
Preprint 0 (2005) ?–? 1

The Factorized Distribution Algorithm and The Junction Tree:
A Learning Perspective

Alberto Ochoa Rodŕıguez ∗ , Marta Soto , Roberto Santana , Julio Madera , Nancy Jorge

Center of Mathematics and Theoretical Physics
Institute of Cybernetics, Mathematics and Physics Calle 15 No 551 e/ C y D. CP 10400. Havana. Cuba.

ochoa@cidet.icmf.inf.cu

This paper extends the FDA - the Factorized Distribution Algorithm - with a structural learning component.
The FDA has been extensively investigated for the optimization of additively decomposed discrete functions
(ADFs). Now, we are able to deal with more general problems, which are solved by FDA in a blackbox
optimization scenario. The key point is the construction of the Junction Tree, which is placed at the centre of
the algorithm. Learning the Junction Tree directly from the data is a process that is accomplished by making
independency tests of as lower as possible order. The proposed algorithm belongs to the class of Estimation
Distribution Algorithms and represents an interesting alternative to approach the Linkage Problem in Genetic
Algorithms.

1. Introduction

The notion of Low Cost Evolutionary Algorithm
(LCEA) introduced in [19] defines a conceptual
framework that joins our efforts to design better
evolutionary algorithms, which do less evaluations
of better functions with less cost, and in better and
less points of the solution space.

An obvious way of reducing the cost of a pop-
ulation based algorithm is to do fewer functions
evaluations. If the algorithm is stochastic, we have
to be sure of sampling the solution space in an op-
timal way. To accomplish this, one can use knowl-
edge about the probabilistic dependencies among
the problem’s variables. In some cases, it is pos-
sible to design a good evaluation function, which
not only indicates which solutions are good, but
also which solutions predictably lead to good so-
lutions. Both methods ”intelligently” guide the
search guaranteeing a faster convergence to the op-
timum. Furthermore, having a good sampling al-
gorithm and a good designed function, we can be
still more efficient, if we are able to construct a
model of the function that can be evaluated with
less efforts.

The above ideas can be summarized in the fol-
lowing LCEA strategies:

∗ a8ar@mailcity.com

1. Learning and using the probabilistic structure
of the problem.

2. Learning “good” Evaluation Functions.

3. Partial Evaluation of the evolutionary algo-
rithm.

4. Use of parallel and distributed techniques.

The claim of the first line of research is that de-
tecting and using the most important interactions
among the variables is the key to an efficient sam-
pling of the solution space. Recently, this line has
deserved a lot of attention from the evolutionary
computation community. In [17], for example, was
used the theory of Graphical Models to design the
Factorized Distribution Algorithm.

Learning Evaluation Functions investigates how
statistical machine learning techniques can be used
to automatically generate high-quality evaluation
functions for practical combinatorial problems.
The data for such a learning is gathered by run-
ning trajectories through the search space [6].

The idea of Partial Evaluation [19] is similar
to the above. One of its directions investigates
how statistical machine learning techniques can use
knowledge gathered by evolution trajectories, to
estimate the effect of the function value on the
next action to be taken by the algorithm. An-
other approach explores the ways one can compare
candidate solutions without evaluate them fully.

2

Finally, we can use parallel and distributed ar-
chitectures to do less functions evaluations, spend-
ing more computational time in supporting jobs as
learning the Bayesian structure of the problem.

This paper addresses the first LCEA strat-
egy: How to use knowledge about the probabilistic
structure of a problem to make an evolutionary al-
gorithm sample the search space efficiently. This
line of research is tightly related to the Linkage
Problem of Genetic Algorithms. Our discussion is
centered on the Factorized Distribution Algorithm
introduced in [17], but in contrast with that re-
search, here we emphasize the learning dimension
of the problem.

2. From the Linkage Problem to the EDA

Recently, the current “crisis” of the Evolution-
ary Algorithms has been faced by a number of
authors with proposals that use Graphical Mod-
els. The proposed models range from simple struc-
tures like chains of variables [9], to more com-
plex like dependency trees [4], polytree structures
[21] and chordal graphs [17]. Chordal representa-
tions have the best representation power and are
good candidates for efficient, low cost algorithms
(LCEA), provided they come with good learning
methods. All these algorithms are members of the
general class of Estimation of Distribution Algo-
rithms EDA [16].

One of the main aims behind the development
of EDA has been the necessity of designing Evolu-
tionary Algorithms able to detect and exploit the
interactions between variables, that arise in the
optimization of a given problem. This question
is closely related with what have been called the
Linkage Problem. In terms of the Building Block
Propagation Theory this problem is characterized
as the effect caused in the evolution by the dis-
ruption of important partial solutions or building
blocks.

Like the Linkage Problem is determined no only
by the characteristics of the problem but also by
its representation, different alternatives have been
proposed that manipulate the representation of so-
lutions in order to make them less vulnerable to the
disrupting effect of genetic operators. Another so-
lution have been the creation of genetic operators
able to cope with the interaction between variables.
Nevertheless, these genetic operators have been of-
ten designed considering the particular character-
istics of the problems, constraining its use to nar-

row domains. EDA use the statistical information
contained in the population of selected points to
detect dependencies, then the estimated probabil-
ity distribution of the best individuals is used to
sample the points of the next generation. There
are no mutation nor crossover operators.

Although Syswerda’s Bit Based Simulated
Crossover [28] was one of the first attempts to use
the probabilistic information in the search, it was
the Population Based Incremental Learning [3] the
first GA without crossover. PBIL is a combination
of evolutionary optimization and hillclimbing. The
goal of the algorithm is to create a real valued prob-
ability vector which, when sampled reveals high
evaluation solution vectors with high probability.
Since the creation of PBIL, two main objectives
have moved the research on EDA. The increase
of the expressiveness of the probabilistic models,
allowing to represent interactions of higher order,
and to reduce the complexity of the methods and
algorithms used for the estimation and sampling of
the probabilities.

Different classifications of EDA may be used to
describe these algorithms. In [15] EDA are clas-
sified by considering the complexity of the models
used to capture the interdependencies between the
variables. For our analysis we classify the EDA ac-
cording to the way learning is done in the probabil-
ity graphical model used. One group refers to the
algorithms that make a parametric learning of the
probabilities and the other is composed by those al-
gorithms where a structural learning of the model
is done. Parametric and structural learning are
also known as model fitting and model selection.

To the first class belong PBIL, the Univari-
ate Marginal Distribution Algorithm (UMDA) [16]
and the Factorized Distribution Algorithm as it
was introduced in [17]. In that research a fixed
model was assumed for the optimization of addi-
tive decomposable functions. Similarly to PBIL,
UMDA generates new solutions by only preserv-
ing the proportions of the values of all variables
independently of the remaining solutions. This ap-
proach can work well even for problems where vari-
ables are not completely independent.

The FDA uses a factorization of the probability
distribution, which does not need to be an exact
factorization. In [17] the FDA employs factoriza-
tions based in prior knowledge about the structure
of the function to be optimized. Results show that
the Factorized Distribution Algorithm outperforms
other evolutionary algorithms in the optimization

3

of additive functions. The FDA has been success-
ful also in the optimization of deceptive problems
with overlapping variables.

There exist a number of EDA that can be
grouped into the class of algorithms that make
a structural learning of the model. The Mu-
tual Information Maximization for Input Cluster-
ing (MIMIC) algorithm uses a greedy search to
generate a chain in which each variable is condi-
tioned on the previous one [9]. MIMIC searches
in each generation the chain shaped model closest
in the Kullback-Leibler distance to the probability
distribution of the selected points. In the Bivari-
ate Marginal Distribution Algorithm (BMDA) [23]
some pairwise interactions are taken into account
to model the probability distribution, the most im-
portant acyclic pairwise interactions are considered
according to the Pearson’s chi-square statistics for
independence. For a certain class of problems the
behavior of the BMDA is better than the UMDA.

MIMIC’s probabilistic model was extended [4] to
a larger class of dependency graphs which can be
represented using tree shaped networks. The algo-
rithm called COMIT (Combining Optimizers with
Mutual Information Trees) searches a Bayesian
Network (BN) where each node is constraint to
have only one parent. Recently, a number of dif-
ferent EDA that use BN models for representing
the dependencies of variables have been reported
in the literature.

• The Estimation of Bayesian Network Algorithm
(EBNA) [11]. EBNA looks for the BN whose
structure has the maximum posterior likeli-
hood, and whose parameter can be computed
directly from the data set. It uses the BIC ap-
proximation [27] in conjunction with a greedy
search heuristic. Preliminary results showed
that EBNA outperforms UMDA in the opti-
mization of complex additive functions.

• The Bayesian Optimization Algorithm (BOA)
[24]. BOA uses the Bayesian Dirichlet scoring
metric which allows to combine prior knowledge
about the problem and the statistical data from
a given data set. A simple greedystrategy is
used to construct the network algorithm with
only an edge addition allowed when the number
of parents of the node is constraint to k > 1.

• The Polytree Approximation of Distribution Al-
gorithm (PADA) [21]. The learning component
of PADA uses a method based in testing depen-
dencies, for the construction of the polytree’s

skeleton. Then it uses marginal and conditional
dependency information to determine head to
head patterns. At the end, the algorithm can
use a scoring metric to complete the direction-
ing of the edges. This improves the last part of
the learning algorithm, namely giving direction
to edges. We believe that the combination is
superior to both: a score+search method only
and the original testing only algorithm.

3. Algorithms for Learning Probabilistic
Graphs from data

Graphical models have become common knowl-
edge representation tools capable of efficiently rep-
resenting and handling independence relationships
as well as uncertainty in our knowledge. They com-
prise a qualitative and a quantitative component.
The qualitative component is a graph displaying
dependency/independence relationships: the ab-
sence of some links means the existence of cer-
tain conditional independence relationships be-
tween variables, and the presence of links may rep-
resent the existence of direct dependency relation-
ships. The quantitative component is a collection
of numerical parameters, usually conditional prob-
abilities, which give idea of the strength of the de-
pendencies. Therefore, graphical models provide
an intuitive graphical visualization of the available
knowledge and encode probabilistic information in
an economical way: the storage requirements of
a joint probability distribution are usually exces-
sive, whereas the memory requirements of a suit-
able factorization of this distribution, taking into
account the independence relationships displayed
by the graph, may be much smaller.

Probabilistic modeling for combinatorial opti-
mization [4,17] is an example where very fast learn-
ing algorithms are needed: these methods explic-
itly maintain a probabilistic model of the good so-
lutions found so far in the search space; these mod-
els are sampled to generate next candidate solu-
tions to be evaluated, and the process is repeated;
thus, many probabilistic models have to be esti-
mated.

As was mentioned above, there are different
ways to classify structural learning methods. In
section 3.2 we will discuss a method based on sta-
tistical testing of conditional independence of dif-
ferent order. This kind of method tries to get a list
of dependence/independence weighted assertions,
and then constructs a chordal graph that satisfies

4

as much as possible the assertions on the list. The
second approach searches for good networks using
a cost function to compare them. We discuss it in
the next section.

3.1. Score + Search Structural Learning

The problem of finding a good Bayesian Network
can be seen as the optimization of a score function
over the set of all possible graph structures. As far
as the solution space is huge, this task is usually
complex. It is possible to reduce the complexity of
the search, if we constraint the networks in some
way. For example, it is easy to optimize functions
over networks with at most one parent for each
node, than over many-parents networks.

In this task, it is commonly used local search
methods like simple greedy or hill-climbing algo-
rithms [13], but obviously it is possible to use more
sophisticated procedures like simulated annealing
and evolutionary methods. The allowed operations
are: edge addition, removal and reversal. There
are different metrics or score functions; the most
famous one is the K2 metric.

Provided that certain conditions holds (indepen-
dence of the cases of the database, uniformity of
the probability density of the network’s parameters
given the network, completeness of the data) it is
possible to derive a formula that states what is the
joint distribution of a network G and a database
BD.

P (G,BD) = P (G)
n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk!

Here ri and qi are the cardinality of variable Xi

and the Cartesian product (
∏
G(Xi)) of its parents.

The kth-value of Xi and the jth-value of (
∏
G(Xi))

is represented by xik and wij respectively. From
the number of cases Nijk when Xi takes its kth-
value and

∏
G(Xi) its jth-value, it is obtainedNij =∑ri

k=1 Nijk.
The K2 metric is a special case of the Bayesian-

Dirichlet (BD) [13] metric, which combines the
prior knowledge about the problem and the sta-
tistical data from a given database. The K2 met-
ric considers that there is not any prior knowledge
about the problem. Another interesting metric is
the so called BIC approximation [27].

log p(BD | G) ≈ BIC(G,BD) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− logN

2

∑

i

(ri − 1)qi

The BIC approximation has the nice property
for an LCEA of selecting simpler structures, which
reduce the computational cost.

3.2. Learning Chordal Graphs

The important class of graphical models that
have been found to be specially useful for FDA, is
the class of Decomposable Models [22] and can be
represented by means of both directed and undi-
rected graphs. The topological property selected
to represent independence assertions depends on
the type of graph we use: separation for undi-
rected graphs and d-separation for directed acyclic
graphs. Two sets of nodes A and B are called to
be separated by another set C, if every path be-
tween a node in A and a node in B, contains at
least one node of C. In this paper we will inter-
ested in getting graphs that are I-maps of a given
dependency model. Given a dependency model M,
an undirected graph G is said to be an I-map of M,
if every separation in G implies an independence in
M.

The graphical counterpart of the decomposable
dependency models are the chordal graphs. An
undirected graph is said to be chordal if every cycle
of length four or more has a chord. Another crucial
property of chordal graphs is that their cliques (i.e
the largest subgraphs whose nodes are all adjacent
to each other) can be joined to form a tree JT,
called the Junction Tree, such that any two cliques
containing a node α are either adjacent in JT or
connected by a chain of JT made entirely of cliques
that contain α. This property is called the running
intersection property.

The problem of getting a chordal graph from
a data set is relevant to many applications. This
can be accomplished by first determining the con-
ditional independence graph of the data and then,
if it is not chordal, transforming it into a chordal
graph by triangulization. For algorithms that need
to learn a model of data many times, the process
of making a graph chordal (triangulization) can
be too expensive in computational terms. On the
other hand, when the above approach is used, re-
sulting graphs might not always be as close to the
original graphs as expected. Therefore, it could
be more efficient if we obtain the chordal graph
straight from the data.

The class of dependency models isomorphic to
undirected graphs has been completely character-
ized in terms of five axioms [22] satisfied by the
independence relationships within the model. Re-

5

cently, two additional axioms have been proven to
be enough to characterize decomposable models
[10]. The characterization is based on the iden-
tification of two different properties:

• Axiom of Strong Chordality. If a separator of
α and β is not complete, then it has a proper
subset which is still a separator of α and β.

• Axiom of Clique-separability. Whenever two
nodes α and β are not adjacent (are indepen-
dent), we can find a separating set whose nodes
are all adjacent to each other

The following theorem was proven in [10]:
Theorem: [de Campos,1996]: A dependency

model M is isomorphic to a chordal graph if, and
only if, it satisfies the 5 axioms of Pearl and either
the axiom of Strong Chordality or the axiom of
Clique-separability.

This axiomatic characterization of decompos-
able models, in terms of independence relationships
creates desirata for driving automatic construction
of chordal graphs from data. In [10] was developed
an algorithm that finds a minimal chordal I-map
of any dependency model isomorphic to an undi-
rected graph. The restriction to graph-isomorphic
models was necessary to prove the results. It is not
clear whether the methodology can be adapted to
deal with more general models. We conjecture that
for optimization purposes this restriction is not so
hard. On the other hand it was assumed that the
data is a perfect representation of the underlying
model. Because the algorithm uses conditional in-
dependence tests of order as low as possible, it
could be a good choice for optimization problems
with low interaction patterns. By the way, this
have been the case for many of the current new
Bayesian Optimization Algorithms. For example,
in BOA [24] the maximum amount of the edges
coming to a node is constraint by a parameter of
the algorithm.

3.3. The Junction Tree Sampling Algorithm

In this paper we will consider the Junction Tree
Sampling Algorithm (JTSA) as the heart of the
FDA. This idea will be used as the starting point
for the extension of the FDA beyond the scope of
the optimization of additive decomposable func-
tions.

In the optimization context the junction tree
is used as a sampling tool. However, the junc-
tion tree has been used before to tackle general

problems of inference and learning within the gen-
eral framework of probabilistic graphical models.
There, the key problem that arises is the problem
of computing the posterior probabilities of certains
variables given the observed values of other vari-
ables. That is the case, for example, of the Hiden
Markov Models HMM and the Boltzman Machine.
In optimization we are interested also in the gen-
eration of a population of individuals according to
the computed distributions.

Perhaps the most important property of the
junction tree algorithm is that indeed it is generic;
it can be applied to any graphical model. So, we
can expect that the JTSA is general enough to deal
with a large class of optimization problems. Let us
to say a few words on this affirmation.

For decomposable distributions the calculation
of the posterior probabilities is straightforward,
and can be achieved via a local message-passing al-
gorithm on the junction tree. As it was said above
descomposable distributions are isomorphic to tri-
angulated or chordal graphs, where the junction
tree is actually defined [29]. Nonchordal graphs
can be turned into chordal graphs by addition of
edges. This means, that the same algorithm can
be used for all undirected graphs, an untriangu-
lated graphs is first triangulated. Finally, it is well
known that it is possible to convert direct graphs
to undirected in a manner that preserves the prob-
abilistic structure of the original graph.

There are many examples of application of junc-
tion tree like algorithms, where it is emphasized
the unifying framework of graphical models both
for expressing probabilistic dependencies and for
describing algorithms that perform the inferential
step of calculating posterior probabilities on these
graphs. The research work done in [17] extends
this unification to the sampling step of generating
populations of individuals according to the calcu-
lated posterior probabilities.

4. The Factorized Distribution Algorithm

FDA (the Factorized Distribution Algorithm),
as was introduced in [17], is an evolutionary algo-
rithm which combines mutation and recombination
by using a distribution instead. First the distribu-
tion is estimated from a set of selected points. It
is then used to generate new points for the next
generation. The FDA has been extensively inves-
tigated for the optimization of additively decom-
posed discrete functions (ADFs). It was shown the-

6

oretically and numerically that the scaling of the
FDA depends on the ADF structure and the spe-
cific assignment of function values. Difficult func-
tions on a chain or a tree structure are optimized
in about O(n

√
n) function evaluations. More stan-

dard genetic algorithms are not able to optimize
these functions.

The main assumption of previous work done on
FDA, is that an ADF and a factorization of the
probability distribution is given. The factorization
can also be used at the initialization step. For
faster convergence a proportion of r ∗ N individ-
uals can be generated with a local approximation
of the conditional marginal distributions.

First we define precisely an ADF.

Definition: An additively decomposed function
(ADF) is defined by

f(x) =
∑

si∈S
fi(Πsix) S = {s1, . . . , sl} si ⊆ X̃

(1)
where

X̃ := {x1, . . . , xn} B := {0, 1} X := B|X̃|

Xs ⊆ X with s ⊆ X̃
Πsx := the projection of x ∈ X onto the subspace Xs

FDA can be used with an exact or an approximate
factorization. It uses finite samples of points. Con-
vergence of FDA to the optimum will depend on
the size of the samples. FDA can be run with any
popular selection method. We usually apply trun-
cation selection. In the figure 1 we present the
FDA algorithm as was introduced in [17].

The basic assumption of FDAr is the use of the
structure of the ADF function as the structure of
the underlying distribution of the selected set of
points. However, it is already known that in gen-
eral this is not true. For exponential selection it
can be shown that the assumption holds, but it is
a bad selection method. For truncation selection,
however there is a considerable departure from this
condition.

Nevertheless, the point is that FDAr outper-
forms other algorithms when optimizing ADFs. At
this moment, there exist a few FDA implementa-
tion, but all the reported results are surprisingly
very good. Here we only show the results obtained
by our implementation in the case of the deceptive
sub-function f3

dec. This function has been defined

FDAr

• STEP 0: Set t⇐ 0. Generate (1− r) ∗N � 0
points randomly and r∗N points according to a
local approximation of the conditional marginal
distributions.

• STEP 1: Selection of promising points.

• STEP 2: Compute the conditional probabili-
ties ps(Πbix|Πcix, t).

• STEP 3: Generate a new population according
to p(x, t+ 1) =

∏l
i=1 p

s(Πbix|Πcix, t).

• STEP 4: If the termination criteria are met,
FINISH.

• STEP 5: Add the best point of the previous
generation to the generated points (elitist).

• STEP 6: Set t⇐ t+ 1. Go to STEP 1.

Figure 1. The FDA with fixed model.

before. It is used to define the separable deceptive
function of order three

FDec(x) =
l∑

i=1

f3
dec(Πsix)

Table 5 presents for 90 variables, the minimal (or
critical) population size, which is defined as the
minimal population size guaranteeing that at least
950 of 1000 runs are successful. It is worth not-
ing that the presented results have been obtained
without the initialization step of FDAr. In [18] it
is reported an improvement of four generation of
FDA0.5 with respect to FDA0.

T 0.05 0.1 0.15 0.2 0.3

N∗ 1100 600 450 950 1000

Gen 7.2 8.5 9 9.9 11.7

Table 1
Results of our FDA implementation.

The use of the function structure has also the
appealing of opening a door to certain class of con-
straint problems (see [17]). Althouhg in the next
section, we extend FDA to deal with a class of con-
straints, which do not have to be compatible with
the structure of the function.

4.1. Dealing with constraints and the FDA

Two basic approaches are known, when Evolu-
tionary algorithms are applied to the solution of

7

constraint optimization problems.
The first approach searches only in the space

of solutions which fulfills the constraints (space of
feasible solutions). To do that the applied opti-
mization operator assures that no illegal solutions
will be generated during the search. Depending on
the type of optimization method applied these op-
erators can become complex and costly in terms
of time. The other approach considers the search
over a wider space than that formed by the feasible
solutions. A penalty function is generally defined
which punishes the non feasible solution points.
This approach faces then the problem of how to
combine the penalty function with the own objec-
tive function.

It has been acknowledged that some EDA can
easily handle certain optimization problems with
constraints. In [17] it is shown that when the struc-
ture of the additive function is used for the factor-
ization, and this structure is compatible whith the
structure of the constraints, the FDA will work in
the optimization of the function by generating only
legal points.

In this section we show that a FDA with minor
extensions is able to handle the above mentioned,
and another kind of constraints, which do not have
to be compatible with the structure of the function.
Furthermore, the way that these constraints are
enforced in the new generated population neither
depend on the structure of the function, just on
the factorization. We will show an example of this
type of constraint problems.

Let f(x) be a function defined over the set a n-
dimensional binary vectors x that satisfy the fol-
lowing constraint: 1 ≤ a < u(x) ≤ b < n, where
a, b, n ∈ N and u(x) is the function of unitation.

In [26] it is introduced a Constraint Univari-
ated Marginal Distribution Algorithm (CUMDA)
for the solution of this class of functions. In order
to explain the FDA approach to these problems
some notation is necessary.

Definition: Given a set of sets S=s1, . . . , sl, we
define for i = 1, 2, . . . , l sets di, and bi,

di = ∪ij=1sj , bi = si\di−1

We consider that the si are sorted following the
order imposed by the junction tree in the gener-
ation of points, s1 correspond to the root of the
tree, d0 is set to 0. For each vector to be generated
using the FDA, the assignation of values for the
subset of variables Xbi has to fulfill the following
two conditions:

1) u(Xsi) ≤ b.
2) u(Xsi) ≥ a− (n− |si|).
The conditions establish that after generating

variables Xbi , the accumulated value of unitation
u(Xsi) should not exceed the constraint b, and it
has to be still possible for the vector X to reach
the constraint value a.

To make FDA able to deal with these constraints
we only change the generation step. This FDA will
restrict the set of possible assignations of Xbi ac-
cording to their unitation values. The marginal
probabilities of those assignations that violate the
constraints are redistributed among the ’feasible’
ones, proportionally to their own marginal prob-
abilities. In this way, the relative proportions of
legal marginal probabilities keep fixed, only their
absolute values are changed. Our approach is ex-
tensible to a wide set of constraint problems, those
for which it is possible to generate new points con-
sidering in every step of the generation the fulfill-
ment of constraints. The case when structure of
the factorization is compatible which the structure
of the constraints is a particular case of the prob-
lems we have analyzed.

5. FDAL - an FDA with Structural
Learning

At this point we can introduce our FDAL, an
FDA algorithm that learns the structure of the dis-
tribution of the selected set at every generation.
The learning algorithm used was commented in
section 3.2 and is presented in Figure 2. Figure
3 outlines the FDAL algorithm.

Learning Algorithm

• STEP 0: Starting from a complete graph,
delete edges by making independency tests of
order 0 and 1. Call this graph G01.

• STEP 1: Find the list L of maximal cliques of
G01 or a list of reasonable sized sets that contain
these cliques.

• STEP 2: Divide the cliques in L as much as
possible using the axioms of section 3.2.

• STEP 3: Construct the JT.

Figure 2. Structural Learning Algorithm.

Table 2 presents results obtained for the same
deceptive problem, but with 30 variables. We show
the minimal population size obtained with a set-

8

FDAL

• STEP 0: Set t ⇐ 0. Generate N � 0 points
randomly.

• STEP 1: Selection of promising points.

• STEP 2: Learning the Junction Tree (JT) di-
rectly from the data.

• STEP 3: Compute the marginal densities as-
sociated to the nodes of the JT.

• STEP 4: Generate a new population according
to the constructed JT.

• STEP 5: If the termination criteria are met,
FINISH.

• STEP 6: Add the best point of the previous
generation to the generated points (elitist).

• STEP 7: Set t⇐ t+ 1. Go to STEP 1.

Figure 3. The FDA with Structural Learning.

N∗ Gen

FDA 150 9
FDAL 2000 3.5
BOA 900 12

Table 2
Results for a Deceptive 3 problem.

ting of 95 success in 100 runs. Both FDA and
FDAL use truncation selection of 0.15. The result
for BOA is only approximated, it was taken from
[24] for BOA with K2 metrics.

We have to say that our current implementa-
tion of the learning algorithm is still under devel-
opment. Hence, it could be possible further im-
provements of these results. Moreover, results of a
parallel research indicates us that there is a strong
dependency of the minimal population size on the
JT. As far as, we can construct different JT for
the same distribution, the problem of selecting the
optimal JT immediately arises. We will present
our results in a forthcoming paper. At this mo-
ment, the root of JT is selected randomly at every
generation.

6. Conclusions

We have presented an approach that allows the
extension of the application of the FDA beyond the
scope of problems, for which prior knowledge about
the structure of the selected distributions of points
is available. For this, we have augmented the clas-
sic FDA scheme with a learning component, based

on testing independency relationships of order as
low as possible. We have also introduced some mi-
nor modification of the FDA to manage certain
constraint problems. Here the interesting point is
that it is not necessary fully compatibility between
the constraints and the function structure, as was
the case in [17].

References

[1] Acid S. , de Campos L.M. (1995), Approximations of
causal networks by polytrees: an empirical study, in: B.
Bouchon-Meunier, R.R. Yager, L.A. Zadeh, eds., Ad-
vances in Intelligent Computing, Lect. Notes Comput.
Sc. 945, Springer Verlag, Berlin, 149–158.

[2] Aho A.V., Hopcroft J.E. and Ullman J.D. (1987), Data
Structures and Algorithms ,Addison-Wesley.

[3] Baluja S. (1994), Population-Based incremental learn-
ing: A method for intergrating genertic seach based
function optimization and competitive learning, Tech
Rep. No. CMU-CS-94-163, Pittsburg, PA: Carnegie
Mellon University

[4] Baluja S. and Davies S. (1997), Using optimal depen-
dency trees for combinatorial optimization: Learning
the structure of the search space, in: Proceedings of
the 1997 International Conference on Machine Learn-
ing, 30–38.

[5] Beinlich I.A., Suermondt H.J., Chavez R.M. and
Cooper G.F. (1989), The Alarm monitoring system: A
case study with two probabilistic inference techniques
for belief networks, in: Proceedings of the Second Euro-
pean Conference on Artificial Intelligence in Medicine,
247–256.

[6] Boyan J. and More A. (1996), Learning Evaluation
Functions for large acyclic domains. In L. Saitta, ed-
itor, Machine Learning: Proceedings of the Thirteen
International Conference. Morgan Kauffman .

[7] Chow C.K. and Liu C.N. (1968), Approximating dis-
crete probability distribution with dependence trees,
IEEE T. Inform. Theory 14, 462–467.

[8] de Campos L.M. (1998), Independency relationships
and learning algorithms for singly connected networks,
Journal of Experimental and Theoretical Artificial In-
telligence 10, 511–549.

[9] De Bonet J. S. , Charles J. , and Viola P. (1997),
MIMIC: Finding optima by estimating probability den-
sities. In. M Mozer, M. Jordand T. Petsche, editors,
Advances in Neural Information Processing Systems.

[10] de Campos, L.M. and Huete, J. F (1997), Algo-
rithms for Learning Decomposable Models and Chordal
Graphs. Tech. Rep. DECSAI 970213. University of
Granada(http://decsai.ugr.es/gte/tr.html)

[11] Etxeberria R. and Larranhaga P. (1999), Global Opti-
mization using Bayesian networks. II Symposium on
Artificial Intelligence CIMAF99. Special Session on
Distributions and Evolutionary Optimization

[12] Henrion M. (1988), Propagating uncertainty in
Bayesian networks by logic sampling, in: J.F. Lemmer,
L.N. Kanal, eds., Uncertainty in Artificial Intelligence
2, North-Holland, Amsterdam, 1988,149–163.

9

[13] Heckerman, D. Geiger D. and Chicckering M. (1994),
Learning Bayesian networks: The combination of
knowledge and statistical data. (Technical Report
MSR-TR-94-09). Redmond, WA: Microsoft Research.

[14] Lam W. and Bacchus F. (1994), Learning belief net-
works: an approach based on the MDL principle, Com-
putational Intelligence 10, 269–293.

[15] Larrannaga P.,Etxebarria R., Lozano J.A., Sierra B.,
Inza I., Penna J. M. (1999), A review of the coopera-
tion between evolutionary computation and probabilis-
tic graphical models. II Symposium on Artificial Intel-
ligence CIMAF99. Special Session on Distributions and
Evolutionary Optimization

[16] Mühlenbein H. (1998), The Equation for Response
to Selection and its Use for Prediction. Evolutionary
Computation, 5, 303–346.

[17] Mühlenbein H., Manning T. and A. Ochoa (1999),
Schemata, Distributions and Graphical Models in Evo-
lutionary Optimization. to appear in the Journal of
Heuristic v5. n2.

[18] Mühlenbein H. and Mahnig T. (1999), FDA-An
Evolutionary Algorithm for Additively Decomposed
Functions. II Symposium on Artificial Intelligence
CIMAF99. Special Session on Distributions and Evo-
lutionary Optimization

[19] Ochoa A. (1997), How to deal with costly fitness
functions in evolutionary computation. In Proceed-
ings of the 13th ISPE/IEE International Conference on
CAD/CAM, Robotics & Factories of the Future. 788–
793. Pereira .

[20] Ochoa A. (1999), Finding Wavelet Packet Bases with
an Estimation Distribution Algorithm. Presented to
the International Conference GECCO99.

[21] Ochoa A., Soto M., Acid S. and de Campos L. M.
(1999), Bayesian Evolutionary Algorithms based on
Simplified Models, II Symposium on Artificial Intelli-
gence CIMAF99. Special Session on Distributions and
Evolutionary Optimization

[22] Pearl J. (1988), Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan and
Kaufmann, San Mateo.

[23] Pelikan, M and Mühlenbein H. (1998), The bivari-
ate marginal distribution algorithm. London: Springer-
Verlag. In printing

[24] Pelikan, M. Goldber D. E. and Cant-Paz E. (1998),
Linkage problem, Distribution estimation and Bayesian
Estimation Networks. Illegal Report 98013. November.

[25] Rebane G. and Pearl J. (1989), The recovery of causal
polytrees from statistical data, in: L.N. Kanal, T.S.
Levitt, J.F. Lemmer, eds., Uncertainty in Artificial In-
telligence 3,North-Holland, Amsterdam, 175–182.

[26] Santana, R. and Ochoa, A. (1999), Dealing with Con-
straints with Estimation Distribution Algorithms: The
Univariate case. II Symposium on Artificial Intelligence
CIMAF99. Special Session on Distributions and Evolu-
tionary Optimization. (this issue).

[27] Schwarz G. (1978), Estimating the dimension of a
model. Annals of Statistics, 7(2):461-464.

[28] Syswerda G. (1989) Uniform Crossover in Genetic Al-
gorithms. International Conference on Genetic Algo-
rithms 3,2-9.

[29] Whittaker, J. (1991), Graphical models in applied mul-

tivariate statistics. Wiley Series in Probability and
Mathematical Statistics. New York : Wiley.

