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The ideal of designing a robust and efficient  Genetic  Algorithms (GAs), easy to use and applicable to a wide 
range of problems has deserved a lot of research in Evolutionary Computation. Nevertheless a common criticism 
made to GA is that in order to perform well for a specific application it needs a lot of tuning and parameter 
fiddling. Several attempts have been made to investigate the influence of different parameters in the performance 
of the GA. Recently Harik and Lobo[1] have introduced a Parameter-less Genetic Algorithm which tries ‘to make 
life easier to users’ by eliminating the need of parameters in a crossover based GA. Their GA gets rid of the 
selection rate and crossover probability by establishing fixed setting for these parameters.  
We believe that one way leading to the creation of robust and efficient evolutionary algorithms passes by the 
conception of very flexible methods able to adapt their behavior to the nature of the search space. These 
algorithms would have a wide arsenal of search operators and a group of general decision rules that would allow 
them to apply a combination of their operators and parameters. The expertise could not be excluded of the design 
process, tasks like the coding of solutions would still be his responsibility.  
Before to go on with our explanation a generalization is needed. GAs belong to the class of Population Based 
Search Methods that use Selection (PBSMS). Recently another kind of evolutionary algorithms has been 
incorporated to this class, they are the Estimation Distribution Algorithms (EDA)[4].  Instead of applying the 
mutation and crossover operators to the selected population, EDA estimate probability distributions of 
individuals and use this information to generate new points. By making a parametric  or structural  learning of the 
dependency relations between the variables[5][6][7], EDA implicitly adapt their search operators to the 
characteristics of the problem.  
The approach we discuss here is in  line with techniques that change or adapt the parameter values as the search 
progresses, nevertheless it exhibits two main differences with previous work on this topic. First, the analysis has 
been thought to be applied not only to GA but also to other PBSMS. Second, adaptation is achieved by 
considering rules able to change the application of different operators  along the search, and not only by adapting 
the  parameters. For reasons of space we concentrate here in the question of defining  measures that could allow  
to a PBSMS to receive a feedback about its own behavior, and use this information in the next step of the 
algorithm to improve the search. 
In order to define these measures we will utilize the concepts of Exploration and Exploitation, these concepts 
have been extensively treated in Evolutionary Computation. A good search method is supposed to be able  of 
combining both tasks. We will also use the mathematical framework applied before to the Breeder Genetic 
Algorithm (BGA) [3] which was designed according to the theories and methods used in the science of  livestock 
breeding. BGA uses research done in  Population Genetics, a field which deals with populations of individuals 
and describes the properties of traits in terms of their means and their degree of variation in the population. The 

concept of Response to Selection will be the base for our analysis. Let  f t( )  be the average fitness of the 
population at generation t. Then the Response to Selection (R) is defined as: 

R t f t f t( ) ( ) ( )= + −1  
The amount of selection is measured by selection differential. 

S t f t f ts( ) ( ) ( )= −  

where f ts( )  is the average fitness of the selected parents. The equation for the Response to Selection relates R 
and S by :  

R t b t S t( ) ( ) ( )= ⋅  
b(t) us called the realized heritability.  For many fitness functions and selection schemes the selection differential 
can be expressed as a function  of the phenotypic standard deviation σ. For truncation selection (selecting the T⋅ 
N best individuals from a population of size N) one obtains. 

S t t I( ) ( )σ =    
R is a general measure of the improvements obtained in the average fitness of the population by the application of 
genetic operators, nevertheless this measure keeps hidden a set of relevant characteristics that  could help to 
understand the PBSMS dynamics. For instance, R could increase without the discovering of new  points with a 
better fitness. On the other hand the discovery of new points may not cause an increment in the R. The R 
equation relates the change in a population's fitness to the standard deviation of its fitness, as well as to the 
parameters  selection intensity and realized heritability . Nevertheless the standard deviation of fitness measures 
the fitness diversity of the population but not the quality of solutions. Although the realized heritability can give 



an estimation of how similar are the offspring to their parents, this measure is difficult to interpret. We introduce 
the following approach to cope with these problems. 
Let  [Fs

min(t), Fs
max(t)] be the interval for the values of the fitness function in the selection set S. Using  the 

interval  [Fs
min(t), F

s
max(t)] we will cluster all the vectors of the generation t in  three regions determined by the 

fitness values of the points they contain. In some way these regions attend to group genotypes by their "quality". 
The regions are: 
Region of promising points (Rπ),    Rπ  =  x  /  f(x) > Fs

max 
Region of exploitation (Rε),            Rε  =  x /   Fs

min ≤ f(x)  ≤ Fs
max 

Region of bad points (Rβ),               Rβ =  x /   f(x) < Fs
min. 

Let f Rβ(t)= f x P x
x x R

( ) ( )
/

⋅
∈
∑

β
,   where P(x ) is the probability of vector x in the population at the moment t. 

in a similar way we calculate f Rπ(t)  and f Rε(t). 

 Then  f (t) can be expressed as:   f (t) = f Rβ(t) + f Rπ(t) + f Rε(t). 

f Rβ(t), f Rπ(t) and f Rε(t) are the average fitness contributions of genotypes in each different region to f .  

Instead of using Fs
min(t) and  Fs

max(t) we can use arbitrary values fβ and fπ (fβ < fπ) to group the genotypes in 
regions according to their fitness. We will conveniently cluster genotypes in generation t+1 using Fs

min(t) and  
Fs

max(t) values instead Fs
min(t+1) and  Fs

max(t+1). R  can be then decomposed as follows: 

R t f t f t( ) ( ) ( )= + −1 =  ( f Rβ(t+1) - f Rβ(t) )   +   ( f Rπ(t+1) - f Rπ(t) )    +   ( f Rε(t+1) - f Rε(t) )  
In this paper we have obtained a decomposition of R that let us to express the contribution of points in the 
different regions to the improvements achieved by the population based search algorithm. Figure 1 shows the 
evolution of R for the optimization of a unitation function with 100 variables using a Univariate Estimation 
Distribution Algorithm[4].  Although R is always positive, the exploration of new points provokes that in some 
generations Rβ reaches negative values. Figure 2 shows the corresponding values Fs

min(t), F
s
max(t) and the average 

in the interval  [Fs
min(t), Fs

max(t)] for each generation. The use of the decomposition of R allows to compare 
different genetic operators taking into account the way they contribute to a positive R. The difference between 
the contributions of each regions to R can be used during the evolution to adapt the operators and parameters 
looking for a better exploitation or exploration. As we stated before, the question of defining the decision rules 
that relate the R values with the change of GA’s operators and parameters is beyond the scope of this paper. 
Diverse theoretical and practical issues have to be examined in order to establish such rules, for instance the 
impact of different selection operators and the structure of the fitness landscapes[2] in the characteristics of 
genotypes with values in [Fs

min(t), F
s
max(t)]. 
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