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Abstract

The @ncept of testors appeaed in the midde of the fifties. Testors and particularly typicd testors, have been
used in feaure seledion and supervised clasdficaion problems. Deterministic dgorithms have usualy been used
to find typicd testors. In this paper a new approach to find typicd testors of a basic matrix is described. This
approach is based on the gplication of the Univariate Marginal Distribution Algorithm as the kernel of an
optimization strategy. The behavior of this algorithm is at least as well as the simple Genetic Algorithms with
uniform crosover for the same kind of problems, but it is smpler and less costly in computational terms.
Several experiments confirm the validity of this approadch.

1. INTRODUCTION

The concept of testor appeared in the middle of the fifties [2], asciated to the problem of detedion of faultsin
eledricd circuits.

Afterwards, it was applied to supervised clasdficaion problem in Geology [4]. In this case the concept of testor
was adapted to determine the informational relevance of feaures that describe the set of objeds. Up to date, the
development of testor theory has grongly been conneded to these two kind of problems: the detedion of faults
in eledricd circuits[3], and the dassfication and reaognition of objeds[8], [13].

This paper deds in the second kind of problems and focus on the computation of the typicd testors of a Boolean
matrix [13]. This problem has usually been solved by deterministic dgorithms (DA) that find all typicd testors
when the matrices are not large [14]. However, in some gplications for large matrices, the use these DAs is
impossgble because their efficiency is very poa. The motivations for this work are the combinatorial nature of
the testor cdculus problem, and the successes obtained in the goplication of the evolutionary algorithms (EA) in
the solution of combinatorial problems.

First attempt of an EA applicaion to cadculate the typicd testors was published in [15]. In that paper, a Genetic
Algorithm (GA) [5], [6] with one point crossover, and heuristic mutation and seledion operators was used. The
EA we employ in this paper is the Univariate Marginal Distribution Algorithm (UMDA) [10]. The behavior of
thisalgorithm is at least as well asthe simple GA with uriform crosover for the same kind of problems, but it is
simpler and lesscostly in computational terms. In addition, we cnsider an improved oljedive function, which
evaluates more acarately the typicd testor candidates.

At first, we introduce the @mncept of typicd testor for Booean matrices. Then, we analyze the DAS reported to
cdculate the set of al typicd testors and we propcse aUMDA to oltain “as many as possble” typicd testors
from a basic matrix. By the end, we discuss ®veral experiments in order to show the performance of the
introduced UMDA.

2. THE CONCEPTS OF TESTOR AND TYPICAL TESTOR

Let U be a olledion of objeds, these objeds are described by a set of n feaures and are grouped into | classs.
By comparing feaure to feaure eab par of objeds belonging to dfferent classes, we obtain a matrix
M = [&;]mn Where a; O {0,1}, and mis the number of pairs. &; = 0 (1) means that the objeds of pair denote by i
are similar (different) in the feaure j. Let | = {ky,...ky} be the set of the rows of M and J ={j,,...jn} the set of
labels of its columns (feaures). Let T 0J, M/ is the matrix obtained from M eliminating all columns not
belongingto the set T.



Definition 1- Aset T = { jil,..., Ji } O J isatestor of M if no zero row in M, exists.
Definition 2- The fedure jir O T istypical with resped to (wrt) T and M if [, q O {1,...,m} such that a =1
andfor s>1 ay; =0,0p,pO{1,.8 p#r.

Definition 3- A set T has the property of typicdity wrt amatrix M if al feguresin T are typicd wrt T and M.
Propasition 1- A set T= { jil,..., jis} (0 J has the property of typicdity wrt matrix M if and only if an identity
matrix can be obtained in My, by €eliminating some rows.

Definition 4- A set T = { Jieens jis} 0 Jis denominated typical testor of M if it isatestor and it has the property

of typicdity wrt M.

Let a and b be two rows from M.

Definition 5- We say that a < b if Oi g < by and [ such that azb;.

Definition 6- aisabasic row from M, if thereis not any row lessthan ain M.

Definition 7.- The basic matrix of M isthe matrix M’ only containing al different basic rows of M.

Propasition 2- The set of all typicd testors of M is equal to the set of all typicd testors from the basic matrix
M’

Let P* (M) be the set of al typicd testors of the matrix M.

According to propasition 2, to oltain the set Y*(M) it is very convenient to find the matrix M’, and then, to
cdculate the set @*(M’). Taking into acount that M” has equal or lessnumber of rows than M, the dficiency of
the dgorithms should be better with M’ than with M. In fad, all DAs described in this paper work on M’. The set
W*(M") of al typicd testors from a Boolean matrix M’ al ows the determination of the informational relevance
of feaures [8], the reduction of the dimension of objeds descriptions and the use of these testors as suppart sets
for partial comparison between objeds[13].

3. DETERMINISTIC ALGORITHMS TO CALCULATE y*(M’)

Trivial Algorithm
In order to determine Y*(M’), we can use avery simple dgorithm verifying whether or not eat subset of J
fulfill s the properties of testor and typicdity. Let m be the number of rows in M’. It can be observed that the

number of operations is approximately
B4R 4E- 3

m2" < ¢ < mn2".

Therefore, the basic need of searching more dficient algorithms.

Yablonskii’ s algorithm

Y ablonskii’s agorithm [3] uses the language of Formal Logic. A conjunctive norma form (cnf) with m
elementary digunctions is creaed. Digunctions are sssociated one to one to rows of M’ by joining al column
labels that have unitary elements in that row via disjunctive operator. Then, starting from the cnf, a digunctive
normal form (dnf) is obtained by opening the parenthesis and considering column labels as Boolean variables.
Afterwards, some dgorithm to find the reduced dnf is applied. The sets of column labels asciated to eat
elementary conjunction of reduced dnf are typicd testors of M’.

Algorithm BT

In order to apply the dgorithm BT [14], the set O (J) of al subsets of column labels of M” is ordered. This total
order is defined by the number associated to the binary charaderistic vedor of ead element of 0O (J). This
algorithm, as well the trivial one, verifies the fulfillment of the testor and typicdity properties but, as a
difference it does not verify all the dements of [ (J). The dgorithm BT “jumps’ over some sets of O (J), i.e. it
does not consider several successors of the verified set becaise it is possble to know that they are not typicd
testors.

Algorithm REC

The dgorithm REC [14] is based on the same principles of algorithm BT, but the “jumps’ are diff erent.
Algorithm CC

The dgorithm CC [14] propacses a different approach. The dements of the set (1 (J) are not verified but the
internal structure of matrix M’ (positions of the zeo and one eitries) is analyzed. CC finds all unitary
submatrices of M’ that contain as many rows as possble (maximal subsets of columns having the property of
typicdity). Then, the property of testor is verified for ead one of these sets.



Algorithm CT

This algorithm [14], as well as the CC, starts from the internal structure of matrix M’, but as a difference, it
finds all complete sets. A complete set is a set of columns that is testor and contains a submatrix with the
foll owing charaderistics:

1.- Dominant diagonal of ones.

2.- Zeros in the bottom trianguar.

Algorithm YYC

The dgorithm YYC [14] also analyzes the internal structure of the matrix by cheding the fulfill ment of the
properties. It is caried out by adding arow ead time and updating the set of all typicd testors up to the airrent
row. The dgorithm YYC combines ideas from both algorithms: Y ablonskii’ s algorithm and CC.

All the @ove described DAs cdculate the set P*(M’). These dgorithms are not feasible for large matrices in
terms of time. This is consequence of the exponential nature of the problem. Therefore, it would be @mnvenient
to find a subset of the set Y*(M’) in a viable time. This subset gives us the posshility for the gplication of the
testor’ stoolswhen alarge M’ is generated.

4. POPULATION BASED SEARCH METHODS THAT USE SELECTION
AND THE PROBLEM OF CALCULATING A SUBSET OF THE SET @* (M)

Population Based Seach Methods that use Seledion (PBSMS) do the search of solutions using a set of points
instead of a singe one. Starting from a set of initial points (caled population), these dgorithms sled a set of
promising points and generate anew population. This processis repeaed urtil a stop condition is stisfied.

The GAs belong to the PBSMS class In GAs, new populations of points (usualy cdled chromosomes or
individuals) are aeaed by applying a set of genetic operators to the population of seleded individuals. Clasdcd
genetic operators comprise, besides Seledion, the Crossover and Mutation ones. In crossover two individuals are
picked from the seledion set, and two off spring are aeaed by recombining the genetic information contained in
their parents. Mutation appli es by modifying the values (all eles) of variables (genes) in the diromosomes.

GAs have shown to be very effedive when applied to a wide set of optimization problems, nevertheless they
have experienced dfficultiesin optimizing functions with nonlinea interading variables[11].

As we stated before, a GA has arealy been used for cdculating a subset of the set ¢*(M'). We will use a
different kind of PBSMSand an improved oljedive function.

It has been stated [11] that a good seach strategy for PBSMSis to generate new points with a similar probability
distribution to that existingin the seleded set. Thisis:

P(x,t+1) = P(x,t)

The dass of PBSMS, which estimates a probability distribution of points in the seleded set and uses this
information to generate new points is caled Estimation of Distribution Algorithms (EDA). Although EDA have
shown a better performance than the GAs, the estimation of distributions is also a difficult problem [7], [12]. A
particular case is the Univariate Marginal Distribution Algorithm (UMDA), which has a very simple probabili stic
model. This reason, added to the above mentioned EDA advantages over GA determined our choice

Another point is that the stochastic atribute of these methods allows finding different solutions ead time the
algorithm is exeauted. Diverse solutions can be found in the same population when they are combined with
appropriated niching methods [9].

It isclea, that given amatrix M’, multi ple typicd testors can be found, this fad can lead the PBSMISin diff erent
diredions (sometimes oppasite) during the search. This would require more time to read one of the solutions.
When there ae typicd testors very hard to find, we ae dso in presence of isolation.

Finally, another charaderistic of the typicd testor problem is that most of the information about the problem
structure is dored in the basic matrix. It is an open question the influence of the number of testors, their length
and the internal structure of basic matrix in the mmplexity of the search.

5. OPTIMIZATION APPROACH FOR FINDING A SUBSET OF THE SET y*(M")

Before introducing the UMDA we present its components.

Representation: Vedors (chromosomes) are binary strings of length n (number of columns of the analyzed hasic
matrix) and they represent the charaderistic vedors of the subsets of feaures.

Initial population: It isaset of N randomly chosen charaderistic vedors,

Seledion: Truncation seledion with atruncaion parameter t;, 0<t.<1

Each chromosome X, = (Xg1,---Xn); K= 1,...N; ¢ 0 {0,1}; i = 1,...n is evaluated using the following objedive
function:
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where t(x,) is the number of rows of M’ that contain some unitary element in the columns of TXk , TXk is the set

f(x) =
m

which characteristic vector is X, p(xJ) is the number of typical features wrt TXk and M. a is a weighting

coefficient.
Notice that for any chromosome x,, 0 < f(x) < 1. If the function f reaches the maximal value 1 for a chromosome
X , then TXk isatypical testor. It is held if and only if any row of M’ has at least one unitary element and all the

features of the set TXk are typical. The higher the value of f(x), the nearer to the fulfillment of the typicality and
testor properties the set TXk wrt the matrix M’ is. The previous GA [15] does not consider this information. A

very simple function is taken as the objective function of the GA that takes only three values: typical testor, no
testor and no typical testor. This function does not consider the fact that the sets can be near of (or far from) the
fulfillment of the testor and typicality properties. a is parameter that controls the trade-off between typicality and
testor properties.

We describe the UMDA in Fig 1. UMDA exploits the additive genetic variance mainly. Nevertheless it has been
applied to several problems where there are interactions among the variables. The class of evolutionary
optimization algorithms that make use of univariate distributions comprises also the Probabilistic Based
Incremental Learning (PBIL) [1].

UMDA

1. Sett — 1 Theinitia population is generated.
2. Select k < N points according to a selection method. Compute the marginal frequencies p% (x;,t) of the selected
Set.

n

3. Generate N new points according to the distribution p(x,t+1) = |_| p%i(xi,t) . Sett — t+1
i=1

4. If the termination is not met, go to step 2.

Figure 1. Univariate Marginal Distribution Algorithm

The termination criteria for the UMDA can be a low fitness variance in the population (indicating an early
convergence to suboptimal values), a fixed number of generations, or the appearance of the desired solution in
the population. In our experiments, after the optimum has been found we allow the algorithm to execute during g
additional generations in order to explore the local space around the optimum found. Otherwise, the algorithm
stops when no typical testor has been found after a maximum number of generations (Maxgen). In Fig. 2 we
observe how the UMDA is inserted in the general optimization algorithm. Similarly to the previous one, we use
as the stop condition of the optimization algorithm the number of iterations, the elapsed time or the number of
found testors.

1. Start from an empty list of typical testors TTLIST. Iter — 1
2. While not Stop Condition
Execute UMDA
For al solutionsin the final population
If the solution isnot in the TTLIST add it to the list
Iter — Iter+1

o oA w

Figure 2. Optimization approach for the typical testor problem

6. EXPERIMENTS AND RESULTS

The first experiment focus on a comparison between the performances of the UMDA and the simple GA
published in [15], based on the time spent to compute the same number of typical testors. As in [15], al
experiments were carried out on a PC with a Pentium 150Mhz processor.



Given a basic matrix that determines the number of variables in our codification of the optimization approach,
and the UMDA, we can completely specify the algorithm to use with a tuple of 6 parameters {Iter, popsize,
Truncation, Maxgen, a, q}. The parameters correspond, respectively, to the maximal number of iterations of the
optimization algorithm, the population size of the evolutionary algorithm, the parameter of the truncation
selection, the maximum of generations allowed, parameter apha of the objective function, and the additional
number of generations after one optimum is reached.

The used set of parameters was { no defined, 100, 0.15, 15, 0.1, 3}. The stop condition was the number of typical
testors that were found by the algorithm (see Table ).

A collection of four basic matrices described in [15] was tested. The results are shown in Table . In all casesthe
efficiency of the UMDA is much better than the simple GA. Besides, the number of evaluations of the UMDA is
significantly less than the simple GA one.

Table |. Comparison of the ssimple GA and the UMDA performances.

Simple GA UMDA
Matrices | Typical testors
found Time Evaluations Time Evaluations
40x42 655 241s 1400 000 19s 142 500
269x42 318 1043 s 5000 000 28's 89 800
209x47 1967 1816s 5000 000 114s 706 900
1215x105 105 19033s 22 500 000 1020s 336 700

Table Il shows the comparison between UMDA and DAs. In [14] was experimentally stated that the most
efficient DA is the algorithm CT. Therefore, in al the experiments with the DAs this algorithm was used. For the
first three matrices, the number of typical testors [Y*(M’)] is known, because the DA calculates the set *(M’) in
arelative small time. It can be appreciated that the UMDA calculates in the same time around half of the @*(M’).
For the remaining three matrices, the number |y*(M")] is unknown because the DA works more than two days
and does not finish. In the Table 11, the number of typical testors found by UMDA in three hours is shown. In this
experiment, as in the previous one, the same set of UMDA parameters for all matrices except the last was used.
Taking into account the dimension of the last matrix the population size was increased to 200.

Table Il. Comparison of the DA and the UMDA performances

Total num. of Typical testors found
Matrices |typical testors Det. Algorithm by UMDA
Time
40x42 8963 49s 2047
80x42 32277 1722's 16 254°
110x42 65 299 4820 s 36 683
269x42 ? + 2 days (in 3 hours) 71 448
209x47 ? + 2 days (in 3 hours) 65143
1215x105 ? + 2 days (in 3 hors) 2421

In other experiments we studied the dynamics of the algorithm, the influence for the search of both, the
parameters and the characteristics of the specific instances of the problem.

We use a matrix corresponding to areal problem with 42 variables and compare 16 different algorithms which
are determined by the following set of parameters: {10000, [100, 200, 300, 400], 0.15, 15, [0.2, 0.4, 0.6, 0.8],
3}. Numbers in brackets indicate the different values used in the experiments for the population size and the
parameter .

Table Il shows the number of different typical testors found for each combination. It can be appreciated that the
choice of parameter a influences the quality of the search. In opposition to expectations, by augmenting the
population size we do not achieve an increment in the number of solutions. This could be explained because with
a smaller population size we have a stronger selection pressure when the parameter of the truncation selection is
fixed asthecasein Tablelll is.

Table Il . Influence of alphaand population size in the number of typical testors found by UMDA.

! This number corresponds to the median in ten applications of the UMDA.
2 This number corresponds to the median in three applications of the UMDA.



o 0.2 0.4 0.6 0.8
Popsize

100 3989 4434 5009 5606
200 3936 4163 4585 5257
300 3770 3896 4418 4983
400 3704 3784 4325 4826
Tot. 15399 | 16277 | 18337 | 20672

6186 6524 7110 7697

We aso evaluate the behavior of the algorithm analyzing the number of evaluations needed to reach an
optimum. Here we divided the number of evaluations made by the algorithm by the number of testors found
(considering repetitions) during the search. Table 1V shows the values for the algorithms. In comparison to the
expected number of evaluations needed by a random walk agorithm (= 2*4/2'=2%) al the entries show a more
efficient performance. Nevertheless we believe these values can be improved by looking for the optimal set of
parameters of the algorithm.

Table IV. The ratio between the number of evaluations and the number of found typical testors.

o 0.2 0.4 0.6 0.8
Popsize
100 875.4 710.3 532.3 428.3
200 1235.7 | 1078.4 931.5 872.3
300 1628.6 14953 | 12928 | 1274.9
400 2033.2 1899.6 | 16725 1644

Figure 3 shows the distribution of the length for all the typical testors found for different values a. We can see
that the choice of a does not influence only the number of testors found but also their length. When a = 0.8 we
have a higher probability of finding testors of short length, this relation is changed when a = 0.2.
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Figure 3. Distribution of the length for al the typical testors found for different values a.

CONCLUSIONS

A new approach to calculate typical testors of a basic matrix is described. This approach is based on the
application of the UMDA as the kernel of the optimization strategy.
The superior performance of the proposed UMDA over the simple GA reported in [15] is experimentally
demonstrated. The UMDA calculates the same number of typical testors as the reported GA in a fewer number of
evaluations and spending significantly lesstime.
This performance can be a consequence of the following points:
- the UMDA advantages over GA inherent to its internal optimization scheme
- the introduced objective function, that allows evaluating any subset of the whole set of features
considering its proximity to the fulfillment of the properties of testor and typicality. This fact is very
important for the selection step of the UMDA.



- the globa optimization scheme in which the UMDA is inserted. For instance, by allowing the UMDA
runs g generations after the first optimum has been found, we can get other solutions without using
mutation and crossover operators.

Further planned reseach includes the gplicaion of hybrid strategies, combining traditiona DAs and
evolutionary algorithms, and the study of the @mnvenience of applying different EDA to cdculate typicd testors
of abasic matrix.
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