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Abstract
In this paper we present a Factorized Distribution Algorithm for the optimization of constrained problems where the constraints

are expressed in terms of the unitation values of the function. The algorithm uses information about the structure of the

problem to conduct the search in the space of feasible solutions. Thus, we present a number of ways FDAs can incorporate

application domain knowledge into the search. In the paper we also illustrate, using empirical results, a number of hypotheses
that could explain the behavior of FDAs for this class of constrained problems.

1 Introduction

The appearance of Estimation Distribution Algorithms
(EDAS) [8], and their tractable subclass, the Factorized
Distribution Algorithms (FDAs) [7], brought out solu-
tions for some of the difficulties experienced by the Ge-
netic Algorithms (GAs), like the linkage problem. FDAs
can cope with these difficulties by using probability dis-
tributions instead of the traditional genetic operators.
The success of FDAs in common optimization problems
has set the path for considering its application to the
constrained ones.

In constrained problems the search for the optimal so-
lution is intricate due to the existence of infeasible points
that impose additional restrictions on an efficient search
process. Main constraint handling techniques in GAs
include: the use of penalty functions that punishes the
non feasible solutions, the application of genetic opera-
tors that guarantee no illegal solutions will be generated
during the search, and the application of repairing meth-
ods.

There are few reports on the application of FDAs to
constrained problems. In [7] it is shown that a FDA that
uses a factorization based on the structure of an addi-
tive function can optimize this function in the presence
of constraints, if the structure of the function is com-
patible with the structure of the constraints. This type
of FDAs will accomplish the optimization of the func-
tion by generating only legal points. The Constraint
Univariate Marginal Distribution Algorithm (CUMDA)
was introduced in [15] as an alternative for the solution
of constrained problems where the constraints are ex-
pressed in terms of the unitation values of the function
(functions with unitation constraints). Like the Univari-
ate Marginal Distribution Algorithm [6], CUMDA uses
an univariate approximation of the joint probability dis-
tribution and it generates only legal solutions. For the

problems under consideration, CUMDA was shown to be
superior[15] to GAs that use heuristic genetic operators
[14] to keep the search in the region of feasible solutions.

In [9] we show that a FDA that considers the fulfill-
ing of constraints during the sampling step is able to
handle certain class of constraints that do not have to
be compatible with the structure of the function. No
experimental results were shown.

Our objective in this paper is threefold: To intro-
duce the Constraint Factorized Distribution Algorithm
(CFDA) for the optimization of problems with unitation
constraints; to present a number of ways FDAs can in-
corporate application domain knowledge into the search
and to advance a number of hypotheses that could ex-
plain the behavior of FDAs for this class of problem.

The outline of the paper is as follows. In section 2
we introduce the CFDA. In section 3 we present a set of
hypotheses that try to explain the behavior of the CF-
DAs. These hypotheses are illustrated using empirical
data. Section 4 describes two theoretical problems that
are treated using the CFDA, we expose how previous
information can be used to determine the factorizations
and preliminary experimental results are shown. Finally
the conclusions of our work are presented in section 5.

2 Constraint FDAs
2.1 Notation

X = {z1,..,zn}, B = {0,1} X ::B|X|, z € Xisa
binary vector. P = {z!,..., 2™V} is a set of binary vectors
or population of size N. We define the unitation function

n
u: X — N,u(z) = > 2; . u(zx) is the unitation value
-l

k3
of . A unitation set  is a set of unitation values,
Q= {ug,ug,...,un}
A function of unitation is a function whose value de-
pends only on the number of ones in an input string. The



function values of the strings with the same number of
ones are equal. Deceptive functions are defined as a sum
of more elementary deceptive functions fj, of k variables.

!
f@) =3 hls), )

where s; are non-overlapping substrings of x contain-
ing k elements.

Throughout this paper, when we refer to deceptive
functions we mean the class of deceptive functions whose
elementary deceptive functions are also functions of uni-
tation.

The class of constrained problems we address in this
paper is the optimization of a function f(x) where can-
didate solutions x are forced to satisfy the constraint
w(z) € Qprobiem- Qprobiem 1S an initial set of unitation
values.

2.2 CFDA

The strategy used by the Constraint FDA (CFDA) was
partially introduced in [9]. No experimental results were
presented. The CFDA addresses the same class of prob-
lems that CUMDA and it is based on the FDA intro-
duced in [7]. This algorithm was applied to additively
decomposed functions for which, using the running in-
tersection property [5], a factorization of the probability
based on residuals (b;) and separators (¢;) can be ob-
tained. More formally:

Given a set of sets of variables S = sy,...,s;, for
i=1,2,...,1 the sets d;, b;, and ¢; are defined as:

di - U;lej, bZ = S,‘\di_l, c; = 8; N di—l (2)

the s; are sorted following the order imposed by the

junction tree in the generation of points, s1 corresponds
to the root of the tree, dj is set to 0.

CFDA also employs a junction tree based on a given
factorization of the problem. Additionally, for each vec-
tor to be generated using the CFDA, the assignments of
values for the subset of variables X;, have to fulfill the
following two conditions:

1) u(Xs,) <b.

2) u(X,,) + (n— |sif) > a.

The conditions establish that after generating vari-
ables Xp,, the accumulated value of unitation u(Xs,)
should not exceed the constraint b, and it must still be
possible for the vector X to reach the constrained value
a.

To enable the CFDA to deal with these constraints
only the generation step was changed. The CFDA re-
stricts the set of possible assignments of X;, according
to their unitation values. The marginal probabilities of
those assignments that violate the constraints are re-
distributed among the ’feasible’ ones, proportionally to
their own marginal probabilities. In this way, the relative

CFDA

STEP 0: Set t <« 0. Generate N > 0 points
randomly.

STEP 1: Selection of promising points.

STEP 2: Compute the conditional probabilities
p*(Hp, 2|11, 2, t).

STEP 3: For each individual to be generated:
For each factor i of the junction tree

a) Identify the set of ’feasible’ configurations of
Xp,, those that fulfill

u(Xs;) <band u(Xs,) + (n —|s;]) > a.

b) Redistribute the probabilities of the infeasible
configurations among the feasible ones, proportion-
ally to the probabilities of the latter.

¢) Assign to X;, a 'feasible’ configuration sampled
from the new probabilities.

e STEP 4: If the termination criteria are met, FIN-
ISH.

e STEP 5: Add the best point of the previous gen-
eration to the generated points.

e STEP 6: Sett «t+ 1. Go to STEP 1.

Figure 1: Constraint Factorized Distribution Algorithm

proportions of marginal probabilities corresponding to
"legal’ configurations are not altered, only their absolute
values are changed. Figure 1 shows the pseudocode of
the CFDA.

From a different perspective the sampling step as it
is implemented in the CFDA, can be seen as a process
where constraints are dynamically imposed on each fac-
tor based on the previous assignments to variables, and
on the necessity of enforcing consistency with future as-
signments. The fundamental difference with constraint
propagation in constraint networks [3] is that the proba-
bilistic table of the junction tree allows a non determin-
istic and biased selection of the configurations for each
factor.

3 Dependencies in constrained domains

There are a number of implicit assumptions in the way
the CFDA has been conceived. In this section we present
and illustrate these assumptions. We will work on a the-
oretical framework where FDAs are analyzed in terms of
the multivariate probabilities determined by its compo-
nents.

Let P9(X,t) denote the multivariate joint distribu-



tion of X at the generation t. P*(X,t) denotes the
probability after selection. P*(X,t) is the factorized ap-
proximation given by the model chosen to approximate
P#(X,t). These multivariate probabilities are analyzed
using a number of statistical measures that are employed
in order to detect and quantify the interactions between
variables, and to measure the distance between two dif-
ferent distributions.

These measures are: The mutual information, and the
Kullback-Liebler measure of divergence.

Let p; j(x;,x;) denote the bivariate marginals corre-
sponding to binary variables z; and z; and let I(z;, ;)
denote the mutual information between variables z; and
Zj.

i (i, T5) 3)

i, Tj

We use a common distance metric between proba-
bilistic models. This metric is the Kullback-Liebler di-
vergence D(r||q).

DOla) = 3, r(e:) - g 52 @

This divergence is always non negative with equality
only in the case when both distributions are identical.

3.1 Dependencies in the selected set
Our first assumption is:

e Dependencies among variables related by the func-
tion structure can be preserved in the regions de-
termined by the constraints.

We illustrate this assumption by showing how the de-
pendencies among variables evolve when proportional se-
lection is used for a given function. This analysis is done
for different unitation regions. In general we are inter-
ested in investigating how bivariate interactions change
for the class of non-overlapping unitation functions, with
constraints enforced by the values of unitation of the so-
lutions.

The function used in our simulations was the follow-
ing:

Function f3deceptive:

1=4

f3deceptive (X) - Z fgec(X3i—27 X3i—17 X3i) (5)
=1

where the fitness contribution from blocks with unita-
tion u are denoted as . For f3  these parameters are
ag = 0.9, g = 0.8, ag = 0, ag = 1. As the parameters
of the function fsgeceptive We have n =12, k = 3.

If we concentrate on pairwise interactions it is easy to
realize that in non overlapping deceptive functions there

a(Hy,Hz)

Generations

-
o
[}

Figure 2: Difference between the mutual information of
the two classes for the regions determined by the unita-
tion constraints.

exist only two types of interactions: Interactions between
pairs of variables that belong to different definition sets,
and interactions between pairs of variables that belong
to the same definition set.

In order to compare the interactions we will calculate
the mutual information between pairs of variables that
belong to both classes. The two classes of pairwise inter-
actions between variables (class € {1,2}) are: class =1,
when variables belong to the same definition set; class
= 2, when they are located in different definition sets.
Hejoss(zi, ;) denotes a schema where variables (z;, ;)
belong to the class class, their values are fixed, and the
rest of the variables are free.

We start by calculating the fitness contribution of the
schema Hjqss(2i, ;) (f(Heiass (i, 2;5))) for the four pos-
sible values of {x;,2;} . For the proportional selection
the probability of the schema Hejqss(25, ;) after selec-
tion can be calculated. It is also possible to calculate
the fitness contribution and the corresponding bivariate
probability of selection for each class in the constrained
regions defined by a set of unitation values 2. The mu-
tual information is calculated using these probabilities.

Figure 2 shows the difference in the mutual in-
formation between the two classes i.e. O(Hi,Hs2) =
MI(Hy(zi,25)) — MI(Ha(x;,2;)) for the regions Q,
defined as Q, = [u,12], where u € [0,11]. The op-
timum is contained in all the 11 regions. O(Hi, Hz)
must be positive if the interactions between variables
that belong to the same definition set are stronger
than interactions between variables that belong to dif-
ferent unitation sets. In the figure, d(Hy, Hs) is always
positive, furthermore, for the experiments conducted



]\/fI(H1(.T¢, l“])) >> MI(HQ(:L'i, .Z'J))

What this example and the experiments tell us is that
there are functions for which the correspondence between
the structure of the function and the interactions among
variables holds when only feasible points are considered.
This fact is important because FDAs that use up to sec-
ond order dependencies construct a probabilistic model
where variables with the strongest pairwise dependencies
are joined with an edge in the corresponding graphical
model. One approach we intend to follow in the future
is to characterize a subclass of deceptive functions, for
which there exists a correspondence between the struc-
ture of the function and the kind of interactions that
arise among variables in the regions determined by the
unitation constraints.

3.2 Approximation operators

The second assumption states that:

e Factorizations based on the function structure can
be used to approximate the joint probability distri-
bution of selected points, even if only the feasible
region of the search space is considered.

We present an example using the f3geceptive function
with the same parameters previously used. We calculate
3 approximations of P*(z,0) determined by different fac-
torizations, in different constrained regions defined by
the values of unitation. To measure how good is the ap-
proximation we will evaluate the Kullback-Liebler dis-
tance between P*(X,0) and its different approximations
in the region of feasible points.

We develop our analysis using the Boltzman selec-
tion and the set of all feasible points. Given an additive
function like the fsdeceptive, if the points of the initial
population follows a Boltzman Distribution of base wu,
then for the Boltzman EDA (BEDA) the distribution of
points after selection at generation ¢ is given by [7]

w! @)
= 2n—7
Z wl(z;5)

Jj=1

1

Pé(z,t) w=u.v (6)

Let P2(X,t) and P?(X,t) denote the probability of
selecting points that respectively belong to the feasi-
ble and infeasible regions. In principle we would like
P?(X,t) = 0. Nevertheless, there exists a contradic-
tion between this assumption and the way the Boltz-
man distribution is defined. The Boltzman distribution
is strictly positive for every point. To solve this problem
we associate a positive, although very small, value to
P?(X,t) (i.e. P?(X,t) ~0). This assignment of proba-
bilities is equivalent to assigning a negative fitness value
to the infeasible points.

Three approximation operators will be considered.

In the UMDA [6] the univariate marginal frequencies
for the selected set p;(z;) are calculated first. The dis-
tribution of points in the selected set is estimated as

@1, ) = [[ (@) ™

Baluja and Davies [2] present an optimization algo-
rithm that uses a probabilistic model defined on trees.
In each generation the algorithm searches the best prob-
ability distribution T' that is conformal with P*(z,t) .
The probability distribution Pf that is conformal with
a tree model can be defined as:

n

mn) = Hp(a:i|pa(a:i)) (8)

=1

P%(.Tl, cany

where the parent of the vertex corresponding to vari-
able z; is represented as pa(z;), the root vertex has no
parent.

The FDA approximation is done in the following way:

n
P, o) = [[ o) )
i=1

In our simulation the factors of Pg were the defini-
tion sets of the f3geceptive function. The parameters of
P&, P% and P& were calculated straight from Py (X, 0).
Figure 3 shows the Kullback-Liebler divergence between
the P?(X,0) and the three factorizations for the regions
Q, defined as €, = [u, 12], where u € [0, 11].

It can be seen that for g, when the whole search
space is considered, the approximation of Pf is almost
perfect. This fact is consistent with the theory. As the
feasible region contracts the divergence increases, up to
the region (g the Pj: approximation comes closest. How-
ever, after that point the situation is reversed.

The example tells us that our hypothesis is not always
valid, whether its validity is linked to the dimension of
the constrained search space is still an open question.

3.3 Sampling
The third hypothesis is:

e Sampling algorithms can take advantage of the de-
pendency relationships contained in the probabil-
ity models while simultaneously keeping the search
constrained to the space of feasible solutions.

Even if a probabilistic model is calculated from a set
of feasible solutions, during the sampling there exists
the possibility of generating points from the infeasible
region. The main question of sampling in constrained
domains is how to distribute the probability correspond-
ing to infeasible points among the feasible ones.

There are a number of alternatives that can be tried
by algorithms that generate only legal solutions. The
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Figure 3: Kullback-Liebler divergence between the prob-
ability after selection and three different factorizations.

probability of the whole space of infeasible solutions can
be uniformly distributed among the feasible points. The
probability of infeasible points can be also distributed
among the feasible points, associating to each feasible
point an additional probability proportional to its cur-
rent (feasible) probability of being selected. Finally in a
distribution according to the distance between the feasi-
ble and infeasible region, feasible points that are close in
a genotypical distance measure would be favored in the
distribution of the infeasible probabilities.

We have considered all these sampling strategies in
the framework of the CFDA. Maybe the simplest strat-
egy is to sample from the probabilistic model without
regard to the feasibility of the solutions, and repairing
the infeasible solutions later. A way to repair infeasible
solutions, those for which u(z) ¢ [u,n], is to randomly
select a value v such that u(z) + v > u, and randomly
select v variables to be set among the n — u(z) variables
with value 0. The probability of a feasible solution x of
being generated (P"(z) ) with repairing will be:

P(z) = P*(«) + ) _t(y,x)- P"(y) (10)

Y

where t(x,y) is the probability of making a transition
from the infeasible solution y to the feasible x.

Nevertheless, although this is a very simple strategy ,
the distribution from which v is sampled from is critical
to the algorithm, and it determines in fact the transition
probabilities ¢(y,z). Using information from the proba-
bility model for sampling v seems to be a better alter-
native than sampling v from an uniform distribution in
[u —u(z),n — u(x)]. This is the path we have followed

L] T T T T T T T

NHumber of fithess evaluations

Figure 4: Results of the CFDA for the f3geceptive func-

tion in three different unitation regions.

in the design of a sampling strategy for the CFDA.

4 Experimental results

In our experiments we used a set of trial functions com-
prised from the f34eceptive function and two real prob-
lems. The experiments were designed in order to show
the behavior of CFDA for these functions. The first ex-
periment was done for the f3geceptive function. The scal-
ability of the CFDA is investigated for this function for
3 < n < 60. Three different regions of unitation were
considered: € = [0,n], Qz = [%,n] and Q3 = [2*,n] .

For all problems, the average number of fitness eval-
uations is calculated. We first determine the population
size that allows the algorithm to converge in 90% of 50
trials. For this population size the total number of fitness
evaluations is calculated. Parameters of the algorithms
were: Truncation selection with 77 = 10. A maximum
number of 20 generations.

In figure 4 we show results achieved in the optimiza-
tion of the fageceptive function. When only a fraction of
the search space is searched the algorithm converges to
the optimum more quickly. As expected, the optimum
is found with less function evaluations as the dimension
of the feasible region reduces. This continuous to be the
case when the number of variables scales up.

4.1 3-SAT

The next test problem which we tested our algorithm
on was the MAX-SAT, where the goal is to find a true
assignment of n Boolean variables that maximizes the
number of satisfied clauses of a given formula in a con-



Inst. | min | max | s FDA CFDA
succ. | gen. | succ. | gen.
434 5 15 [ 3] 88 520 | 96 5.95
434 5 15 (6] 8 |[6.51 | 100 | 5.06
623 5 15 [ 3| 95 | 4.85 93 6.77
623 5 15 [6] 91 6.36 [ 91 6.23
836 5 15 |3 72 7.85 77 | 8.53
836 5 15 |6 55 8.36 | 90 7.84
7 4 16 [ 3] 98 |[4.36 | 100 | 4.08
7 4 16 | 6| 96 | 448 | 100 | 3.54
9 4 16 |3 53 8.07 | 58 8.83
9 4 16 6] 36 8.19 65 7.09
34 4 16 [ 3| 100 | 4.68 | 100 | 3.82
34 4 16 6| 100 | 3.54 | 100 | 3.58
984 4 18 |3 7T 774 87 7.23
984 4 18 [ 6] 69 7.35 93 7.13
986 2 16 |3 97 | 5.95 87 7.75
986 2 16 6] 99 |[486| 94 5.38
997 2 16 [3] 95 7.05 98 6.55
997 2 16 | 6| 87 7.4 98 6.7

Table 1: Comparison between the FDA and the UMDA
for the 3-SAT problem

junctive normal form. We use a set of instances (uf20-91)
available at http://www.satlib.org/benchm.html. The
test-set is sampled from the phase transition region of
uniform Random-3-SAT. Random-3-SAT instances sam-
pled from this region tend to be particularly hard for
both systematic SAT solvers and Stochastic Local Search
(SLS) algorithms. All the problems in uf20-91 are sat-
isfiable, each 3-CNF formula has 20 variables and 91
clauses. We selected 9 instances from the 1000 available.

In our experiments we concentrate our analysis on
two aspects related with the behavior of the CFDAs for
3-SAT. How to find an appropriate factorization to the
problem and how to incorporate knowledge about the
problem by means of unitation constraints.

From the set of clauses a dependency graph is con-
structed, where two variables are connected by an edge
if they appear together in one of the clauses of the for-
mula. In [13] we have shown that for problems defined
on graphs it is possible to construct a convenient fac-
torization that fulfills the running intersection property
by removing edges from the graph. In that paper ex-
periments were also presented where the success of the
FDA was shown to be related to the number of edges
extracted from the original dependency graph.

In order to find an appropriate factorization for the
3-SAT problem we have designed a heuristic algorithm
that finds a factorization of a graph whose maximum
clique has size equal or less than s. s is a parameter
of the algorithm that restricts the size of the maximum
clique contained in the factorization. The heuristic algo-

rithm tries to remove as few edges as possible, satisfying
the running intersection property. The size of the max-
imum clique in the factorization is a critical parameter
for the FDA, population size requirements are exponen-
tial to the size of this clique. A factorization is obtained
by applying this heuristic algorithm to the dependency
graph constructed from the clauses.

The second step is to find the values of unitation.It
is relatively easy to conclude that for every clause where
all the literals are positive there must be at least one
positive literal in the solution, unless at least one of the
clause’s literals belongs also to a clause with the same
characteristic (all literals being positive) analyzed be-
fore. A similar conclusion can be reached for clauses
where all literals appear negated. In this way we calcu-
late a minimum number of positive and negated literals,
which are in fact the values min and n — maz of the
unitation.

The CFDA is run with the factorization and the con-
strained values, obtained as explained above. In our ex-
periments we used truncation selection with parameter
T = 0.1, population size of 500 and a maximum of 30
generations. In all the algorithms a mutation operator
with probability 0.01 is added in each generation. This
operator looks for adding diversity to the population.
The fitness function is the sum of the weights of the
clauses that are satisfied. Weight clausing is commonly
used in SLS applied to SAT problems because the im-
portant improvements this technique can help to achieve
[4]. Clauses begin with an equal weight, after a number
of solutions have been evaluated clauses increase their
weight inversely to the frequency they have been satis-
fied.

Tables 1 shows a comparison between the CFDA and
the FDA. Column 1 specifies the instance used for the
experiments, each instance represents in fact a different
problem with particular characteristics. Columns 2 and
3 respectively represent minimum and maximum unita-
tion values calculated for the instance. s is the size of the
maximum clique for the algorithm that finds the factor-
ization. succ and gen. respectively represent the number
of successful runs and the average number of generations.

In the table it can be seen that the CFDA outper-
forms the FDA in 12 of the 18 experiments, in 3 experi-
ments both algorithms are equally good, and in the rest
the FDA performs better. Two of the 3 cases where the
CFDA does not perform as well as the FDA correspond
to the same instance, this problem seems to be ’decep-
tive’ for the CFDA. Another interesting detail is the re-
lation between s and the behavior of the algorithms. For
the FDA, better results are achieved when s = 3, these
results are reversed when s = 6, although the difference
is not as great as in the previous case.

The conclusion to draw from these experiments is that
the use of constraints by means of the CFDA can increase



the efficiency of the search. The validity of using approx-
imate factorizations is also confirmed. We want to point
out that the UMDA can also show a good behavior for
this kind of problems when it combines the use of clause
weighting with more sophisticated dynamic fitness func-
tions based on the use of the univariate marginal prob-
abilities. Also, preliminary results have been presented
that support the idea of using Bayesian FDAs for 3-SAT
[10]. Moreover, in their work the authors mention the
possibility of using problem information for the Bayesian
network learning algorithm, although experiments were
not conducted. In general numerous FDAs’ approaches
to SAT seem feasible, and we feel this topic well worth
future research.

4.2 Typical testors

Now we present the typical testor problem. The notation
introduced in [1] will be employed.

Let I = {ky,....,kn} be the set of the rows of a
Boolean matrix M, and J = {1, ..., jn} the set of labels
of its columns (features). Let 7' C J, M,z is the matrix
obtained from M eliminating all columns not belonging
to the set 7.

Definition 1 A set T C J is a testor of M if no row
with only zeros in M,y exists.

Definition 2 The feature j;, C T is typical with respect
to (wrt) T and M if 3q, q € {1,...,m} such that ar,;, =1
and for s > 1 ,ar,;, =0Vp, p € {1,..,sf p#r.
Definition 3 A set T has the property of typicality wrt
a matriz M if all features in T are typical wrtT and M.
Definition 4 A set T = {ji,,.-,ji.} C J is denomi-
nated typical testor of M if it is a testor and it has the
property of typicality wrt M.

The typical testor problem consists of finding a typi-
cal testor of a given matrix M. Testors, and particularly
typical testors, have been used in feature selection and
supervised classification problems. A recent overview of
the concept of testor can be found in [11]. The com-
putation of the set of all typical testors belongs to the
NP class of problem. When the dimension of the matrix
is small, deterministic algorithms (DA) have been used.
These algorithms incorporate different kinds of heuris-
tics to accomplish the search among all possible subsets
of column labels of the matrix in a more efficient way.
Recently, the UMDA has been used to deal with matrices
of larger dimension [1].

In our experiments we used the FDA and the CFDA
for finding typical testors. The following representation
and fitness function introduced in [1] were used:

Representation: Binary vectors represent the charac-
teristic vectors of the subsets of features. We will rep-
resent M/, as the matrix obtained from M eliminating
all columns whose corresponding component in z is 0.
Each vector = (21,...,2,); z; € {0,1}; i =1,..,n is
evaluated using the following objective function:

a/u | [0,8 | [1,7] | [2,6] | 3,5] | [4] | FDA
099 | 95 | 100 | 100 | 100 | 100 | 42
098 | 98 | 100 | 100 | 100 [ 100 | 36
097 | 98 [ 100 | 99 | 99 [100 | 12
096 | 97 | 92 | 95 | 95 [100] 1
095 8L | 79 | 8 | 78 [100] 0
004 21 | 44 | 46 | 39 [100] 2

Table 2: Comparison between the FDA and the CFDA
for the typical testor problem

fa)=al 11— )

O0<a<l1 (11)

v=1,..,n

where ¢(z) is the number of rows of M/, t that contain
some unitary element. p(z) is the number of typical
features in M/, . « is a weighting coefficient between
the two properties. Notice that for any vector z, 0 <
f(z) < 1. If the function f reaches the maximal value 1
for a vector z, then it is a typical testor. This happens
if, and only if, any row of M/, has at least one unitary
element and all the features of the set are typical.

There are a number of reasons that make the typical
testor problem very interesting for the analysis of FDAs.
First, its generality, many pattern recognition problems
can be addressed using the testors theory. Second, test
matrices can be constructed in such a way that we know
in advance which are the most related features, allow-
ing the creation of a suitable test best for optimization
algorithms.

Finally, there is link between the properties evalu-
ated by the typical testor function and the dependency
relations that arise between variables. While the testor
property can be seen as non deceptive (the union of two
testors will also be a testor), the typicality property is
(the union of two typical testors is not a typical testor).
When there are more than one typical testor in the ma-
trix the typical testor problem is a very deceptive one,
subsolutions from each typical testors compete. The pa-
rameter alpha can be used to confront this deception. By
tuning «, we can also study how sensitive the algorithm
is to the strength of interactions between variables.

In our experiments we used different test matrices
constructed following the strategies introduced in [12].
We present results for only one Boolean matrix of 256
rows and 16 columns This matrix has 4 testors of unita-
tion 4. Each feature is present in only one of the solu-
tions, so testors do not overlap. The factorization is con-
structed clustering those variables associated to columns
that are similar in the Boolean matrix. For this matrix
we perform experiments using the FDA and the CFDA
for different values of the parameter «, and in different



unitation regions. We use a population size of 100, a
truncation parameter 7' = 0.15 and a maximum of 12
generations.

In Table 2 the results of the experiments for the prob-
lem are shown. It can be seen how the optimization be-
comes harder as o decreases. However, when the search
is accomplished in the unitation regions the percentage
of success increases. When the unitation region is [4]
the CFDA always finds the optimum. Even when this
region expands CFDA obtains good results outperform-
ing those achieved by the FDA. In general the CFDA can
be applied for the typical testor problem if some knowl-
edge is available about the unitation of the solutions, or
if we are interested in typical testors with a previously
defined number of features.

5 Conclusions

In this paper we have introduced the CFDA. This al-
gorithm can be used for the optimization of problems
with constraints based on the values of unitation. We
have presented a set of hypotheses that could help to
explain the behavior of the algorithm. These assump-
tions have been illustrated using empirical data. For the
experiments conducted we have shown the utility of the
algorithm introduced. We have also addressed the ques-
tion of how to find an appropriate factorization for a
given problem. Topics for future work are to develop a
theoretical framework that allows us to investigate our
assumptions, and the extension of the algorithms to con-
strained problems defined on integers.

Bibliography

[1] E. Alba-Cabrera, R. Santana, A. Ochoa-Rodriguez,
and M. Lazo-Cortes. Finding typical testors by us-
ing an evolutionary strategy. In Proceedings of the
Fith Ibero American Symposium on Pattern Recog-
nition, pages 267278, Lisbon, Portugal, 2000.

[2] S.Baluja and S. Davies. Using optimal dependency-
trees for combinatorial optimization: Learning the
structure of the search space. In Proceedings of the
14th International Conference on Machine Learn-
ing, pages 30-38. Morgan Kaufmann, 1997.

[3] R. Dechter. Constraint networks. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, vol-
ume 1. Addison-Wesley Publishing Company, 1992.
Second Edition.

[4] K. Kask and R. Dechter. GSAT and local consis-
tency. In Proceedings of the 14th IJCAI, pages 616~
622, Montreal, Canada, 1995.

[5] S. L. Lauritzen. Graphical Models. Ox-
ford:Clarendom Press, 1996.

[6] H. Miihlenbein. The equation for response to selec-
tion and its use for prediction. Fwolutionary Com-
putation, 5(3):303-346, 1997.

[7] H. Mihlenbein, T. Mahnig, and A. Ochoa.
Schemata, distributions and graphical models in

evolutionary optimization. Journal of Heuristics,
5(2):213-247, 1999.

[8] H. Miihlenbein and G. PaaB. From recombination of
genes to the estimation of distributions I. Binary pa-
rameters. In A. Eiben, T. Béck, M. Shoenauer, and
H. Schwefel, editors, Parallel Problem Solving from
Nature - PPSN IV, pages 178187, Berlin, 1996.
Springer Verlag.

[9] A. Ochoa, M. R. Soto, R. Santana, J. C. Madera,
and N. Jorge. The Factorized Distribution Algo-
rithm and the juction tree: A learning perspective.
In A. Ochoa, M. R. Soto, and R. Santana, editors,
Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF-99), pages 368-377, Habana,
Cuba, March 1999.

[10] M. Pelikan, D. E. Goldberg, and K. Sastry. Bayesian
Optimization Algorithm, decision graphs, and Oc-
cam’s razor. IlliGAL Report No. 2000020, Univer-
sity of Illinois at Urbana-Champaign, Illinois Ge-
netic Algorithms Laboratory, Urbana, IL, 2000.

[11] J. Ruiz-Shulcloper, M. Lazo-Cortés, and E. Alba-
Cabrera. An overview of the concept of testor. Pat-
tern Recognition Journal, 34(4):13-21, 2001.

[12] R. Santana and E. Alba. Generating test matrices
to evaluate the performance of strategies to search
typical testors. Technical Report ICIMAF 2000-130,
Institute of Cybernetics, Mathematics and Physics,
Havana, Cuba, January 2001.

[13] R. Santana, E. P. de Leén, and A. Ochoa. The
Edge Incident Model. In Proceedings of the Second
Symposium on Artificial Intelligence (CIMAF-99),
pages 352-359, Habana, Cuba, March 1999.

[14] R. Santana and E. P. de Leon. An evolution-
ary optimization approach for detecting structures
on graphs. In Dagli, Akay, Buczac, Ersoy, and
Fernandez, editors, Smart Engineering System De-
sign: Neural Network, Fuzzy Logic, Rough Sets and
FEvolutionary Programming, pages 371-376. ASME
press, 1998.

[15] R. Santana and A. Ochoa. A Constraint Univariate
Marginal Distribution Algorithm. Technical Report
ICIMAF 99-76, CENIA 99-04, Institute of Cyber-
netics, Mathematics and Physics, Havana, Cuba,
1999.



