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Abstract

A classical supervised classification task tries
to predict a single class variable based on a
dataset composed of a set of labelled examples.
However, in many real domains more than one
variable could be considered as a class vari-
able, so a generalisation of the single-class clas-
sification problem to the simultaneous predic-
tion of a set of class variables should be devel-
oped. This is referred to as multi-dimensional
supervised classification.

In addition, when performing classification
tasks one can be concerned about the fact
that, in some practical circumstances, obtain-
ing enough labelled examples for a classifier
may be costly and time consuming. Thus, it
is very desirable to have learning algorithms
that are able to incorporate a large number
of unlabelled data with a small number of la-
belled data when learning classifiers. This is
referred to as semi-supervised learning.

In this paper, we integrate multi-
dimensional classification and semi-supervised
learning by means of the multi-dimensional
Bayesian network classifiers and the EM
Algorithm. Results are presented on a real
Sentiment Analysis dataset demonstrating
that this integration can be beneficial to
improve the recognition rates.

1 Introduction

Supervised classification [2] is one of the most
important tasks in the pattern recognition

field and it is widely used to deal with many
real-life problems known as classification prob-
lems. In these tasks, a training set of instances
is available, and each instance is described by
a set of features and a unique known class vari-
able. With the help of a training set, the clas-
sification process attempts to construct a de-
scription of the class variable, which in turn
helps to classify a new unlabelled instance.

However, many application domains natu-
rally consider more than one class variable.
For instance, a text document or a seman-
tic scene can be assigned to multiple top-
ics, a gene can have multiple biological func-
tions or a patient may suffer from multiple
diseases. This kind of problems is known as
multi-dimensional classification problems [23].

Due to the fact that they only consider
a unique class variable, classical supervised
classification approaches cannot be straight-
forwardly applied to the multi-dimensional
problems scenario. Several attempts have
been made to adapt single-class classifiers to
multi-dimensional classifiers, but none of them
exactly captures the problem characteristics.
The most simple approach is to divide the
multi-dimensional problem into several one-
class problems (one for each class variable)
and tackle them as if they were independent.
However, this approach does not capture the
real characteristics of the problem, because it
does not explicitly model the correlations be-
tween the different class variables and hence,
it does not take advantage of the information
that they may provide [19]. So, within this



context, multi-dimensional supervised classi-
fication [1][18][19][23], which is an approach
that tries to take advantage of this correlation,
appears in order to not only capture the un-
derlying nature of the multi-dimensional prob-
lems, but also to use the relationships between
the class variables to improve the recognition
rates.

In addition, we are also concerned about the
fact that several papers in the recent past have
addressed the multi-dimensional classification
task by building classifiers that rely exclusively
on labelled examples [1]. However, some prac-
tical circumstances, obtaining enough labelled
examples for a classifier may be costly and
time consuming, and this problem is accentu-
ated when using a large number of target vari-
ables. Thus, the scarcity of labelled data also
motivates us to deal with unlabelled examples
in a semi-supervised framework when working
with the exposed multi-dimensional problem.

Motivated by the previous comments on the
state-of-the-art of the multi-dimensional clas-
sification, in this paper, the following pro-
posals are presented: (i) the extension of
multi-dimensional classification to the semi-
supervised learning framework by proposing a
set of semi-supervised algorithms which make
use of the EM algorithm [6][15], (ii) a su-
pervised filter learning algorithm for Multi-
dimensional J/K dependences Bayesian clas-
sifiers [19], and (iii) the demonstration of the
fact that using both multi-dimensional clas-
sification and semi-supervised learning can be
beneficial to improve recognition rates in a real
application of Sentiment Analysis.

The rest of the paper is organised as follows.
Section 2 defines either the multi-dimensional
supervised classification paradigm and the
multi-dimensional class Bayesian network clas-
sifiers. A group of algorithms to learn differ-
ent types of multi-dimensional Bayesian clas-
sifiers in a supervised framework is introduced
in Section 3. Section 4 extends the supervised
algorithms presented in the previous section to
the semi-supervised framework. Section 5 re-
views the work related to Sentiment Analysis
and shows the experimental results of apply-
ing the proposed semi-supervised classification

algorithms to a real database of opinion analy-
sis. Finally, Section 6 sums up the paper with
some conclusions.

2 Multi-dimensional Classification

A typical supervised classification
problem consists of building a classi-
fier from a labelled training dataset
D = {(x(1), c(1))...(x(N), c(N))} in order
to predict the value of a class variable C given
a set of features X = (X1, ...., Xn) of an un-
seen unlabelled instance x = (x1, ...., xn). A
generalisation of this problem to the joint pre-
diction of several class variables has recently
been proposed in the research community
[1][18][19][23]. This generalisation is known
as multi-dimensional supervised classification.
Our purpose is to predict the value of each
class variable in the class variable vector
C = (C1, ...., Cm) given the feature vector of
an unseen unlabelled instance.

2.1 Multi-dimensional Class Bayesian
Network Classifiers

In order to deal with these multi-dimensional
problems, we propose the use of multi-
dimensional class Bayesian network classifiers
(MDBNC) [18][23], which are a recent general-
isation of the classical Bayesian network classi-
fiers [13] to deal with multiple class variables.

MDBNC represent the underlying joint
probability of the data by making use of di-
rected acyclic graphs (DAG) over the class
variables and over the feature variables sep-
arately, and then, by connecting the two sets
of variables by means of a bi-partite directed
graph. So, the DAG structure S = (V,A) has
the set V of random variables partitioned into
the sets VC = {C1, . . . , Cm}, m > 1, of class
variables and the set VF = {X1, . . . , Xn},
n ≥ 1, of features. Moreover, the set of arcs A
can be partitioned into three sets: ACF , AC

and AF with the following properties:

• ACF ⊆ VC ×VF is composed of the arcs
between the class variables and the fea-
ture variables, so we can define the fea-
ture selection subgraph of S as SCF =



Figure 1: A multi-dimensional Bayesian classifier and its division [18].

(V,ACF ). This subgraph represents the
selection of features that seems relevant
for classification given the class variables.

• AC ⊆ VC ×VC is composed of the arcs
between the class variables, so we can de-
fine the class subgraph of S induced by
VC as SC = (VC ,AC).

• AF ⊆ VF ×VF is composed of the arcs
between the feature variables, so we can
define the feature subgraph of S induced
by VF as SF = (VF ,AF ).

Figure 1 shows a multi-dimensional class
Bayesian network classifier with 3 class vari-
ables and 5 features, and its partition into the
three subgraphs.

Depending on the structure of the three
subgraphs, several sub-families1 of MDBNC
have been proposed in the state-of-the-art
literature. These are the Multi-dimensional
naive Bayes classifier (MDnB), the Multi-
dimensional tree-augmented classifier (MD-
TAN) and the Multi-dimensional J/K depen-
dences Bayesian classifier (MD J/K).

In addition to its structure, a MDBNC (as
happens in the classical Bayesian networks)
also consists of a set of parameters Θ that cod-
ify the local probability distribution.

1In [23] and [18], instead of multi-dimensional, the
term fully is used in order to name the classifiers.

3 Supervised Learning of MDBNC

Each previously introduced sub-family has dif-
ferent restriction in its structure, so a differ-
ent structure learning algorithm is needed for
each one. In this section, we define the MDnB,
MDTAN and MD J/K sub-families and pro-
vide a structure learning algorithm for each
sub-family.

3.1 MDnB

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

C1 C2 C3

Figure 2: An example of a MDnB structure.

In the MDnB [23] (see Figure 2), both
the class subgraph and the feature subgraph
are empty, and the feature selection subgraph
is complete. As happens in uni-dimensional
naive Bayes, this classifier assumes condi-
tional independence between each pair of fea-
tures given the entire subset of class variables.
When this classifier is provided with a train-
ing dataset with a determined number of class
variables and features, it has a fixed struc-
ture and so, there is no need for a structure



learning. Therefore, learning a MDnB classi-
fier consists of just estimating the parameters
Θ of the fixed structure by using a training
dataset D.

3.2 MDTAN

The MDTAN (see Figure 3), as proposed
in [23], is the generalisation of the uni-
dimensional TAN classifier [9]. In this multi-
dimensional classifier, both the class subgraph
and the feature subgraph are directed trees.

X1 X2

X3

X4 X5

C1 C2

Figure 3: An example of a MDTAN structure.

A structure learning algorithm that learns
a MDTAN from a given dataset is proposed
in [23]. This algorithm follows a wrapper ap-
proach by performing a local search over the
ACF structure. Its aim is to produce the MD-
TAN structure that maximises the accuracy
from a given dataset. In order to obtain a
MDTAN structure in each iteration, it gen-
erates a set of different ACF from a current
ACF and uses mutual information to create
the class subgraph and feature subgraph by
building two maximum spanning trees. When
there is no improvement when generating a
new set of structures, the algorithm stops.

3.3 MD J/K

The MD J/K (see Figure 4) appears in [19]
and it is the multi-dimensional generalisation
of the well-known K-DB [20]. It allows each
class variable Ci to have a maximum of J de-
pendences with other class variables, and each
predictive variable Xi to have, apart from the
class variables, a maximum of K dependences
with other predictive variables.

As happens in the uni-dimensional K-DB
version proposed by Sahami [20], this struc-

X1
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C1

Figure 4: An example of a MD 2/3 structure.

ture is also able to move through the spec-
trum of allowable dependence in the multi-
dimensional framework, from the MDnB to
the full multi-dimensional Bayesian classifier.
Note that setting J = K = 0 we can learn
a MDnB, setting J = K = 1 a MDTAN is
learned and so on. The full multi-dimensional
Bayesian classifier, which is the classifier with
has the three subgraphs complete, can be
learnt by setting J = (m−1) and K = (n−1),
where m and n are the number of class vari-
ables and predictive features respectively.

Although the MD J/K structure has been
proposed in the state-of-the-art literature, to
the best of our knowledge, a specific MD J/K
learning algorithm has not been defined by the
research community. For that reason, we pro-
pose, in this section, a filter algorithm in a
supervised learning framework able to learn
this type of structure (see Algorithm 1), i.e.
the learning algorithm uses mutual informa-
tion to measure the dependency between the
variables, instead of performing a search for
the structure that maximises the accuracy.

In this algorithm, we do not directly use the
mutual information as measured in the pre-
vious MDTAN learning algorithm [23]. This
is due to the fact that the mutual informa-
tion is not normalised when the cardinalities
of the variables are different, so we use an in-
dependence test to determine if a dependence
between two variables is strong enough to be
part of the model.



Algorithm 1 MD J/K structure learning al-
gorithm using a filter approach
1: Learn the AC structure

1. Calculate the α-value (significance of
the mutual information) using the in-
dependence test for each pair of class
variables, and rank them.

2. Remove the α-values lower than the
threshold sα = 0.90.

3. Use the ranking to add arcs between
the class variables fulfilling the con-
ditions of no cycles between the class
variables and no more than J-parents
per class.

2: Learn the ACF structure

1. Calculate the α-value (significance of
the mutual information) using the in-
dependence test for each pair Ci and
Xj and rank them.

2. Remove the α-values lower than the
threshold sα = 0.90.

3. Use the ranking to add arcs from the
class variables to the features.

3: Learn the AF structure

1. Calculate the α-value (significance of
the conditional mutual information)
using the conditional independence
test for each pair Xi and Xj given
Pac(Xj) and rank them.

2. Remove the α-values lower than the
threshold sα = 0.90.

3. Use the ranking to add arcs between
the class variables fulfilling the condi-
tions of no cycles between the features
and no more than K-parents per fea-
ture.

The AC and ACF structures are constructed
as follows: we use the mutual information be-
tween each pair of random variables to cre-
ate an independence test based on [12] (see
pp. 155–158). This test is used to calculate
the significance of each relationship. In the
case of AC each pair of class variables (Ci, Cj)

is tested, while in the case of ACF each pair
of a class variable and a feature (Ci, Xj) is
tested. If the significance of the relationship
between the two variables surpasses a deter-
mined threshold, then an arc is included be-
tween the random variables. Note that, in
the case of the AC structure, we have to con-
sider some restrictions when adding a new arc.
These restriction are the allowable maximum
number of parents and no cycles in the struc-
ture.

In order to construct the AF structure, we
use the conditional mutual information be-
tween two random variables for the indepen-
dence test [12] (see pp. 166–167). In this case,
we perform the test in each pair of features Xi
andXj given the class parents ofXj , Pac(Xj).
After that, the modus operandi of the algo-
rithm is the same as in the case of the AC
structure.

Before the end of this section, we want to
make some comments about two designing de-
cisions we have made:

• In order to make the algorithm more ro-
bust [20], we have decided to introduce
the threshold sα in steps 1.2, 2.2 and 3.2
of Algorithm 1. This decision allows more
flexibility by not forcing the inclusion of
dependencies that do not appear to exist
when the values of K and J are set too
high.

• From the previous paragraphs and step
3 of Algorithm 1, one can easily deduce
that the class parents of a feature do not
count for the restriction of maximum K
parents for each predictive feature. As
in the case of the uni-dimensional KDB,
the class parents can either count for the
restriction or be left out of it.

4 Semi-supervised Learning in
Multi-dimensional Classification

In the semi-supervised learning frame-
work [4][26], the dataset D is di-
vided into two parts: the instances
DL = {(x(1), c(1)), ..., (x(L), c(L))} for
which labels are provided, and the instances



DU = {(x(L+1), ?), ..., (x(N), ?)}, where the
labels are not known. Therefore, we have a
dataset of N instances, where there are L
labelled examples and (N − L) unlabelled
examples. The aim of semi-supervised learn-
ing is to build more accurate classifiers using
both labeled and unlabelled data, rather than
using exclusively labeled examples as happens
in supervised learning.

In order to deal with these kind of prob-
lems, the EM algorithm [6][15] has been widely
used in the semi-supervised learning frame-
work [5][16]. The aim of the EM algorithm
as typically used in semi-supervised learning
[16] is to find the parameters of the model
that maximise the likelihood of the data, using
both labelled and unlabelled instances. The
iterative process works as follows: in the i-
th iteration the algorithm alternates between
completing the unlabelled instances by using
the parameters Θ(i) (E-step) and updating
the parameters of the model Θ(i+1) calculat-
ing the maximum likelihood estimator (MLE)
with the whole dataset (M-step), i.e. the la-
belled data and the unlabelled instances that
have been previously classified in the E-Step.
Note that the structure remains fixed in the
whole iterative process.

Although good results have been achieved
with the EM algorithm in uni-dimensional
classification [5][16], we are concerned about
the restriction of maximising just the pa-
rameters of a fixed structure in the multi-
dimensional framework. Due to the fact that
several class variables have to be simultane-
ously predicted, the structures of the MDBNC
tend to be more complex than the structures
of the uni-dimensional Bayesian network clas-
sifiers. For that reason, it seems more appro-
priate to perform a structural search. Thus,
we perform several changes to the EM algo-
rithm in order to avoid fixing the structure of
the model during the iterative process. The
proposal is shown in Algorithm 2.

In this version of the EM algorithm we want
to find the model, both structure and param-
eters, that maximises the likelihood of the
whole data. So, in this version, the i-th itera-
tion of the algorithm is performed as follows: it

Algorithm 2 Our version of the EM Algo-
rithm
Input: A training dataset with both labelled

and unlabelled data and an initial model
ψ(i=0) with a fixed structure and with an
initial set of parameters Θ(i=0).

1: while the model ψ(i) does not converge
do

2: E-STEP Use the current model ψ(i) to
estimate the probability of each config-
uration of class variables for each unla-
belled instance.

3: M-STEP Learn a new model ψ(i+1)

with structure and parameters, given
the estimated probabilities in the E-
STEP.

4: end while
Output: A classifier ψ, that takes an unla-

belled instance and predicts the class vari-
ables.

alternates between completing the unlabelled
instance by the previously learnt model ψ(i)

(E-step) and learning a new model ψ(i+1) by
using a learning algorithm with the whole
dataset, both labelled and completed instances
(M-step). In the semi-supervised learning re-
search community, the input parameter ψ(i=0)

of the EM Algorithm is usually learnt from the
labelled subset DL. Hence, we will continue
using this modus operandi in this version of
the algorithm. Note that our version of the
EM algorithm is closer to the Bayesian struc-
tural EM algorithm proposed in [8] rather than
the original [6].

Using Algorithm 2, all the supervised learn-
ing approaches proposed in the previous sec-
tion can be straightforwardly used. The learn-
ing algorithm is used in the M-STEP, where it
learns a model using labelled and unlabelled
data that have been previously labelled in
the E-STEP. So, applying our EM Algorithm
we have extended the MDBNC to the semi-
supervised learning framework generating a
new set of semi-supervised multi-dimensional
classifiers.



5 Sentiment Analysis

In this section, we review several works pro-
posed for approaching Sentiment Analysis
classification. After that, our proposed al-
gorithms are applied to a real dataset ob-
tained from the company Socialware, one of
the most important companies of mobilised
opinion analysis in Europe, with 3 different
class variables and 14 features.

5.1 State-of-the-art literature

Sentiment Analysis (SA), which is also known
as Opinion Mining, is defined as the computa-
tional study of opinions, sentiments and emo-
tions expressed in text [14]. It mainly orig-
inated to meet the need for organisations to
automatically find on the Internet the opinions
or sentiments of the general public about their
products and services. Although SA has been
treated as multiple uni-dimensional different
problems, it has indeed a multi-dimensional
nature, as we show in this paper.

Treating SA as a text classification problem
is the area that has been most researched in
the academia [14]. This approach is mainly
divided into two sub-problems that have been
widely studied in the last few years: senti-
ment classification and subjectivity classifica-
tion. Both can be formulated as learning prob-
lems:

1. The aim of Sentiment classification [11]
is to learn classifiers able to classify an
opinionated text, defined as a set of fea-
tures, as expressing a positive, neutral or
negative opinion. Some authors do not
consider the class label neutral [17], while
others consider the 1-5 stars rating [21].

2. Subjectity classification [24] can be formu-
lated as the learning problem of determin-
ing whether a text is objective or subjec-
tive.

Due to the fact that both can be expressed
as learning problems, the existing methods can
be readily applied for sentiment and subjectiv-
ity classification, e.g. Bayesian network classi-
fiers or support vector machines. However, in

order to apply straightforwardly those learn-
ing methods, the text has to be transformed
into a set of features X = {X1, X2, ....Xn}.
Liu, in [14], presents several approaches that
have been used to represent a text in a set of
features such as “terms and their frequency”
or “part-of-speech tags”.

Although a large amount of work have been
proposed not only in engineering a suitable
set of features, but also in studying both sub-
problems, most existing researches only focus
on one of the two sub-problems, and to the
best of our knowledge neither of them per-
forms a simultaneous sentiment-subjectivity
classification framework. Even though, several
papers have noticed the need to predict both
the sentiment and the subjectivity values of a
given text [7][25]. For instance, [25] reported
a study which tries to classify subjective sen-
tences and also determine their opinion orien-
tation. However, they perform both classifi-
cations in series, not simultaneously, without
using the correlation between the sentiment
and the subjectivity as is explicitly modelled
in multi-dimensional classification.

Finally, despite the fact that SA is broadly
applied to extract information from the web
where a huge amount of unlabelled data can
be found, little work [10] had been carried out
in learning SA problems in a semi-supervised
framework.

5.2 The ASOMO dataset

Since typical benchmark data repositories
in Sentiment Classification do not provide
datasets with multiple class variables, we do
not test our algorithms in the common col-
lections used in the SA papers. Our exper-
imentation is performed using a real dataset
extracted from ASOMO service of mobilised
opinion analysis.

The ASOMO dataset has been collected by
Socialware and it consists of 2, 542 reviews
written in Spanish. 150 of these documents
have been labelled, in isolation, by an expert
in Socialware company and 2, 392 are left as
unlabelled instances.

Each document is preprocessed using an
open source morphological analyser [3]. This



analyser provides information related to part-
of-speech, which is helpful in detecting a list of
14 morphological features, expressed as a ra-
tio in the range [0, 1], which characterise each
analysed document.

The dataset has three different class vari-
ables, which are naturally related in SA: Sen-
timent and Subjectivity (as mentioned before),
and a third one called Will to Influence. This
class variable, frequently used in the frame-
work of ASOMO, is defined as the dimen-
sion that rates the desire of the opinion holder
to provoke a certain reaction in the potential
readers of the text. It has four possible val-
ues: declarative text, soft, medium and strong
will to influence. Sentiment, in this dataset,
has 5 different labels as occurs in the 1-5 stars
ratings. So, in addition to the three classic
values, it has the values “very negative” and
“very positive”.

5.3 Experimentation on the ASOMO
dataset

In order to evaluate our semi-supervised multi-
dimensional set of algorithms, the follow-
ing experiment is performed: The ASOMO
dataset has been used to learn three different
(uni-dimensional) Bayesian network classifiers
and three different sub-families of MDBNC.
For uni-dimensional classification, naive Bayes
classifier (nB), tree-augmented network clas-
sifier (TAN) and a 2 dependence Bayesian
classifier have been chosen. In the multi-
dimensional side, MDnB, MDTAN, MD 2/K,
with K = 2, 3, ...6 structures have been se-
lected. In order to compare supervised and
semi-supervised frameworks, all the structures
are learnt in both scenarios. As stated be-
fore, the uni-dimensional approach cannot be
straightforwardly apply to deal with the multi-
dimensional problems, so, when learning uni-
dimensional classifiers we divide the dataset
into three one-class variable tasks and tackle
them as independent.

The supervised learning procedure only uses
the labelled dataset (consisting of 150 docu-
ments), whilst the semi-supervised approach
uses the 2, 532 reviews. Our multi-dimensional
extension of the EM algorithm is used in the

latter approach and it terminates after find-
ing a local likelihood maxima or 250 iterac-
tions. Due to the fact that the features of
the dataset are continuous, they are discre-
tised into three values using equal frequency
discretisation. The parameters of the models
are calculated by MLE corrected with Laplace
smoothing. Finally, the performance of each
model has been estimated via 5 runs of 5-fold
non-stratified cross validation [22].

Table 8 shows the results of the algorithms
over the ASOMO dataset in both supervised
and semi-supervised approaches. In addition
to the joint accuracy2, the accuracies per each
class variable are shown. The accuracies in
bold correspond to the best accuracies ob-
tained in both supervised and semi-supervised
frameworks for each class variable and for the
joint accuracy metric. Based on the results,
several conclusions can be extracted:

1. The multi-dimensional classification ap-
proach statistically outperforms the uni-
dimensional classification in terms of joint
accuracy (Student’s t-test with α = 0.95).

2. The semi-supervised learning framework
obtains better joint accuracies than su-
pervised learning.

3. The class variable Will to Influence tends
to degrade its performance in semi-
supervised learning, whilst the others
tend to achieve better single accuracies.

4. The MDTAN approach [23] tends to be-
have more similar to the uni-dimensional
approaches rather than to the approaches
it belongs to, the multi-dimensional ones.

In conclusion, we show in this experi-
ment that the proposed semi-supervised multi-
dimensional formulation proposes a novel per-
spective for this kind of problems, opening new
ways to deal with these problems. In addi-
tion, it can also be seen that the explicit use
and the representation of the relationships be-
tween different class variables, as well as the

2This measure estimates the values of all class vari-
ables simultaneously, that is, it only counts a success
if all the classes are correctly predicted, otherwise it
counts an error [19].



Classif. LABELLED DATA LABELLED AND UNLABELLED DATA
Will to Influence Sentiment Subjectivity JOINT Acc Will to Influence Sentiment Subjectivity JOINT Acc

nB 56.80± 2.18 28.00± 3.42 82.80± 1.19 11.47± 2.76 58.67± 2.21 27.33± 3.86 54.13± 4.15 09.33± 2.75
TAN 51.33± 1.76 27.20± 3.75 79.47± 1.19 09.47± 1.79 48.13± 3.60 28.40± 3.79 70.40± 2.69 10.53± 3.63

2DB 56.53± 1.10 29.33± 3.40 82.80± 0.56 11.73± 2.24 35.20± 6.23 29.47± 1.85 83.60± 0.89 09.20± 2.51

MDnB 53.60± 0.89 29.33± 1.63 83.07± 1.21 14.80± 1.66 53.87± 2.60 32.13± 0.9984.00± 0.6716.80± 2.28
MDTAN 52.13± 2.23 26.27± 1.61 83.47± 0.73 13.33± 2.05 34.93± 6.30 28.27± 2.69 83.07± 1.12 08.57± 2.88
MD 2/2 52.00± 1.70 28.80± 3.03 78.53± 2.51 15.07± 3.64 52.40± 2.61 26.27± 4.70 74.80± 2.33 12.52± 1.45
MD 2/3 56.67± 2.26 29.07± 1.92 76.00± 1.05 15.87± 1.91 50.67± 4.42 27.33± 1.42 75.60± 4.53 14.40± 1.30

MD 2/4 56.93± 1.67 27.74± 3.22 77.73± 2.65 14.80± 1.73 51.60± 3.25 29.73± 2.77 77.47± 1.97 16.00± 1.56
MD 2/5 56.94± 2.69 27.86± 2.47 75.73± 3.18 13.73± 2.24 53.20± 3.21 26.93± 5.00 78.27± 3.96 15.47± 1.59
MD 2/6 56.07± 3.56 31.05± 3.41 76.57± 2.10 15.47± 2.18 53.60± 1.80 28.67± 1.05 77.73± 1.21 16.53± 0.55

Table 1: Accuracies on ASOMO dataset

use of unlabelled data, can be beneficial to im-
prove the recognition rates in SA problems,
demonstrating that the SA problem has indeed
a multi-dimensional underlying nature.

6 Conclusion

Multi-dimensional classification and semi-
supervised learning are two different branches
of machine learning. While multi-dimensional
supervised classification is the generalisation
of the single-class supervised classification
problem to the simultaneous prediction of a
set of class variables, semi-supervised learning
is the learning paradigm concerned with the
study of how more accurate classifiers can be
learnt by adding unlabelled examples to the
labelled ones. In this paper, we establish a
bridge between them.

At first instance, a supervised filter learn-
ing algorithm for MD J/K classifiers has been
proposed. After that, we have extended, in
addition to the MD J/K learning algorithm,
the state-of-the-art of supervised MDBNC
learning algorithms by means of a multi-
dimensional extension of the EM Algorithm.
Then, we have applied the proposed battery of
semi-supervised multi-dimensional learning al-
gorithms to a real dataset of SA showing that
they are competitive with many existing su-
pervised learning algorithms. Besides, we have
also shown that multi-dimensional learning
algorithms outperform the uni-dimensional
techniques when dealing with semi-supervised
multi-dimensional problems. This demon-
strates that SA classification is, in fact, a

multi-dimensional problem.
In short, we have proposed a novel per-

spective for this kind of problems and demon-
strated that the use of multi-dimensional clas-
sification, as well as the use of unlabelled data,
can be beneficial to improve the recognition
rates.
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