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Abstract

This short paper surveys current work on the use of Factorized Distribution Algo-
rithms for the solution of combinatorial optimization problems defined on graphs.
We also advance a number of approaches for future work along this line.

1 Introduction

Population Based Search Methods that use Selection (PBSMS) are non deter-
ministic heuristic search strategies that use a set of points instead of a single
one to conduct the search. Genetic Algorithms [1] are one example of PB-
SMS. They have been applied for the solution of combinatorial optimization
problems, including classical problems defined on graphs.

Factorized Distribution Algorithms (FDAs) [3] are another class of PBSMS
that combine results from Graphical Models and Evolutionary Computation
research, and are considered as a tractable subclass of Estimation Distribution
Algorithms [4]. They begin by generating an initial random population of
points which are evaluated using the objective function. Some of the points
are selected based on their values, and a factorized probabilistic model of
their underlying distribution is constructed. This probabilistic model is used
to sample the points that will be part of the next population.

The objective of this paper is to make a review of the capabilities of FDAs
to deal with problems defined on graphs. The problems under consideration
are those where the goal is to find structures (such as Hamiltonian paths,
cliques or partitions) on a given simple graph. A necessary condition is that
the search for the structures could be transformed in the optimization of a
function defined for a set of variables mapping the vertices (or the edges) of
the graph.
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2 FDAs and their application to graphs problems

FDAs differ in the type of factorization employed and the way this factor-
ization is learned. We describe a number of FDAs that are relevant for our
research, a detailed review of FDAs can be found in [2].

The Univariate Marginal Distribution Algorithm (UMDA) [4] is a very simple
FDA that generates new solutions by only preserving the proportions of the
values of each variable independently of the remaining variables. A Factor-
ized Distribution Algorithm that uses a fixed model of the interaction among
variables along the evolution (FDA*) was introduced in [3]. The probabilistic
model of the (FDA*) is the so called junction tree, which is a tree whose ver-
tices are subsets of the variables of the problem. The union of all the subsets
is the total set of variables. In the tree, the edge between two vertices is la-
beled with the intersection between these vertices. All vertices between any
two pair of vertices A and B contain their intersection. In every generation
only a parametric learning of the local joint probabilities of variables in the
vertices is done.

While in the (FDA*) the junction tree is built using prior knowledge about the
problem and its structure keeps the same along the generations, the Bayesian
Optimization Algorithm (BOA) [5] is an example of Bayesian FDAs that learn
in every generation a probabilistic model with different structure and repre-
sent it using a Bayesian Network (BN). BOA uses a Bayesian metric to mea-
sure the goodness of every Bayesian structure found, and a search procedure
to search in the space of possible structures. Another class of FDAs is the
class of Mixture FDAs. Modeling by finite mixture of distributions concerns
modeling a statistical distribution by a mixture (or weighted sum) of other
distributions. FDAs that use mixtures of distributions for discrete problems
have been proposed in [10,2].

We separate the ways of application of FDAs to problems defined on graphs
in two main classes depending on whether the information about the problem
structure (e.g. graph topology) is or not used in the construction of the prob-
abilistic model. In the following applications knowledge about the problem
structure was not incorporated into the probabilistic model of the FDAs.

In [8] we have employed the Constraint-UMDA (CUMDA) for the search of
triangulations on graphs. Although results were encouraging for small graphs,
their quality decreased as the number of edges and vertices increase. In the
optimization of the triagulation function a set of dependencies among the vari-
ables arise that an algorithm that uses the univariate model (e.g. CUMDA)
can not capture. In [11] the UMDA and the BOA were used for the problem
of hypergraph partitioning. For bisection of regular test graphs the best per-



formance was achieved by BOA. Graph partitioning is also solved in [6] using
BOA. In [2] two problems are treated using FDAs: The graph matching is
approached using a permutation based representation, and bisection problems
are approached using FDAs with mixture distributions. In all of the previous
works only small and medium graphs were considered, comparisons with other
heuristics different than PBSMS were absent or insufficient.

We present now three main approaches for incorporating information about
the graph topology to the probabilistic models in FDAs. The first is the use of
the graph to speed the learning of the network structure by Bayesian FDAs.
The graph would be used as the starting network of the BN learning algorithm.
This approach was proposed in [6], although experiments were not conducted.

The second is to use the graph to construct the junction tree to be used by the
FDA*. We have used this approach in [7] for identifying dissections on graphs,
and in [9] for the Maximum Satisfiability problem (Max-Sat). Max-Sat is not a
graph problem, however a graph representation GG’ of the interactions between
variables can be constructed, and from G’ a factorization of the probabilistic
model can be built. To find a good factorization starting from G’ we have
used in [9] an algorithm that extracts a triangulated subgraph of G’. The
triangulated subgraph contains a maximum clique of size equal or less than
s, where s is a parameter of the algorithm. This heuristic algorithm tries to
remove as few edges as possible but guaranteeing that the remaining graph is
chordal.

The third approach is the use of Mixture of FDAs. A partition of the initial
graph in different subgraphs is done. Every subgraph is triangulated and a
junction tree is constructed from it. Each junction tree becomes the skele-
ton of a different mixture component of the Mixture of FDAs. We have done
preliminary experiments with this approach. Compared to the FDA* the ap-
proach reduces the number of evaluations, but it is more expensive in terms
of the computational time needed to update and sampling the probabilistic
model.

3 Conclusions

We have presented different ways to use FDAs for problems defined on graphs.
However one important question is still open: Can FDAs be more efficient than
other heuristics for problems defined on graphs? Probably the answer is not
categorical, and there is a niche of problems where FDAs can be superior.
Further research is needed to know which are the limits of FDAs and how
can they be improved. The approaches we have presented in this paper show
different ways of orienting the search in this direction.
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