
FINDING TYPICAL TESTORS BY USING AN EVOLUTIONARY STRATEGY

EDUARDO ALBA-CABRERA

ROBERTO SANTANA

ALBERTO OCHOA-RODRIGUEZ

MANUEL LAZO-CORTES

Institute of Cybernetics, Mathematics and Physics
Calle E # 309 e/ 13 y 15, Vedado, c/p 10400, C. de La Habana, Cuba

Telef. (537)32-6748, 32-5026
FAX: (537)33-3373

{ ealba, rsantana, ochoa, mlazo} @cidet.icmf.inf.cu

Abstract

The concept of testors appeared in the middle of the fifties. Testors and particularly typical testors, have been
used in feature selection and supervised classification problems. Deterministic algorithms have usually been used
to find typical testors. In this paper a new approach to find typical testors of a basic matrix is described. This
approach is based on the application of the Univariate Marginal Distribution Algorithm as the kernel of an
optimization strategy. The behavior of this algorithm is at least as well as the simple Genetic Algorithms with
uniform crossover for the same kind of problems, but it is simpler and less costly in computational terms.
Several experiments confirm the validity of this approach.

1. INTRODUCTION

The concept of testor appeared in the middle of the fifties [2], associated to the problem of detection of faults in
electrical circuits.
Afterwards, it was applied to supervised classification problem in Geology [4]. In this case the concept of testor
was adapted to determine the informational relevance of features that describe the set of objects. Up to date, the
development of testor theory has strongly been connected to these two kind of problems: the detection of faults
in electrical circuits [3], and the classification and recognition of objects [8], [13].
This paper deals in the second kind of problems and focus on the computation of the typical testors of a Boolean
matrix [13]. This problem has usually been solved by deterministic algorithms (DA) that find all typical testors
when the matrices are not large [14]. However, in some applications for large matrices, the use these DAs is
impossible because their eff iciency is very poor. The motivations for this work are the combinatorial nature of
the testor calculus problem, and the successes obtained in the application of the evolutionary algorithms (EA) in
the solution of combinatorial problems.
First attempt of an EA application to calculate the typical testors was published in [15]. In that paper, a Genetic
Algorithm (GA) [5], [6] with one point crossover, and heuristic mutation and selection operators was used. The
EA we employ in this paper is the Univariate Marginal Distribution Algorithm (UMDA) [10]. The behavior of
this algorithm is at least as well as the simple GA with uniform crossover for the same kind of problems, but it is
simpler and less costly in computational terms. In addition, we consider an improved objective function, which
evaluates more accurately the typical testor candidates.
At first, we introduce the concept of typical testor for Boolean matrices. Then, we analyze the DAs reported to
calculate the set of all typical testors and we propose a UMDA to obtain “as many as possible” typical testors
from a basic matrix. By the end, we discuss several experiments in order to show the performance of the
introduced UMDA.

2. THE CONCEPTS OF TESTOR AND TYPICAL TESTOR

Let U be a collection of objects, these objects are described by a set of n features and are grouped into l classes.
By comparing feature to feature each pair of objects belonging to different classes, we obtain a matrix
M = [aij]mxn where aij ∈ { 0,1} , and m is the number of pairs. aij = 0 (1) means that the objects of pair denote by i
are similar (different) in the feature j. Let I = { k1,...,km} be the set of the rows of M and J = { j1,...,jn} the set of
labels of its columns (features). Let T ⊆ J, M/T is the matrix obtained from M eliminating all columns not
belonging to the set T.

Definition 1.- A set T = { }j ji is1
,..., ⊆ J is a testor of M if no zero row in M/T exists.

Definition 2.- The feature j ir
∈ T is typical with respect to (wrt) T and M if ∃q, q ∈ { 1,...,m} such that ak jq ir

= 1

and for s > 1 ak jq i p
= 0, ∀p, p ∈ { 1,...,s} p ≠ r.

Definition 3.- A set T has the property of typicality wrt a matrix M if all features in T are typical wrt T and M.

Proposition 1.- A set T = { }j ji is1
,..., ⊆ J has the property of typicality wrt matrix M if and only if an identity

matrix can be obtained in M/T, by eliminating some rows.

Definition 4.- A set T = { }j ji is1
,..., ⊆ J is denominated typical testor of M if it is a testor and it has the property

of typicality wrt M.
Let a and b be two rows from M.
Definition 5.- We say that a < b if ∀i ai ≤ bi and ∃j such that aj≠bj.
Definition 6.- a is a basic row from M, if there is not any row less than a in M.
Definition 7.- The basic matrix of M is the matrix M’ only containing all different basic rows of M.
Proposition 2.- The set of all typical testors of M is equal to the set of all typical testors from the basic matrix
M’ .
Let ψ*(M) be the set of all typical testors of the matrix M.
According to proposition 2, to obtain the set ψ*(M) it is very convenient to find the matrix M’, and then, to
calculate the set ψ*(M’). Taking into account that M´ has equal or less number of rows than M, the eff iciency of
the algorithms should be better with M’ than with M. In fact, all DAs described in this paper work on M’. The set
ψ*(M’) of all typical testors from a Boolean matrix M’ allows the determination of the informational relevance
of features [8], the reduction of the dimension of objects descriptions and the use of these testors as support sets
for partial comparison between objects [13].

3. DETERMINISTIC ALGORITHMS TO CALCULATE ψ*(M’)

Trivial Algorithm
In order to determine ψ*(M’), we can use a very simple algorithm verifying whether or not each subset of J
fulfill s the properties of testor and typicality. Let m be the number of rows in M’ . It can be observed that the
number of operations is approximately

m
n

n
n

nnn
c

++

+

+

= ...
3

3
2

2
1

m2n < c < mn2n.

Therefore, the basic need of searching more eff icient algorithms.
Yablonskii ’ s algorithm
Yablonskii ’s algorithm [3] uses the language of Formal Logic. A conjunctive normal form (cnf) with m
elementary disjunctions is created. Disjunctions are associated one to one to rows of M’ by joining all column
labels that have unitary elements in that row via disjunctive operator. Then, starting from the cnf, a disjunctive
normal form (dnf) is obtained by opening the parenthesis and considering column labels as Boolean variables.
Afterwards, some algorithm to find the reduced dnf is applied. The sets of column labels associated to each
elementary conjunction of reduced dnf are typical testors of M’ .
Algorithm BT
In order to apply the algorithm BT [14], the set ℘(J) of all subsets of column labels of M´ is ordered. This total
order is defined by the number associated to the binary characteristic vector of each element of ℘(J). This
algorithm, as well the trivial one, verifies the fulfill ment of the testor and typicality properties but, as a
difference, it does not verify all the elements of ℘(J). The algorithm BT “ jumps” over some sets of ℘(J), i.e. it
does not consider several successors of the verified set because it is possible to know that they are not typical
testors.
Algorithm REC
The algorithm REC [14] is based on the same principles of algorithm BT, but the “ jumps” are different.
Algorithm CC
The algorithm CC [14] proposes a different approach. The elements of the set ℘(J) are not verified but the
internal structure of matrix M’ (positions of the zero and one entries) is analyzed. CC finds all unitary
submatrices of M’ that contain as many rows as possible (maximal subsets of columns having the property of
typicality). Then, the property of testor is verified for each one of these sets.

Algorithm CT
This algorithm [14], as well as the CC, starts from the internal structure of matrix M’, but as a difference , it
finds all complete sets. A complete set is a set of columns that is testor and contains a submatrix with the
following characteristics:
1.- Dominant diagonal of ones.
2.- Zeros in the bottom triangular.
Algorithm YYC
The algorithm YYC [14] also analyzes the internal structure of the matrix by checking the fulfill ment of the
properties. It is carried out by adding a row each time and updating the set of all typical testors up to the current
row. The algorithm YYC combines ideas from both algorithms: Yablonskii ’s algorithm and CC.
All the above described DAs calculate the set ψ*(M’). These algorithms are not feasible for large matrices in
terms of time. This is consequence of the exponential nature of the problem. Therefore, it would be convenient
to find a subset of the set ψ*(M’) in a viable time. This subset gives us the possibilit y for the application of the
testor’s tools when a large M’ is generated.

4. POPULATION BASED SEARCH METHODS THAT USE SELECTION
AND THE PROBLEM OF CALCULATING A SUBSET OF THE SET ψ*(M')

Population Based Search Methods that use Selection (PBSMS) do the search of solutions using a set of points
instead of a single one. Starting from a set of initial points (called population), these algorithms select a set of
promising points and generate a new population. This process is repeated until a stop condition is satisfied.
The GAs belong to the PBSMS class. In GAs, new populations of points (usually called chromosomes or
individuals) are created by applying a set of genetic operators to the population of selected individuals. Classical
genetic operators comprise, besides Selection, the Crossover and Mutation ones. In crossover two individuals are
picked from the selection set, and two offspring are created by recombining the genetic information contained in
their parents. Mutation applies by modifying the values (alleles) of variables (genes) in the chromosomes.
GAs have shown to be very effective when applied to a wide set of optimization problems, nevertheless they
have experienced diff iculties in optimizing functions with nonlinear interacting variables [11].
As we stated before, a GA has already been used for calculating a subset of the set ψ*(M'). We will use a
different kind of PBSMS and an improved objective function.
It has been stated [11] that a good search strategy for PBSMS is to generate new points with a similar probabilit y
distribution to that existing in the selected set. This is:

P(x,t+1) ≈ Ps(x,t)

The class of PBSMS, which estimates a probabilit y distribution of points in the selected set and uses this
information to generate new points is called Estimation of Distribution Algorithms (EDA). Although EDA have
shown a better performance than the GAs, the estimation of distributions is also a diff icult problem [7], [12]. A
particular case is the Univariate Marginal Distribution Algorithm (UMDA), which has a very simple probabili stic
model. This reason, added to the above mentioned EDA advantages over GA determined our choice.
Another point is that the stochastic attribute of these methods allows finding different solutions each time the
algorithm is executed. Diverse solutions can be found in the same population when they are combined with
appropriated niching methods [9].
It is clear, that given a matrix M’ , multiple typical testors can be found, this fact can lead the PBSMS in different
directions (sometimes opposite) during the search. This would require more time to reach one of the solutions.
When there are typical testors very hard to find, we are also in presence of isolation.
Finally, another characteristic of the typical testor problem is that most of the information about the problem
structure is stored in the basic matrix. It is an open question the influence of the number of testors, their length
and the internal structure of basic matrix in the complexity of the search.

5. OPTIMIZATION APPROACH FOR FINDING A SUBSET OF THE SET ψ*(M')

Before introducing the UMDA we present its components.
Representation: Vectors (chromosomes) are binary strings of length n (number of columns of the analyzed basic
matrix) and they represent the characteristic vectors of the subsets of features.
Initial population: It is a set of N randomly chosen characteristic vectors.
Selection: Truncation selection with a truncation parameter tc, 0<tc<1
Each chromosome xk = (xk1,...,xkn); k = 1,...,N; xki ∈ { 0,1} ; i = 1,...,n is evaluated using the following objective
function:

10,
)(

)1(
)(

)(

,..,1

<<−+=
∑
=

ααα

nv
kv

kk
k x

xp

m

xt
xf

where t(xk) is the number of rows of M’ that contain some unitary element in the columns of Txk
, Txk

is the set

which characteristic vector is xk , p(xk) is the number of typical features wrt Txk
and M’. α is a weighting

coefficient.
Notice that for any chromosome xk, 0 ≤ f(xk) ≤ 1. If the function f reaches the maximal value 1 for a chromosome
xk , then Txk

is a typical testor. It is held if and only if any row of M’ has at least one unitary element and all the

features of the set Txk
 are typical. The higher the value of f(xk), the nearer to the fulfillment of the typicality and

testor properties the set Txk
wrt the matrix M’ is. The previous GA [15] does not consider this information. A

very simple function is taken as the objective function of the GA that takes only three values: typical testor, no
testor and no typical testor. This function does not consider the fact that the sets can be near of (or far from) the
fulfillment of the testor and typicality properties. α is parameter that controls the trade-off between typicality and
testor properties.
We describe the UMDA in Fig 1. UMDA exploits the additive genetic variance mainly. Nevertheless it has been
applied to several problems where there are interactions among the variables. The class of evolutionary
optimization algorithms that make use of univariate distributions comprises also the Probabilistic Based
Incremental Learning (PBIL) [1].

UMDA

1. Set t ← 1 The initial population is generated.
2. Select k ≤ N points according to a selection method. Compute the marginal frequencies ps

i (xi,t) of the selected
set.

3. Generate N new points according to the distribution p(x,t+1) = p x ts
i i

i

n

(,)
=

∏
1

 . Set t ← t +1

4. If the termination is not met, go to step 2.
Figure 1. Univariate Marginal Distribution Algorithm

The termination criteria for the UMDA can be a low fitness variance in the population (indicating an early
convergence to suboptimal values), a fixed number of generations, or the appearance of the desired solution in
the population. In our experiments, after the optimum has been found we allow the algorithm to execute during q
additional generations in order to explore the local space around the optimum found. Otherwise, the algorithm
stops when no typical testor has been found after a maximum number of generations (Maxgen). In Fig. 2 we
observe how the UMDA is inserted in the general optimization algorithm. Similarly to the previous one, we use
as the stop condition of the optimization algorithm the number of iterations, the elapsed time or the number of
found testors.

1. Start from an empty list of typical testors TTLIST. Iter ← 1
2. While not Stop Condition
3. Execute UMDA
4. For all solutions in the final population
5. If the solution is not in the TTLIST add it to the list
6. Iter ← Iter + 1

Figure 2. Optimization approach for the typical testor problem

6. EXPERIMENTS AND RESULTS

The first experiment focus on a comparison between the performances of the UMDA and the simple GA
published in [15], based on the time spent to compute the same number of typical testors. As in [15], all
experiments were carried out on a PC with a Pentium 150Mhz processor.

Given a basic matrix that determines the number of variables in our codification of the optimization approach,
and the UMDA, we can completely specify the algorithm to use with a tuple of 6 parameters {Iter, popsize,
Truncation, Maxgen, α, q}. The parameters correspond, respectively, to the maximal number of iterations of the
optimization algorithm, the population size of the evolutionary algorithm, the parameter of the truncation
selection, the maximum of generations allowed, parameter alpha of the objective function, and the additional
number of generations after one optimum is reached.
The used set of parameters was {no defined, 100, 0.15, 15, 0.1, 3}. The stop condition was the number of typical
testors that were found by the algorithm (see Table I).
A collection of four basic matrices described in [15] was tested. The results are shown in Table I. In all cases the
efficiency of the UMDA is much better than the simple GA. Besides, the number of evaluations of the UMDA is
significantly less than the simple GA one.

Table I. Comparison of the simple GA and the UMDA performances.
Simple GA UMDA

Matrices Typical testors
found Time Evaluations Time Evaluations

40x42 655 241 s 1 400 000 19 s 142 500
269x42 318 1043 s 5 000 000 28 s 89 800
209x47 1967 1816 s 5 000 000 114 s 706 900

1215x105 105 19 033 s 22 500 000 1 020 s 336 700

Table II shows the comparison between UMDA and DAs. In [14] was experimentally stated that the most
efficient DA is the algorithm CT. Therefore, in all the experiments with the DAs this algorithm was used. For the
first three matrices, the number of typical testors |ψ*(M’)| is known, because the DA calculates the set ψ*(M’) in
a relative small time. It can be appreciated that the UMDA calculates in the same time around half of the ψ*(M’).
For the remaining three matrices, the number |ψ*(M’)| is unknown because the DA works more than two days
and does not finish. In the Table II, the number of typical testors found by UMDA in three hours is shown. In this
experiment, as in the previous one, the same set of UMDA parameters for all matrices except the last was used.
Taking into account the dimension of the last matrix the population size was increased to 200.

Table II. Comparison of the DA and the UMDA performances

Matrices
Total num. of
typical testors Det. Algorithm

Time

Typical testors found
by UMDA

40x42 8963 49 s 2 0471

80x42 32 277 1722 s 16 2542

110x42 65 299 4820 s 36 683
269x42 ? + 2 days (in 3 hours) 71 448
209x47 ? + 2 days (in 3 hours) 65143

1215x105 ? + 2 days (in 3 hors) 2421

In other experiments we studied the dynamics of the algorithm, the influence for the search of both, the
parameters and the characteristics of the specific instances of the problem.
We use a matrix corresponding to a real problem with 42 variables and compare 16 different algorithms which
are determined by the following set of parameters: {10000, [100, 200, 300, 400], 0.15, 15, [0.2, 0.4, 0.6, 0.8],
3}. Numbers in brackets indicate the different values used in the experiments for the population size and the
parameter α.
Table III shows the number of different typical testors found for each combination. It can be appreciated that the
choice of parameter α influences the quality of the search. In opposition to expectations, by augmenting the
population size we do not achieve an increment in the number of solutions. This could be explained because with
a smaller population size we have a stronger selection pressure when the parameter of the truncation selection is
fixed as the case in Table III is.

Table III . Influence of alpha and population size in the number of typical testors found by UMDA.

1 This number corresponds to the median in ten applications of the UMDA.
2 This number corresponds to the median in three applications of the UMDA.

αα
Popsize

0.2 0.4 0.6 0.8

100 3989 4434 5009 5606
200 3936 4163 4585 5257
300 3770 3896 4418 4983
400 3704 3784 4325 4826
Tot. 15399 16277 18337 20672

6186 6524 7110 7697

We also evaluate the behavior of the algorithm analyzing the number of evaluations needed to reach an
optimum. Here we divided the number of evaluations made by the algorithm by the number of testors found
(considering repetitions) during the search. Table IV shows the values for the algorithms. In comparison to the
expected number of evaluations needed by a random walk algorithm (≈ 242/214=228) all the entries show a more
efficient performance. Nevertheless we believe these values can be improved by looking for the optimal set of
parameters of the algorithm.

Table IV. The ratio between the number of evaluations and the number of found typical testors.

αα
Popsize

0.2 0.4 0.6 0.8

100 875.4 710.3 532.3 428.3
200 1235.7 1078.4 931.5 872.3
300 1628.6 1495.3 1292.8 1274.9
400 2033.2 1899.6 1672.5 1644

Figure 3 shows the distribution of the length for all the typical testors found for different values α. We can see
that the choice of α does not influence only the number of testors found but also their length. When α = 0.8 we
have a higher probability of finding testors of short length, this relation is changed when α = 0.2.

Figure 3. Distribution of the length for all the typical testors found for different values α.

CONCLUSIONS

A new approach to calculate typical testors of a basic matrix is described. This approach is based on the
application of the UMDA as the kernel of the optimization strategy.
The superior performance of the proposed UMDA over the simple GA reported in [15] is experimentally
demonstrated. The UMDA calculates the same number of typical testors as the reported GA in a fewer number of
evaluations and spending significantly less time.
This performance can be a consequence of the following points:

- the UMDA advantages over GA inherent to its internal optimization scheme
- the introduced objective function, that allows evaluating any subset of the whole set of features

considering its proximity to the fulfillment of the properties of testor and typicality. This fact is very
important for the selection step of the UMDA.

- the global optimization scheme in which the UMDA is inserted. For instance, by allowing the UMDA
runs q generations after the first optimum has been found, we can get other solutions without using
mutation and crossover operators.

Further planned research includes the application of hybrid strategies, combining traditional DAs and
evolutionary algorithms, and the study of the convenience of applying different EDA to calculate typical testors
of a basic matrix.

REFERENCES

[1] Baluja S. Population-Based incremental learning: A method for integrating genetic search based function
optimization and competitive learning(Tech Rep. No. CMU-CS-94-163) Pittsburg, PA: Carnegie Mellon
University, 1994.
[2] Cheguis, I. A. and Yablonskii , S. V. About testors for electrical outlines. Uspieji Matematicheskij Nauk 4,
(66) pp. 182-184 Moscow (In Russian), 1955.
[3] Cheguis, I. A. and Yablonskii , S. V. Logical Methods for controlli ng electrical systems. Trudy
Matematicheskava Instituta imeni V. A. Steklova LI, pp. 270-360. Moscow (In Russian), 1958.
[4] Dmitriev, A. N.; Zhuravlev, Yu. I. and Krendeleiev, F. P. On the mathematical principles of patterns and
phenomena classification. Diskretnyi Analiz 7. pp. 3-15. Novosibirsk, Russia (In Russian), 1966.
[5] Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
[6] Holland J. H. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor,
Michigan, 1975.
[7] Larrañaga P., Etxeberria R., Lozano J. A., Peña J. M. Optimization by learning and simulation of Bayesian
and Gaussian networks. Technical Report EHU-KZAA-IK-4/99 Intelli gent Systems Group Dept. of Computer
Science and Artificial Intelli gence. University of the Basque Country. December 1999. Also at
http://www.sc.ehu.es/isg.
[8] Lazo-Cortés M., Ruiz-Shulcloper J. Determining the feature relevance for non classically described objects
and a new algorithm to compute typical fuzzy testors Pattern Recognition Letters, vol. 16, pp. 1259-1265, 1995.
[9] Mahfoud S. W. Niching methods for genetic algorithms, Illi GAL Report No.95001. University of Illi nois at
Urbana-Champaign , 1995 also at ftp://ftp-illi gal.ge.uiuc.edu/pub/papers/Illi GALs/95001.ps.Z
[10] Mühlenbein, H. The equation for response to selection and its use for prediction, Evolutionary Computation
5, pp. 303-346, 1998.
[11] Muhlenbein, H., Mahnig, T., Ochoa, A.: Schemata, Distributions and Graphical Models in Evolutionary
Optimization, Journal of Heuristic, Vol. 5, No. 2, 1999.
[12] Pelikan M, Goldberg D. E. and Lobo F. A survey of optimization by building and using probabili stic
models, Illi GAL Report No.99018. University of Illi nois at Urbana-Champaign, Illi nois Genetic Algorithms
Laboratory, 1999.
[13] Ruiz-Shulcloper, J., Lazo-Cortés M., Alba-Cabrera E. An overview of the concept of testor. Pattern
Recognition Journal. Pergamon Press, 2000. (in press)
[14] Sánchez Díaz G. Program and Design of Eff icient algorithms to calculate typical testors from a basic
matrix. M.Sc Thesis BUAP. 1997. (In Spanish)
[15] Sánchez-Díaz, G., Lazo-Cortés M., Fuentes-Chávez O. Genetic Algorithm to calculate minimal typical
testors. Proceedings of the IV Iberoamerican Symposium on Pattern Recognition, pp. 207-214, 1999. (In
Spanish)

