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1. Introduction

In this report, we execute the proposed battery of semi-supervised multi-dimensional learning algorithms

over a set of designed artificial datasets as commonly done in the machine learning research community.

These experiments are performed in order to demonstrate that the proposed algorithms are able to take

advantage of the underlying nature of the multi-dimensional problems even in the presence of a small

set of labelled data and a huge set of unlabelled data. By means of these experiments, we would like to

shed some light on the following questions:

1. Are there significant differences between the uni-dimensional and the multi-dimensional super-

vised learning algorithms when there are scarcity of labelled examples? Are there significant

differences between the uni-dimensional and the multi-dimensional semi-supervised learning al-

gorithms?

2. If the correct structure of the generative model is obtained, do unlabelled data improve the classi-

fier?

3. If the learning algorithm can lead to the correct structure of the generative model, do unlabelled

data improve the classifier?
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4. Can adding unlabelled data contribute to an increase in the classification performance (in terms of

joint accuracy) when there is a small amount of labelled data in a multi-dimensional framework?

5. Do multi-dimensional classifiers performs better than the uni-dimensional in a multi-dimensional

semi-supervised framework?

2. Simulation of datasets

In order to carry out the experimentation process required to evaluate our proposals, we use a set of

artificial multi-dimensional datasets. These datasets are sampled from multi-dimensional feature-class

variable probability distributions p(x, c) represented as multi-dimensional Bayesian network classifiers.

These classifiers have been created in four steps: First, the structure of the multi-dimensional Bayesian

network classifier was created. Second, the parameters of the classifiers were obtained by sampling a

Dirichlet distribution. Third, a dataset from each classifier was sampled. Finally, the semi-supervised na-

ture of the sampled dataset, i.e. both subsets of labelled and unlabelled data, was generated by choosing

instances at random for both types of data subsets. The entire process of creating the artificial datasets

has been performed by means of the free software ICLAB library [1].

The following sub-families of multi-dimensional Bayesian network structures have been chosen for

this experimentation: MDnB, MDTAN, MD 2/2 and MD 2/3. A number of 5 different structures per each

subfamily with a different number of features (from 5 to 20) and a different number of class variables

(from 2 to 4) have been created. The cardinality of the features ranges from 2 to 4 and the cardinality

of the class variables from 2 to 3. By means of these sub-families and structures we are trying to

cover a broad range of structures of different complexity in order to check the statement “performance

degradation may occur whenever the modelling assumptions adopted for a particular classifier do not

match the characteristics of the distribution generating the data [5]”. In order to generate the parameters

of the classifiers which are defined by the previous structures, a different Dirichlet distribution with all

its parameters equal to one is sampled per each classifier. The associated Bayes errors of the resulting

classifiers can be seen in Table 1.
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Once the multi-dimensional Bayesian network classifiers have been constructed, a dataset from each

of them is sampled. Specifically, we sample 20 artificial datasets (5 for each different sub-family) of

15, 100 instances. Then, we divide each dataset into two different parts: a training set of 10, 100 instances

used to learn the classifiers, and a test set of 5, 000 samples used to estimate the prediction error of the

classifiers. In order to simulate the semi-supervised nature of the training dataset, 100 instances were

chosen at random to form the subset DL, in which labelled instances are i.i.d. as in p(x, c). The labels

of the class variables of the remaining 10, 000 instances are removed.

All the datasets. as well as the structures and the parameters of the designed classifiers can be found

in the following website1.

3. Experimental Setup

Once the semi-supervised multi-dimensional datasets are created, we use them to perform the following

set of experiments. In the evaluation phase, we proposed nine different algorithms to learn the classifiers

from the sampled datasets. The first four algorithms are the approaches explicitly designed for multi-

dimensional classification proposed in the paper: MDnB, MDTAN, MD 1/1. MD 2/2 and MD 2/3. Due

to the fact that MDTAN learning algorithm [13] follows a wrapper approach, the MD 1/1 is included

in this experiments as a filter approach in order to establish a comparison between both techniques.

The others are the well-known uni-dimensional approaches: naive Bayes classifier (nB), tree-augmented

network classifier (TAN) [8] and two K dependence Bayesian classifiers [12] (one setting K = 2, 2-

DB, and the other setting K = 3, 3-DB). As stated in the article, the uni-dimensional approach cannot

be straightforwardly applied to deal with the multi-dimensional problems, so, we divided the multi-

dimensional problem into several one-class variable tasks and tackled them as independent.

In order to compare the supervised and the semi-supervised frameworks, all the algorithms are learnt

in both scenarios. In the case of supervised learning the algorithms are straightforwardly applied to the

100 instances of the labelled subset. When learning in the semi-supervised framework, on the contrary,

the algorithms are used, as proposed in this work, in conjunction with our extension of the EM algorithm

1
http://www.sc.ehu.es/ccwbayes/members/jonathan/home/ISG/News_and_Notables/Entries/2010/11/30_IMACS_2011.html
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(Algorithm 2 of the article) and applied to the whole training dataset (100 labelled + 10, 000 unlabelled).

The EM algorithm terminates after finding a local likelihood maxima or after 250 unsuccessful trials.

The parameters of the model are calculated by maximum likelihood estimation (MLE) [4], corrected

with Laplace smoothing. The estimation method for performance evaluation metrics is hold-out [10]. In

hold-out, a subset of instances is chosen randomly from the initial dataset to form a training set used to

learn a classifier, and the remaining instances are retained as the testing data, used to estimate the error

of the classifier. This method has been chosen in order to evaluate all the algorithms in the same testing

set, avoiding the variance of the error estimation given by the cross-validation methods [11]. Finally, the

performance evaluation is performed by the joint evaluation criteria.

4. Results

Table 1 shows the results of the nine algorithms over the 20 datasets when they are applied in the

supervised scenario. Table 2 shows, instead, their results in the semi-supervised framework. Each value

in both tables corresponds to the joint accuracy obtained for each algorithm when the learnt classifier

is evaluated in the testing set of 5, 000 samples. The accuracies in bold (per row) correspond to the

technique with the best accuracy in just the labelled dataset (Table 1), and the best in the whole dataset

(Table 2). Moreover, the best joint accuracy per dataset (per row in Tables 1 and 2) is highlighted in bold

italics.

In order to answer the questions proposed in the introduction of this report, we have performed an

exhaustive analysis of the results of Tables 1 and 2. The following sections summarise the studies made

to shed some light on the questions. In each section, the conclusions that answer these questions has

been underlined.
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LABELLED DATA
Family Dataset (1− eB) nB TAN 2DB 3DB MDnB MDTAN MD 1/1 MD2/2 MD2/3

MDnB

NB01 93 .93 77.06 80.20 75.68 74.38 88.48 66.22 77.38 76.40 75.96
NB02 93 .25 76.96 80.80 79.10 78.40 89.90 71.58 82.14 76.62 75.24
NB03 91 .65 76.98 79.94 76.86 75.54 88.29 68.43 79.72 75.82 73.86
NB04 74 .36 43.71 48.81 40.35 42.83 65.57 39.59 40.85 43.43 47.38
NB05 66 .45 40.20 43.92 37.19 38.55 59.44 44.64 40.71 37.99 34.82

MDTAN

TA01 66 .86 57.94 61.01 56.14 47.86 53.53 57.86 58.18 57.98 54.36
TA02 47 .61 31.13 33.61 28.97 29.29 29.75 34.77 37.46 36.36 36.04
TA03 56 .80 40.59 46.36 39.35 37.74 37.56 39.12 46.60 44.26 44.38
TA04 64 .21 43.33 46.43 43.87 36.40 43.31 41.85 49.26 48.14 44.01
TA05 58 .75 31.78 41.70 28.81 30.85 27.85 42.03 45.87 45.31 45.89

MD2/2

2201 66 .26 56.04 58.64 53.48 46.46 54.48 56.50 57.46 55.32 53.84
2202 65 .44 45.01 42.29 41.55 36.39 39.19 46.11 38.41 44.89 43.01
2203 61 .72 44.92 40.52 39.80 39.96 44.82 41.80 48.06 47.36 47.90
2204 84 .85 80.86 79.98 80.02 81.22 81.47 83.96 81.22 82.91 83.45
2205 50 .28 37.98 34.37 33.41 29.65 33.83 43.80 40.72 39.62 39.34

MD2/3

2301 57 .56 43.38 40.93 39.40 37.80 39.16 38.82 41.84 41.36 42.90
2302 69 .11 61.38 57.10 60.52 55.14 56.24 55.70 60.54 61.44 59.88
2303 50 .31 29.10 34.35 28.98 27.04 28.58 31.06 34.41 31.22 33.41
2304 78 .45 67.13 68.41 67.27 61.63 64.09 73.85 71.91 72.15 71.33
2305 61 .34 48.82 47.72 46.40 49.34 47.48 56.12 54.24 51.92 54.48

Table 1: Estimated accuracies of the proposed algorithms in the supervised scenario.

LABELLED AND UNLABELLED DATA
Family Dataset (1− eB) nB TAN 2DB 3DB MDnB MDTAN MD 1/1 MD2/2 MD2/3

MDnB

NB01 93 .93 49.24 50.12 49.88 49.98 92.16 50.86 83.52 86.16 81.22
NB02 93 .25 41.30 42.26 41.34 41.58 91.06 41.94 87.32 84.06 83.78
NB03 91 .65 41.69 64.05 42.65 43.09 89.09 55.68 81.31 83.75 84.41
NB04 74 .36 3.62 30.66 14.17 24.08 67.63 26.72 48.94 50.24 48.64
NB05 66 .45 3.79 22.03 13.19 5.95 60.43 15.81 51.57 47.29 46.36

MDTAN

TA01 66 .86 43.28 50.45 39.86 36.81 48.61 49.33 59.60 60.02 48.44
TA02 47 .61 5.43 19.08 6.27 21.46 25.15 28.71 39.82 37.68 38.30
TA03 56 .80 20.42 47.08 20.57 19.60 35.08 41.45 47.82 46.74 47.36
TA04 64 .21 28.39 39.45 19.52 22.49 43.35 38.55 52.56 53.06 53.28
TA05 58 .75 28.83 48.01 28.44 32.05 26.27 42.59 45.99 45.57 46.33

MD2/2

2201 66 .26 14.10 36.20 27.12 28.30 53.24 35.46 57.80 59.65 59.06
2202 65 .44 31.31 33.59 31.71 24.72 38.93 15.62 40.89 47.11 46.27
2203 61 .72 27.66 35.12 28.76 35.96 42.72 31.40 45.94 48.56 49.52
2204 84 .85 73.94 72.26 73.86 73.74 78.18 83.97 79.14 80.28 81.33
2205 50 .28 20.96 11.01 12.77 12.41 28.95 30.61 42.18 42.62 41.62

MD2/3

2301 57 .56 23.48 24.16 24.08 26.18 37.08 25.96 43.53 45.08 46.22
2302 69 .11 51.10 50.98 50.98 48.94 50.00 42.34 62.74 62.42 64.12
2303 50 .31 22.78 27.86 22.34 20.10 27.22 26.06 33.20 29.50 29.80
2304 78 .45 36.35 29.75 24.50 23.76 61.47 39.21 70.95 72.33 72.81
2305 61 .34 21.08 31.24 24.74 39.66 43.78 57.72 50.94 52.70 51.68

Table 2: Estimated accuracies of the proposed algorithms in the semi-supervised scenario.
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4.1 Uni-dimensional and multi-dimensional learning algorithms comparison

Firstly, we want to determine if there are significant differences between the uni-dimensional and the

multi-dimensional learning algorithms in both learning frameworks, i.e. in the supervised and semi-

supervised learning frameworks. In order to do so, for each table, we compare the 20 results obtained

by each uni-dimensional algorithm with the ones obtained by its multi-dimensional generalisation, i.e.

nB with MDnB, TAN with MDTAN and so on. This comparison is made per columns (in Tables 1 and

2) by means of the Wilcoxon signed-rank test with α = 0.05, a non-parametric statistical hypothesis

test. The null hypothesis is that ”Both classifiers has the same distribution, i.e. there is not statistical

difference in the behaviour of both learning algorithms”. The use of this non-parametric test is justified:

the Kolmogorov-Smirnov test (α = 0.05) reject the Gaussian assumption of the results.

The results of the Wilcoxon test can be found in Table 3. The first 5 rows correspond to the supervised

framework (Table 1) and the last 5 to the semi-supervised (Table 2). Per row in Table 3, the learning

algorithms involved in the comparison, the means (per column) of both algorithms, the p-value of the

null hypothesis and the result of the Wilcoxon test (if the null hypothesis is accepted or rejected) are

shown. Moreover, the greatest mean per row is highlighted in bold.

Framework Comparison Uni-dimensional Mean Multi-dimensional Mean p-value H0

Supervised

nB vs MDnB 51.72 53.65 0.34 Accepted
TAN vs MDTAN 53.35 51.69 0.15 Accepted
TAN vs MD1/1 53.35 54.35 0.10 Accepted
2DB vs MD2/2 49.86 53.53 > 0.01 Rejected
3DB vs MD2/3 47.82 53.07 > 0.01 Rejected

Semi-supervised

nB vs MDnB 29.44 52.02 > 0.01 Rejected
TAN vs MDTAN 38.27 38.99 0.37 Accepted
TAN vs MD1/1 38.27 56.29 > 0.01 Rejected
2DB vs MD2/2 29.53 56.74 > 0.01 Rejected
3DB vs MD2/3 31.54 56.48 > 0.01 Rejected

Table 3: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the results in the 20 datasets of each
uni-dimensional algorithm with its generalisation to the multi-dimensional framework.

From Table 3, the following comments can be extracted: In most of the cases, the multi-dimensional

approach obtains the best results in terms of mean accuracy. Although there are small differences be-

tween the uni-dimensional and the multi-dimensional approaches in the supervised framework (only the

MD 2/3 and MD 2/3 report statistical differences), in the semi-supervised these differences grow larger
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(except for the case of the MDTAN learning algorithm, the rest of the multi-dimensional approaches re-

port statistical differences). In this framework, the multi-dimensional approaches lead to better results,

while performance degradation occurs in the uni-dimensional ones, where the mean accuracies drop

dramatically. A reason to explain this could be that the uni-dimensional approaches cannot match the

underlying multi-dimensional nature of the generative structures. Moreover, the good results obtained

by the MD J /K highlight the flexibility of this kind of learning algorithms to capture different types of

structures.

4.2 Learning the generative structure

We are concerned about the fact that there are situations in which the addition of unlabelled data causes

degradation of the performance of the classifier [3], in contrast to the improvement of performance when

adding unlabelled data, as happens with the uni-dimensional approaches in the previous section.

Many researchers, in order to prevent these situations, have proposed in the literature certain as-

sumptions [2] [14] that must be held when learning in a semi-supervised framework. One of the most

important assumptions is the hypothesis presented in [3] which states that “If the correct structure of

the generative model is obtained, unlabelled data improve the classifier, otherwise, unlabelled data can

actually degrade performance”. So therefore, we need to test if this hypothesis is verified in the proposed

multi-dimensional domains. Hence, we fix, per each dataset, the structure that generates the data and

learn the parameters of the model in the supervised (MLE) and semi-supervised (using the EM algorithm

as defined in [6]) frameworks.

The results of this learning process in the 20 databases are shown in Table 4. The “LABELLED”

column shows the accuracies obtained in all the datasets by using just supervised learning whilst the

“ALL DATA” column shows the accuracies of the semi-supervised learning process. The column “(1−

eB)” shows the optimal Bayes accuracy (the opposite to the Bayes error), measured as a percentage.

Based on these results, we can conclude that, as happens in the uni-dimensional framework [3], when

using the real structure in the multi-dimensional framework, the unlabelled data always helps.
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Family Dataset (1− eB) LABELLED ALL DATA Helps?

MDnB

NB01 93 .93 88.48 92.16 Yes
NB02 93 .25 89.90 91.06 Yes
NB03 91 .65 88.29 89.09 Yes
NB04 74 .36 65.57 67.33 Yes
NB05 66 .45 59.44 60.43 Yes

MDTAN

TA01 66 .86 66.69 66.79 Yes
TA02 47 .61 43.56 43.80 Yes
TA03 56 .80 50.53 50.89 Yes
TA04 64 .21 58.57 60.77 Yes
TA05 58 .75 49.99 50.71 Yes

MD2/2

2201 66 .26 62.04 63.86 Yes
2202 65 .44 60.10 60.77 Yes
2203 61 .72 50.22 51.24 Yes
2204 84 .85 83.46 83.65 Yes
2205 50 .28 47.82 47.82 Equal

MD2/3

2301 57 .56 53.32 54.30 Yes
2302 69 .11 67.26 67.62 Yes
2303 50 .31 43.45 45.22 No
2304 78 .45 75.36 75.78 Yes
2305 61 .34 57.34 57.40 Yes

Table 4: Accuracies obtained by supplying the EM Algorithm (as it is usually used in semi-supervised learning)
with the structure that generates the data.

4.3 Reaching the generative structure

In almost all problems that we face in the machine learning field, there is no clue of the generative

structure of the dataset. For that reason, we want to check if we can reach the generative structure

and, therefore, obtain better results in terms of accuracy using the specific semi-supervised learning

algorithms in each multi-dimensional Bayesian network family.

In order to do so, we check the 5 results obtained by each multi-dimensional algorithm in the family

where it can lead to the generative structured, i.e. the MDnB learning algorithm in the MDnB structure

family, etc. To answer the main question of this section, we compare the 5 results obtained in the

supervised framework (Table 1) with the results obtained in the semi-supervised framework (Table 2).

This comparison is made with a Wilcoxon signed-rank test with α = 0.05 (the Kolmogorov-Smirnov

test (α = 0.05) reject the Gaussian assumption).

Table 5 sums up the results of the statistical test. Per row, the family of multi-dimensional Bayesian

network in which the learning algorithm is applied, the learning algorithm used, the means (over just 5

results) of the learning algorithm in both supervised (Table 1) and semi-supervised frameworks (Table
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2), the p-value of the null hypothesis and the result of the Wilcoxon test are shown. Moreover, the

greatest mean per row is highlighted in bold.

Famiiy Algorithm Supervised Mean Semi-supervised Mean p-value H0

MDnB MDnB 78.34 80.07 0.02 Rejected

MDTAN MDTAN 43.13 40.13 0.11 Accepted
MD 1/1 47.47 49.16 0.02 Rejected

MD 2/2 MD 2/2 54.02 55.64 0.11 Accepted
MD 2/3 MD 2/3 52.40 52.93 0.34 Accepted

Table 5: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the results of both supervised and
semi-supervised frameworks using the multi-dimensional algorithms that can lead to the generative structure in
the five datasets of each family.

From this results, the following comments can be made:

• With the exception of the MDTAN learning algorithm, in the semi-supervised framework the

learning algorithms lead to better results.

• Although it is difficult to obtain significant differences with only 5 results per each framework, in

two cases (MDnB and MD 1/1) the differences are significant. So, we can claim that there is a

tendency to better results in the semi-supervised framework when the used algorithm can lead to

the generative structure.

• From the results obtained in this section and Section 4.1, it seems that the MDTAN algorithm

proposed in [13] leads to very suboptimal solutions.

4.4 Supervised and semi-supervised learning frameworks comparison

Once tested the algorithms that can reach the generative structure, a wider comparison has to be made.

In this section, we compare the behaviour of each learning algorithm (both uni-dimensional and multi-

dimensional ones) in both supervised and semi-supervised scenarios.

To achieve this mission, we compare by means of a Wilcoxon signed-rank test (α = 0.05) the results

obtained in all the datasets in both supervised (Table 1) and semi-supervised learning (Table 2) frame-

works, i.e. comparing the accuracies per columns, e.g. the nB column in Table 1 with the nB column in

Table 2, etc.
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Scenario Algorithm Supervised Mean Semi-supervised Mean p-value H0

Uni-dimensional

nB 51.72 29.43 > 0.01 Rejected
TAN 53.35 38.27 > 0.01 Rejected
2DB 49.86 29.54 > 0.01 Rejected
3DB 47.83 31.54 > 0.01 Rejected

Multi-dimensional

MDnB 53.65 52.02 > 0.01 Rejected
MDTAN 51.69 39.00 > 0.01 Rejected
MD1/1 54.35 56.29 0.01 Rejected
MD2/2 53.53 56.74 > 0.01 Rejected
MD2/3 53.07 56.48 > 0.01 Rejected

Table 6: Results of the Wilcoxon signed-rank test (α = 0.05) of comparing the 20 results of each learning
algorithm in both supervised and semi-supervised frameworks

Table 6 shows the results of the statistical test. Per row, the learning algorithm, the means of the

learning algorithm in both supervised (Table 1) and semi-supervised frameworks (Table 2), the p-value

of the null hypothesis and the result of the Wilcoxon test are shown. Moreover, the greatest mean per

row is highlighted in bold.

From the results, the following conclusions are extracted:

• All the learning algorithms behave different in both learning frameworks.

• In the uni-dimensional approaches, performance degradation occurs in the semi-supervised frame-

work. This is probably because “If the correct structure of the generative model is obtained,

unlabelled data improve the classifier, otherwise, unlabelled data can actually degrade perfor-

mance” [3].

• With respect to the MD J /K learning algorithms, an improvement in terms of accuracy in the

semi-supervised framework is observed. As stated before, this highlights the flexibility of this

kind of learning algorithms to capture different types of complex structures.

• The MDnB learning algorithm reports significant performance degradation in the semi-supervised,

while in the previous section, it reports significant improvement when learning MDnB structures.

It denotes that the MDnB learning algorithm is very specific, it obtains very good results while

dealing with problems with an underlying MDnB structure, but when the generative models are a

bit complex, its rigid structure makes the algorithm to lead to very suboptimal solutions.
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• In this comparison, the MDTAN algorithm also shows very poor performances in the semi-

supervised framework. In addition, from the numerical results (means), it seems to be closer

to the uni-dimensional approaches rather than to the multi-dimensional ones.

4.5 Behaviour of the learning algorithms in the semi-supervised framework

After showing the potential of semi-supervised learning, we are going to check whether statistical differ-

ences exist among the semi-supervised classifiers: not only between the multi-dimensional approaches,

but also among the uni-dimensional ones. Specifically, we use Friedman test [7] with a Shaffer’s static

post-hoc test with α = 0.1 as recommended in [9]. The test results are represented by means of critical

difference diagrams [7], which show the mean ranks of each algorithm across all the domains in a num-

bered line. If there is no statistically significant difference between two algorithms, they are connected

in the diagram by a straight line.
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Figure 1: Accuracy ranking using both labelled and unlabelled data for the different algorithms on the 20 artificial
datasets, α = 0.05.

From the critical difference diagram (see Figure 1), we confirm the sensations extracted from the

previous sections and deduce that, in the semi-supervised framework, clearly the multi-dimensional

classifiers outperform the uni-dimensional techniques, with the exception of the MDTAN classifier.
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5. General conclusions

From the experimental results shown in this report, the following major conclusions, that answer the

experimental questions, can be extracted:

1. As happens in the uni-dimensional framework [3], when using the real structure to semi-supervisely

learnt multi-dimensional classifiers, the unlabelled data always helps.

2. There is a tendency to achieve better classifiers in terms of joint accuracy in the semi-supervised

framework when the used multi-dimensional algorithm can reach to the generative structure.

3. In the uni-dimensional approaches, performance degradation occurs in the semi-supervised frame-

work. This is probably due to the fact that the uni-dimensional approaches are not able to match

the actual multi-dimensional structure of the problems.

4. Although there are small differences between the uni-dimensional and the multi-dimensional ap-

proaches in the supervised framework (only the MD 2/2 and MD 2/3 report statistical differences),

in the semi-supervised these differences grow larger (except for the case of the MDTAN learning

algorithm, the rest of the multi-dimensional approaches report statistical differences).

5. In the semi-supervised framework, clearly the multi-dimensional classifiers outperform the uni-

dimensional techniques, with the exception of the MDTAN classifier.

6. The MDnB learning algorithm [13] is very specific, it obtains very good results when dealing with

problems with an underlying MDnB structure, but when the generative models are more complex,

its rigid structure makes the algorithm to lead to very suboptimal solutions.

7. The MDTAN algorithm [13] also shows very poor performances in the semi-supervised frame-

work.

8. The MD J /K learning algorithms have great flexibility to capture different types of complex struc-

tures that results in an improvement in terms of joint accuracy in the semi-supervised framework.
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