
Preprint 0 (2005) ?–? 1

The Incident Edge Model

Roberto Santana, Eunice Ponce de León, Alberto Ochoa

Institute of Cybernetics Mathematics and Physics, La Habana, Cuba.

{rsantana, eunice, ochoa }@cidet.icmf.inf.cu

In this paper we introduce the incident edge model, a fitness function model for a large set of problems defined on

graphs. The model can be used to define functions whose optimization led to the finding of different structures on graphs.

The model can also be useful to determine the best optimization algorithm for a given problem. As an example of the

application of our model we describe an optimization approach for the problem of finding the dissection of a graph. For

the optimization of this additively decomposable function we use the Factorized Distribution Algorithm. We focus on the

way that different factorizations of the probability distribution can influence the behavior of the Factorized Distribution

Algorithm for the dissection problem .

Keywords: Graphs, population based search, additively decomposable functions, fitness model, EDA

1. Introduction

Problems defined on graphs have been extensively

considered in the field of Evolutionary Computation.

Research devoted to the solution of theoretical and real

graphs problems using evolutionary algorithms is widely

refered in the literature, these problems have been also

employed as a test bed for the validation of several evo-

lutionary techniques.

In this paper we introduce a model for a large set of

problems defined on graphs. The problems under con-

sideration are those where the goal is to find structures

(such as hamiltonian paths, cliques or spanning trees)

in the graph. A necessary condition is that the search

of structures could be trasformed in the optimization

of a function defined for a set of variables mapping the

edges of the graph.

The model, that we have called Incident Edge Model

(IEM), can be used to design functions whose optimiza-

tion led to the finding of the structures, the analysis of

the model can also help to decide which is the suitable

optimization algorithm for the given problem. Finally

the IEM could be useful as a conceptual framework for

the study of the characteristics that make a problem

hard for an optimization algorithm.

As an example of the application of our model we

describe an optimization approach for the problem of

finding the dissection of a graph. A function is de-

fined for this problem using the Incident Edge Model as

a framework. The dissection function is also an addi-

tive function, we show how the Factorization Distribu-

tion Algorithm (FDA) can be used for the optimization

of this function. FDA takes advantage of information

about the structure of the function to do an efficient

sampling. Previous results show that the FDA out-

performs other population based search methods in the

optimization of several ADF functions.

The outline of the paper is as follows. In Section 2

we introduce the IEM. In Section 3 the dissection func-

tion is presented as an example of an IEM. The way

of constructing an independence graph G′ from a sim-

ple graph G is described in Section 4. Some particular

characteristics of these independence graphs are pointed

out. In Section 5 we briefly present the FDA algorithm

that was used in the optimization. Experiments are

shown in Section 7. Finally the conclusions of our work

are presented .

2. The Incident Edge Model

The study of complex systems has often led to the

creation of simplified models that allow to understand

the dynamics that these systems exhibit. In Evolution-

ary Optimization this sort of models has been success-

fully employed for the analysis of the different compo-

nents or processes that influence the behavior of the

optimization algorithms, such as fitness landscapes, ge-

2

netic operators and variables interaction. We introduce

here a model that supports a theoretical framework for

the study of some of the factors that can make of a

problem defined on a graph difficult. We assume that

the problems considered can be solved through the op-

timization of a fitness function.

In order to introduce our model we present first the

NK model of adaptation developed by Kauffman[4].

Initially Kauffman’s model was introduced to envision

nonrandom fitness landscapes whose contours reflect

the underlying nonlinear and complex dynamics among

the components in a system or ecosystem. The ideas

of NK fitness landscapes were later incorporated to Ge-

netic Algorithms[3] to analyze the behavior of GA in

the optimization of additive functions.

For the classical Kauffman’s N-K model the total fit-

ness contribution of the string x = (x1, ..., xn) is defined

as an averaged sum of fitness contributions, that is:

f(x) =
1

n

n∑

i=1

fi(si)

where si is the substring of x of length k + 1. It

includes site i of the string x. The k sites are called

the neighbors of site i. The simplest way of choosing

the neighbors is to use the k sites adjacent to site i.

Alternatively, one assigns the neighbors by randomly

selecting for each site i, k other sites from the string x.

The Incident Edge Model is defined from a simple

graph G =< V,E > . To each edge belonging to E we

map a binary variable xi in the string x = (x1, ..., x|E|).

The total fitness contribution f(x) is the sum of n sub-

functions defined on the substrings of x and another

function v(x) defined on x.

f(x) = u(x) + v(x)

f(x) =
n∑

i=1

u(si) + v(x)

The distinctive characteristic of the Incident Edge

Model is the way the substrings si are selected: Each

substring si includes those variables mapping the edges

incident to the vertex i in G. As a consequence the

length of the substring si is equal to the degree of ver-

tex vi in the graph. Subfunctions ui are conveniently

chosen.

The decomposition of f(x) in the terms u(x) and

v(x) reflects the case, commonly found in problems de-

fined on graphs, when the fitness of a solution can be

determined by considering first some neccesary condi-

tions to be fulfilled by the subsolutions, and then an-

alyzing a measure of the quality of the complete solu-

tion. We have presented examples of this kind of func-

tions in [9], nevertheless in this paper we only consider

the case when v(x) = 0, ∀x, and thus f(x) = u(x), in

this case f(x) is an additive function (ADF). Additive

functions have been extensively studied in Evolutionary

Computation. We present now a formal introduction to

ADF[2].

Let In = {1, ..., n} be the set of all variable indices,

X = {0, 1} and let f : Xn → R .f(x) is called an

additive function if:

f(x) =

m∑

l=1

fl(xjl)

where Jl = {l1, ..., ln(l)} ⊆ In, andXjl := {Xl1 , ..., Xln(l)
}.

To avoid trivial cases we suppose that the sets Jl are

minimal i.e. it is not possible to find K and M with

K ∪ M =Jl and K ∩ M 6= Jl , such that fl(xjl) =

fl(xK) + fl(xM), the Jl are called definition sets.

When f(x)=u(x), as is the case we consider here, the

number of definition sets is m = |V | and each set Xjl

corresponds to a substring si.

In comparison to the NK model the IEM also in-

cludes overlapping variables, but due to the constraints

imposed by the simple graph G, each variable belongs to

only 2 different definition sets of f(x). Furthemore the

number of definition sets of the function is determined

by the structure of graph G and not by the number of

variables N.

The IEM explicitly represents some of the factors

that make the optimization of a function difficult.

Given a problem defined on a graph G it is possible to

have a measure of its difficulty by analyzing the size of

the definition sets, the number of overlapping variables

and the characteristics of the subfunctions evaluated in

each definition set. The knowledge that the model sup-

ports can be used to clarify the way in which different

optimization algorithms behavior and to improve these

algorithms.

¿From here when referring to instances of the IEM

we will name them incident edge functions. In the next

section we present an example of an incident edge func-

tion.

3

Figure 1. Simple graph G

3. The dissection function

Definition 1 .- A dissection of a graph G is defined

to be a set of elementary paths of G such that each

vertex of the graph is contained in exactly one path. We

will represent one dissection as a graph D =< V ′, E′ >

where V ′ = V and E ⊆ E. We will call a path closed if

it also defines a circuit, otherwise we will call it open.

The value of a dissection D is defined to be the number

of open paths present in it. A dissection of value 0 is a

set of closed paths in G.[1]

Lemma 1. Theorem 1: Given a graph G, the value of

a dissection D of G defines the number of edges the

dissection has [8].

In [9] we have defined a family of functions for detect-

ing dissections of different values on graphs. We have

associated the i component of the vector to the i edge in

E. For the component i, value 1 stands for ”select the

corresponding edge”, whereas bit value 0 stands for ”do

not select the corresponding edge”. Then, each vector

will represent a subgraph G′ of G such that all the edges

of G are those components of the vector with value 1.

Let be f(x) =

|V |∑

l=1

(S(xjl)− α)2 where

S(xjl) =

|xjl |∑

l=1

(xli).

f(x) calculates the sum of the square’s differences,

taken coordinate to coordinate between a vector with

the degree of each vertex of the subgraph G represented

by the binary string x and α. For α = 1(α = 2) f(x)

will reach its minimum for all those vectors W that

represent dissections of the graph G with value |V |2 (0

) respectively. Demonstration could be found in [9]

It could be seen that f(x) is an incident edge function

which is also additive.

4. The independence graph of the Incident

Edge Model.

In the previous section we have introduced two in-

cident edge functions whose optimization leads to the

detection of dissections on a graph. Now we address

the question of how to optimize these functions using

a population based search method that uses selection.

We consider how the optimization algorithm can take

advantage of the information store in the IEM.

Population Based Search Methods that use Selection

(PBSMS) do the search of solutions using a set of points

instead of a single one. These algorithms start generat-

ing a set of initial points, from this population another

set of promising points is selected and a new popula-

tion is generated. This process is repeated until a stop

condition is satisfied.

It has been stated that a good search strategy for

PBOMS is to generate new points with a similar prob-

ability distribution to that existing in the selected set,

this is:

P (x, t+ 1) ≈ P s(x, t)[6].

The class of PBSMS which estimates a probability

distribution of points in the selected set and uses this

information to generate new points is called Estimation

of Distribution Algorithms (EDA), nevertheless the es-

timation of distributions is a difficult problem.

The questions of when and how can a probability

distribution be factorized arise from the fact that a

straightforward implementation of the above equation

is computationally prohibitive. The search of suitable

factorizations has led to the study of the relation be-

tween the underlying structure of the fitness function

and different probability distributions.

It has been shown that the general class of Addi-

tively Decomposable Functions can be mapped into a

corresponding probability model, which captures the

dependencies of the variables [7]. The following approx-

imation has been proven to work in some situations:

Two variables are dependent if they are contained in

the same set si. The dependencies can be mapped into

a conditional independence graph. From a conditional

independence graphs it is possible to extract factoriza-

tions of the probability distribution. An EDA algorithm

which uses this factorizations already exists[7], we ex-

plain it in the next section.

When v(x) = 0 our IEM is a particular case of the

ADF class of functions, thus the assumption of con-

4

Figure 2. G′, dependence graph of G

sidering as related those variables whose corresponding

edges are incident to a common vertex could be taken

as valid, as far as the definitions set for the functions we

use are based on this characteristic of the graph struc-

ture.

Let G =< V,E > be a simple graph and let the vec-

tor x be constructed from the mapping between edges

in E and variables xi. If we consider that two variables

xi, xj are related if the edges that they represent are

incident in a common vertex, then we can construct the

dependency graph G′ < V ′, E′ > of the variables xi

where |V ′| = |E|.
Figure 2 shows the dependency graph G′ where vari-

ables are related in G′ if their corresponding edges are

incident to a common vertex of the graph G (Figure 1).

In the domain of the problems defined on graphs

there exist functions which are not additively decom-

posable.When v(x) 6= 0 for an incident edge function

the conditional independence graph could have links

between every pair of variables, nevertheless even in

this case the indepedence graph associated to the ad-

ditive function u(x) could capture the most important

dependencies determined by f(x). We present now an

algorithm which, by measuring the degree of interac-

tion between variables, gives support to the previous

statement .

The dependency algorithm introduced in [2]is a dis-

crete version of the mixed partial derivative and starts

from the following lemma:

Define x ∈ Xnand {ī, j̄} = In \{i, j}
∆i,j(f, x{ī,j̄}) = [f(x1

i , x
1
j,x{ī,j̄}) − f(x0

i , x
1
j,x{ī,j̄})] −

[f(x1
i , x

0
j,x{ī,j̄})− f(x0

i , x
0
j,x{ī,j̄})]

Then we have: ∆i,j(f, x{ī,j̄}) = 0 for all x ∈ Xn if

and only if there is not l such that i and j do not belong

to one same dependency set.

The algorithm begins with a random population X

and calculates

|∆i,j(f)| (X) =
∑
x∈X

∣∣∆i,j(f, x{ī,j̄})
∣∣ for all pairs

i, j . When |∆i,j(f)| (X) = 0 is intended that variables

i and j are not related. As X does not contain all the

vectors of the domain the dependencies are determined

only with a certain probability.

If we apply the previous algorithm to a function for

which interactions between all the variables exist, it will

be obtained a unique dependency set containing all the

variables of the problem.

Let us introduce the problem with an example:

Definition .- A hamiltonian cycle of G is a cycle

through G that touches all vertices of V exactly once.

A hamiltonian cycle is a dissection of value 0.

In [4] we have defined a function Fhc(x) able to detect

a hamiltonian cycle in a graph G.

Fhc(x) = 1000
f(x) if f(x) > 0

Fhc(x) = 1000
f(x) + f1(x) if f(x) = 0

where f(x) is the dissection function, ci is the length

of substring si, and

f1(x) =
∑m
i=1 ci ∗ (ci − 1)

When f(x) reaches the value 0 then the vector x con-

tains a set of cycles (m cycles). Function f1(x) measures

the size of all the cycles in x. f1(x) reaches its maximum

when there is a unique and maximum sized cycle in G,

i.e. x contains a hamiltonian cycle. In this problem all

the variables are related.

We apply the algorithm to function Fhc(x) using a

population X composed of all the feasible solutions.A

solution is feasible for f(x) and Fhc(x) when there exist

in the vector x exactly n components set to 1 (Any

hamiltonian cycle connecting a graph with n vertices

contains exactly n edges.). The selected base graph in

the subgraph of G′ composed by edges { 6,7,8,10,11,13

}, this simple graph has 12 edges.

Columns 1-2 of Table 1 show a mapping between

edges of the selected graph and a set of 12 variables.

There are four different values for |∆i,j(f)| (X), these

are: {I1=14620,I2=14656,I3=18540,I4=20624}. The

Table 1, columns 3-6, shows for each variable i, the re-

maining 11 variables clustered on their values |∆i,j(f)| .

Although values in Table 1 are all higher than 0 indi-

5

Table 1

|∆i,j(f)| (X) values for the function Fhc(x)

V ar Edge I1 I2 I3 I4

1 6− 7 8, 9, 10, 12 11 2, 4, 5, 6 3, 7

2 7− 8 6, 7, 10, 11 12 1, 3, 5, 8 4, 9

3 7− 13 5, 6, 9, 12 7 2, 4, 8, 10 1, 11

4 7− 10 5, 7, 9, 11 8 1, 3, 6, 10 2, 12

5 6− 8 3, 4, 8, 11 9 1, 2, 7, 10 6, 12

6 6− 10 2, 3, 8, 11 10 1, 4, 7, 12 5, 9

7 6− 11 2, 4, 8, 10 3 5, 6, 9, 12 1, 11

8 8− 13 1, 4, 7, 12 6 2, 3, 9, 11 5, 10

9 8− 11 1, 3, 6, 10 4 5, 7, 8, 11 2, 12

10 10− 13 1, 2, 7, 9 5 3, 4, 11, 12 6, 8

11 11− 13 2, 4, 5, 6 1 8, 9, 10, 12 3, 7

12 10− 11 1, 3, 5, 8 2 6, 7, 10, 11 4, 9

cating that all variables are related. we can exclude for a

general independence graph those edges corresponding

to relations between variables for which the second dif-

ferences are under a defined threshold. For instance, if

we set the threshold in Table 1 to 14620, and consider as

related variables whose entries are over this value, then

the interactions could be represented using the same in-

dependence model associated to the dissection function

for this graph.

5. The Factorized Distribution Algorithm

(FDA)

We use the Factorized Distribution Algorithm for the

optimization of functions described in this paper. The

FDA is a particular case of the Estimation Distribu-

tion Algorithms[5] which uses a factorization of the joint

probability, in [7] the factorization is constructed from

an independency graph based on the definition sets of

the function. In that paper is assumed that two vari-

ables are dependent if they are contained in the same

definition set. In this way the algorithm is supposed to

capture the structure of the given function. An exact

correspondence between the joint distribution and its

factorization has been theoretically demonstrated only

for the Boltzman distribution. This correspondence

has been used for the implementation of a conceptual

EDA with infinite population and Boltzman selection

(BEDA).

FDA is very similar to BEDA but uses a finite pop-

ulation. Any selection method can be employed, but

the truncation selection has been the norm for current

FDA implementations. It has been shown that to use a

factorization constructed from an independency graph

based on the definition sets is convenient also for the

FDA. Previous experimental results show that a FDA

that uses this strategy to factorize the joint distribution

outperforms other population based search methods in

the optimization of several ADF functions.

Now we describe the FDA we have used in this pa-

per. The algorithm inputs a junction tree where the

factorization is represented:

The Factorized Distribution Algorithm

◦ STEP 0: Set t ⇐ 0. Generate N points randomly

among the feasible solutions

◦ STEP 1: Truncation Selection

◦ STEP 2: Update the densities associated to the

junction tree.

◦ STEP 3: Generate the new population using the

junction tree.

◦ STEP 4: If termination criteria is met, FINISH.

◦ STEP 5: Set t⇐ t+ 1. Go to STEP 2.

In order to optimize an incident edge function the

independence graph can be constructed from the graph

were the problem is defined.When the independence

graph of variables is chordal, the factorization can be

obtained immediatly. Otherwise different techniques

can be used to obtain an approximate factorization, one

that has shown good results[7] is to find one triangula-

tion of the independence graph by adding new edges.

In this paper we explore a new approach. Instead of

finding a triangulation of the independence graph by

the addition of new edges, we eliminate a certain num-

ber of edges (dependencies between variables) in order

to get another graph, very close to the independence

graph but with the desirable property of being chordal.

¿From the chordal graph a junction tree is con-

structed. In our implementation the FDA employs the

junction tree to estimate the joint distribution of the

selected set and do the sampling.The example shown

in Figure 3 represents a junction tree corresponding to

a subgraph of G′′ obtained by extracting edges. The

choice of which edges to extract is critical, here we have

6

Figure 3. Junction tree of graph of G′

Figure 4. Chain shaped junction tree of graph G′

used the criteria of eliminating as few edges as possi-

ble in order to have a graph very similar to the original

graph of dependencies. It can be seen that also some

edges have been added, these edges make the function of

completing those subgraphs that are near to be cliques.

6. Experiments and discussion of results

In this section we analyze the effectiveness of the

FDA when it is used in the optimization of the dissec-

tion problem. We enphasize how the choice of different

factorizations influences in the efficiency of the opti-

mization process. The test problems that have been

used for our experiments are the dissections of order

|V |
2 and 0. The complexity of these problem depends

on the graph under consideration.We have chosen the

simple graph G as a benchmark for the optimization of

these functions in order illustrate how the application

of different factorizations of G′ incides in the numerical

results achieved by the FDA.

For each experiment, 100 independent runs were per-

formed. We do not address in this paper the question of

finding the optimal setting of parameters for the dissec-

tion problems. In order to test the performance of the

different algorithms in similar conditions the parame-

ters were set to the same value in all the experiments.

Values of population size and the coefficient of trunca-

tion were respectively 300 and 0.15.

6.1. Experiment 1:

In order to evaluate the effectiveness of the FDA in

the search of dissections, we compare the performance

of the FDA and an UMDA in our base graph G. The

FDA used the junction tree shown in figure 3.

Tables 2 and 3 show results of both algorithms for

dissections of order |V |2 and 0 respectively. In the ta-

bles the entry Clique indicates the clique that is taken

as the root in the junction tree, Success is the num-

ber of experiments where the optimum was reached.

Gen is the average generation where the optimum was

reached. The algorithm exhibits different performance

for both functions. The second function is more difficult

to optimize. This evidence agrees with previous results

obtained by applying other heuristic operators to the

same problems.[9]

Table 2

Results for Dissection of order
|V |
2

Algorithm Clique Success Gen

FDA 4 85 3.43

FDA 5 91 3.32

FDA 6 91 3.29

UMDA 76 5.59

6.2. Experiment 2:

Now we consider other different junction trees with

similar structure (The same number and size of the

7

Table 3

Results for Dissection of order 0

Algorithm Clique Success Gen

FDA 4 71 3.50

FDA 5 72 3.44

FDA 6 62 3.58

UMDA 61 6.93

cliques) but where the variables belonging to each clique

were randomly selected .

Table 4 shows the results of experiment 2. It can

be appreciated that the FDA performance critically de-

grades when the variables that are in each clique do not

correspond to those present in the definition sets of the

function. This example also confirms that the way in

which the IEM is defined is valid and consistent with

the optimization algorithm. The knowledge about the

dependencies determined by the function contributes to

make a better sampling of the search space.

Table 4

Results using an invalid Junction Tree

Algorithm Clique Success Gen

FDA 4 11 2.90

FDA 5 14 2.64

FDA 6 28 2.68

6.3. Experiment 3:

In this experiment we construct another dependency

graph G′′′close to G′ but not as close as G′′.We elimi-

nate a higher number of edges in order to construct a

chain shaped junction tree with smaller cliques (Figure

4). Reducing the size of cliques contribute to increase

the speed of the algorithm. As results shown in Table 5

demonstrate, this reduction of the computational time

spent in the search has a cost in terms of efficient. Nev-

ertheless the new junction tree created from G′′′ is still

better for the FDA than that used in the Experiment

2, this could be explained by the fact that this junction

tree still captures a high number of those dependencies

determined by the function.

Table 5

Results using an an approximated Junction Tree

Algorithm Clique Success Gen

FDA 4 64 3.38

FDA 5 60 3.53

FDA 6 62 3.69

7. Conclusions and further work

In this paper we have introduced the Incident Edge

Model that could be used for the detection of structures

in graphs through the fuction optimization . We have

shown how to construct the independency graph corre-

sponding to this model. The independency graph has

been used for the optimization of the function evidenc-

ing that to consider the structure of the ADF could be

helpful in the optimization.

Additional experiments show that there exist a class

of non additive functions for which it is possible to de-

tect a strong contribution of definition sets. We con-

jecture that a factorization based on these definition

sets could be a good approximation to the factoriza-

tion of such non additive functions.Our results validate

the idea that the kind of structural information that

the FDA uses is a critical factor in the reduction of

the amount of function evaluations needed to find the

optimum.

Additional work is in progress related with the search

of criteria for the determination of approximated factor-

izations straight from the initial graph G where the IEM

has been defined.

References

[1] Claude Berge (1985): Graphs, North-Holland, Mathematical

Library, New York.

[2] D. Cvetkovic ,Heinz Mühlenbein, and Gerard Paaß (1997):

Optimization of Additively Decomposable Functions.

[3] Inman Harvey(1992): Species Adaptation Genetic Algo-

rithms, in Toward a Practice of Autonomous Systems, Proc.

of First ECAL, F. J. Varela and P. Bourgine(eds), MTT

Press.

[4] Stuart Kauffman(1993): Origins of Order. Oxford University

Press.

[5] Mühlenbein H. and Paaß G.(1996): From recombination of

genes to the estimation of distributions I. Binary parameters,

in Voigt et al., pp. 178-187.

8

[6] Mühlenbein H.(1998): The equation for response to selection

and its use for prediction, Numb. 5, pp. 303–346.

[7] Mühlenbein H., Mahnig Th. and Rodŕiguez Ochoa

A.(1998): Schemata, Distributions and Graphi-

cal Models in Evolutionary Optimization, to ap-

pear in Journal of Heuristics Vol 5, No. 2.,Also at

http://set.gmd.de/AS/ga.publineu.html#index

[8] Santana R. and Ponce de León E.(1998): An evolu-

tionary optimization approach for detecting structures on

graphs, Smart Engineering System Design: Neural Net-

works, Fuzzy Logic, Rough Sets adn Evolutionary Pro-

gramming, Dagli,Akay,Buczak,Ersoy and Fernandez Edtors,

ASME press, pp. 371–376.

[9] Santana, R. and Ponce de León, E.(1998): A Conceptual

Model for Detecting Structures on Graphs Using Evolution-

ary Optimization Algorithms”,Technical Report ICIMAF,

ICIMAF 98-69, CENIA 98-03. ISSN 0138-8916, December

[10] Whittaker, J.(1991): Graphical models in applied multivari-

ate statistics. Wiley Series in Probability and Mathematical

Statistics. New York : Wiley.

