridas, L.A. Plana, J. Miguel-Alonso, M. Luján, S.B. Furber, SpiNNaker: effects of traffic locality and causality on the performance of the
interconnection network, Submitted to the ACM International Conference on Computing Frontiers, 2010.

[30] V.S. Pai, P. Ranganathan, S.V. Adve, RSIM: an execution-driven simulator for ILP-based shared-memory multiprocessors and uniprocessors, in: IEEE
Technical Committee on Computer Architecture Newsletter, October, 1997.

[31] Jose A. Pascual, Jose Miguel-Alonso, Jose A. Lozano, Optimization-Based Mapping Framework for Parallel Applications. Technical Report EHU-KAT-IK-
02-10, University of the Basque Country, April, 2010. Submitted to Elsevier’s Journal of Parallel and Distributed Computing.

[32] J.A. Pascual, J. Navaridas, J. Miguel-Alonso, Effects of topology-aware allocation policies on scheduling performance, in: Proc. 4th Workshop on Job
Scheduling Strategies for Parallel Processing in Conjunction with IPDPS 2009, Rome, Italy, Lecture Notes in Computer Sciences, vol. 5798/2009, May 29,
2009, pp. 138–156. doi: 10.1007/978-3-642-04633-9_8.

[33] F. Petrini, M. Vanneschi, k-ary n-trees: high performance networks for massively parallel architectures, in: Proceedings of the 11th International
Parallel Processing Symposium, Geneva, Switzerland, 1–5 April, 1997, pp. 87–93. doi: 10.1109/IPPS.1997.580853.

[34] L.A. Plana, S.B. Furber, S. Temple, M.M. Khan, Y. Shi, J. Wu, S. Yang, A GALS infrastructure for a massively parallel multiprocessor, IEEE Design and Test of
Computers 24 (5) (2007) 454–463, doi:10.1109/MDT.2007.149.

[35] V. Puente, J.A. Gregorio, Immucube: scalable fault-tolerant routing for k-ary n-cube networks, IEEE Transactions on Parallel and Distributed Systems 18
(6) (2007) 776–788, doi:10.1109/TPDS.2007.1047.

[36] V. Puente, J.A. Gregório, R. Beivide, SICOSYS: an integrated framework for studying interconnection network performance in multiprocessor systems,
in: Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, Canary Islands, Spain, January 9–11, 2002, pp.
15–22. doi: 10.1109/EMPDP.2002.994207.

[37] V. Puente, J.A. Gregorio, R. Beivide, C. Izu, On the design of a high-performance adaptive router for CC-NUMA multiprocessors, IEEE Transactions on
Parallel and Distributed Systems 14 (5) (2003), doi:10.1109/TPDS.2003.1199066.

[38] V. Puente, J.A. Gregorio, F. Vallejo, R. Beivide, Immunet: dependable routing for interconnection networks with arbitrary topology, IEEE Transactions on
Computers 57 (12) (2008) 1676–1689, doi:10.1109/TC.2008.95.

[39] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo, J.M. Prellezo, The adaptive bubble router, Journal of Parallel and Distributed Computing 61 (9)
(2001) 1180–1208, doi:10.1006/jpdc.2001.1746.

[40] F.J. Ridruejo, J. Miguel-Alonso, INSEE: an interconnection network simulation and evaluation environment, in: Lecture Notes in Computer Science, Proc.
Euro-Par, vol. 3648/2005, 2005, pp. 1014–1023.

[41] F.J. Ridruejo, J. Miguel-Alonso, J. Navaridas, Full-System Simulation of Distributed Memory Multicomputers, Cluster Computing, Published Online,
March 28, 2009. doi: 10.1007/s10586-009-0086-y.

[42] F.J. Ridruejo, J. Navaridas, J. Miguel-Alonso, C. Izu, Realistic evaluation of interconnection network performance at high loads, in: 8th International
Conference on Parallel and Distributed Computing Applications and Technologies, Adelaide, Australia, December 3–6, 2007, pp. 97–104. doi: 10.1109/
PDCAT.2007.73.

[43] M. Rosenblum, S.A. Herrod, E. Witchel, A. Gupta, Complete computer system simulation: the SimOS approach, Parallel and Distributed Technology:
Systems and Applications 3 (4) (1995) 34–43, doi:10.1109/88.473612.

[44] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham, T.L. Rodeheffer, E.H. Satterthwaite, C.P. Thacker, Autonet: A High-Speed, Self-
Configuring Local Area Network Using Point-to-point Links, SRC Research Report 59, December, April 21, 1990.

[45] T. Shanley, InfiniBand Network Architecture. Addison-Wesley, 2002 (November). ISBN: 978-0-321-11765-6.
[46] B. Towles, W.J. Dally, Worst-case traffic for oblivious routing functions, IEEE Computer Architecture Letters 1 (1) (2002), doi:10.1109/L-CA.2002.12.
[47] D. Tutsch, M. Brenner, D. Luedtke, A. Walter, MINSimulate. <http://dontcry.pdv.cs.tu-berlin.de/minsimulate/index.html>.
[48] University of Cantabria, SICOSYS. <http://www.atc.unican.es/SICOSYS/>.
[49] University of Southern California, Information on FlexSim1.2. <http://ceng.usc.edu/smart/FlexSim/flexsim.html>.
[50] The University of the Basque Country, INSEE. <http://insee.sourceforge.net/>.
[51] University of Washington, The Chaos Router Simulator. <http://www.cs.washington.edu/research/projects/lis/chaos/www/simulator.html>.
[52] A. Vargas, The OMNeT++ Discrete Event Simulation System. <http://www.omnetpp.org/download/docs/papers/esm2001-meth48.pdf>.
[53] G. Zheng, T. Wilmarth, P. Jagadishprasad, L.V. Kalé, Simulation-based performance prediction for large parallel machines, International Journal of

Parallel Programming 33 (2–3) (2005), doi:10.1007/s10766-005-3582-6.

http://dx.doi.org/10.1109/2.982916
http://www-unix.mcs.anl.gov/mpi/standard.html
http://dx.doi.org/10.1016/j.peva.2007.05.001
http://dx.doi.org/10.1007/s10766-008-0089-y
http://dx.doi.org/10.1109/MDT.2007.149
http://dx.doi.org/10.1109/TPDS.2007.1047
http://dx.doi.org/10.1109/TPDS.2003.1199066
http://dx.doi.org/10.1109/TC.2008.95
http://dx.doi.org/10.1006/jpdc.2001.1746
http://dx.doi.org/10.1109/88.473612
http://dx.doi.org/10.1109/L-CA.2002.12
http://dontcry.pdv.cs.tu-berlin.de/minsimulate/index.html
http://www.atc.unican.es/SICOSYS/
http://ceng.usc.edu/smart/FlexSim/flexsim.html
http://insee.sourceforge.net/
http://www.cs.washington.edu/research/projects/lis/chaos/www/simulator.html
http://www.omnetpp.org/download/docs/papers/esm2001-meth48.pdf
http://dx.doi.org/10.1007/s10766-005-3582-6

	Simulating and evaluating interconnection networks with INSEE
	Introduction
	FSIN
	Topologies
	Direct topologies
	Indirect topologies

	Modeled routers
	Dally router
	Bubble router
	Multi-stage router
	SpiNNaker router
	Other router parameters

	Node model
	Output data generated by FSIN
	Run-time statistics
	Traffic evolution mode
	Final report
	Using the results generated by FSIN

	Validation of results

	TrGen
	Some considerations about workloads
	Synthetic workloads
	Independent traffic sources
	Reactive traffic
	Bursts
	Application-inspired workloads

	Application-guided workloads
	Traces
	Interaction with Simics

	Task placement

	Limitations of INSEE
	Performance evaluation of INSEE
	Related work
	Final remarks and future work
	Acknowledgements
	References

