Solving problems with integer representation using a tree based

Factorized Distribution Algorithm

Roberto Santana, Alberto Ochoa, Marta R. Soto
Center of Mathematics and Theoretical Physics, Havana, Cuba
ICIMAF, Calle 15, ¢/ C y D, Vedado,

C-Habana, Cuba, CP-10400
{rsantana,ochoa,mrosa}@cidet.icmf.inf.cu

Abstract

In this paper a tree based Factorized Distribution
Algorithm for the solution of integer problems is in-
troduced. Our proposal combines classical methods
for structural learning of dependencies with a pro-
cedure that approximates the bivariate marginals
by sampling the data using auxiliary tables. Ex-
periments done for a number of problems with an
integer representation show evidence of the superi-
ority of the algorithm with respect to the Univariate
Marginal Distributed Algorithm.

1 Introduction

Population Based Search Methods that use Selec-
tion (PBSMS) differ from other classical search meth-
ods in their use of a population of points to accom-
plish the search. The initial population of points is
evaluated using an objective function, and a sub-
set of the points is selected based on their values.
The next population is generated using information
extracted from this subset of points. Classical PB-
SMS are Genetic Algorithms (GAs) [3], where the
information contained in the selected set of solu-
tions is manipulated to generate the next popula-
tion by means of the so called crossover and muta-
tion operators.

Another class of PBSMS that do not use genetic
operators to conduct the search are the Factorized
Distribution Algorithms (FDAs) [7]. FDAs com-
bine results from Graphical Models and Evolution-
ary Computation, and are considered as a tractable
subclass of Estimation Distribution Algorithms [8].
They apply the selection operator in each gener-
ation but do not use the crossover and mutation
operators, a factorized probabilistic model of the
selected points is constructed instead. Probabilistic
models allow to explicitly represent the statistical

information that is contained in the selected points,
and use it to improve the search by sampling points
in the promising regions of the space of solutions.

Previous applications of FDAs to integers prob-
lems have mainly relied upon binary codifications of
integers [11], or the use of simple probabilistic mod-
els. Rosete [10] uses an Univariate Marginal Distri-
bution Algorithm (UMDA) [6] that works straight
on integer representation. The algorithm was ranked
in the worst class of techniques used to solve the
automatic graph drawing problem he considered.
When more complex models have been used, the
cardinality of the variables has been low [13].

There exists a particular subclass of FDAs that
considers only up to pairwise dependencies among
variables. These algorithms have been successfully
applied to a number of problems [1, 9], and in prin-
ciple they could deal with integer problems in the
same way they do with binary ones. However, FDAs
that use pairwise or higher dependencies have not
been used to solve problems defined on integers, and
the reason is the very high memory requirements
needed. FDAs that use up to bivariate pairwise
dependencies require, for a problem of n variables,
w bivariate marginals to be stored. Let ¢ be
the cardinality of variables, the total numbers of en-
tries needed to store all the bivariate marginals is
c2-n-(n—1)

I?l this paper we present a FDA that considers
up to second order statistics, and permits to carry
out the optimization of integer problems with a high
cardinality of the variables.

2 Gene Pool Recombination and

the Univariate Marginal Dis-
tribution Algorithm

Gene Pool Recombination (GPR) was introduced
in [5] as an alternative to the Two Parent Recom-
bination (TPR) methods commonly used in GAs.
In GPR the two “parent” alleles of an offspring are
randomly chosen for each locus with replacement
from the gene pool given by the parent popula-
tion selected before. Then the offspring’s allele is
computed using any of the standard recombination
schemes for TPR [5]. On the other hand in the Uni-
variate Marginal Distribution Algorithm (UMDA)
the estimation of the distribution of the selected
set is done with a very simple linear model, the so-
called univariate marginal distribution. Before to
present the UMDA model we formally introduce the
notation that will be used throughout this paper.

Let X = (X1, ..., X,,) where X is a discrete vari-
able with r; (not necessarily consecutive) possible
assignments : (v;1;...; ;) and we will denote one
of these possible instantiations as z;, i.e. z; = v;;
with j € {1,2,...,r;}. Let P = {z',...,2™V} be a set
of N instantiations of X that following the tradi-
tional GA’s notation we will call population. Each
2 will be called a vector, point or individual of P,
and we will refer to its ith component as z7. Given
a population of vectors P we define the univariate
marginal probability p(X; = z;) as the probability
of vectors in P that satisfy z] = z;,

In FDAs the processes of selection, estimation
and generation are applied in every generation, thus
variable ¢ is incorporated to the previous notation
to represent the generation t. We will define S(¢) as
the selected population at generation ¢, and N;(¢)
as its size. In the UMDA the univariate marginal
frequencies for the selected set p;(z;) are calculated
first. The distribution of points in the selected set
is estimated as

Vectors of the new population are generated ac-
cording to this distribution. When the problem un-
der consideration is based on an integer representa-
tion, and the recombination scheme used by GPR is
the uniform crossover, GPR and UMDA have sim-
ilar behavior. Nevertheless, while in the UMDA a
probabilistic model is explicitly stored in the uni-
variate marginals of variables, in the GPR the exis-
tence of an univariate model is implicitly assumed
during the generation step.

FDAs that considers up to pairwise
dependencies

e STEP 0: Set t < 0. Generate N > 0 points
randomly.

e STEP 1: Select k¥ < N points according to
a selection method. Compute the univariate
marginal distributions p$(x;, t) and the bivari-
ate marginal distributions p ;(z;, z;,t) of the
selected set S(t).

e STEP 2: Create the dependency graph G =
(V, E) using the distributions p; and p; ;.

e STEP 3: Generate N new points using the
dependency graph G and the distributions p;
and Dij- Sett<=t+1

o STEP 4: If the termination criteria are not
met, go to STEP 1

Figure 1: General scheme of the FDAs that consider
up to pairwise dependencies

3 FDAs that considers up to
pairwise dependencies

According to the graphical model paradigm, each
variable is seen as a vertex of an (undirected) graph
G = (V,E), there is an edge between two vertices
if the corresponding variables are not independent
in a data set. A pseudo-code explaining the general
scheme of algorithms that consider up to pairwise
dependencies is presented in figure 1. The main
differences among these algorithms is the type of
dependency graphs they employ and the way they
are constructed. FDAs that use forest models and
mixture of trees, for example, are able to capture
a more general class of independency relationships
than tree based FDAs.

A connected graph that has no cycles is called a
tree. Given that one vertex of the tree has been set
as the root, all the vertices connected to it are called
descendants of the root. This process is repeated
recursively until every vertex has been incorporated
as a descendant of its parent. The parent of the
vertex corresponding to variable X; is represented
as pa(X;), the root vertex has no parent. Now we
define a probability distribution T that is conformal
with a tree.

n

T(Xla"'7Xn) = Hp(Xi\pa(Xi)) (2)

i=1

The distribution 7" itself will be called a tree
when no confusion is possible.

Trees are the class of dependency graphs used by
the FDA introduced in this paper. Trees have been
used before in the context of FDAs, but mostly for
problems with binary representation. Baluja and
Davies [1] present an optimization algorithm that
uses a probabilistic model defined on trees. The al-
gorithm has shown to be superior to the simple GA
and to FDAs that employ chain shaped dependency
graphs [1]. The FDA presented in this paper also
uses the Chow and Liu’s algorithm [2] for searching
the best probability distribution T that is conformal
with p. This algorithm finds the tree that minimizes
the mutual information between p and T'.

It is important to note that the bivariate prob-
abilities are only needed for calculating the mutual
information. There is not need to save them for
later use (at least during this model learning step).
Hence, the algorithm that we present later uses the
procedure explained in figure 2 to calculate the mu-
tual information matrix 1.

It can be seen that the time complexity this al-
gorithm exhibits is equal to w, that
is 8(n2N?). The time complexity of the traditional
algorithm for finding the matrices of bivariate prob-
abilities and matrix I is §(n?N). The difference in
the magnitudes can be explained because when bi-
variate probabilities are stored, only one pass to
the population (columns ¢ and j) is needed to cal-
culate I; ;(X;,X;). Nevertheless, through genera-
tions, the diversity in the populations diminishes
and less time is consumed by our procedure. It can
be noticed that when there is only one pair of values
in variables X; and X, the time complexity of our
algorithm is also 6(n2N).

Once the matrix I has been computed the next
step is to determine the tree structure. This is usu-
ally done by applying the Maximum Weight Span-
ning Tree (MWST) method using as the tree’s weights
the values of I. The edges in the maximum span-
ning tree of G determine an optimal set of (n — 1)
first—order conditional probabilities with which to
model the original probability distribution. Several
variants of this algorithm exist [4], the simplest one
is called Kruskal algorithm. It runs in §(n?log(n))
time. Other variants can reduce this time complex-
ity to 6(n?).

When the structure of the tree has been found,
the following step is to generate new vectors. But to
do so FDAs that use up to pairwise dependencies
need the bivariate marginals. In the next section
we show how can vectors be generated, keeping the
pairwise dependencies and avoiding the use of the

Algorithm for finding the mutual
information

INPUT : Population P of size N
OUTPUT: Matrix I of mutual information
BEGIN Mutual Information
FOR i:=1Ton—1DO

FOR j:=i+1 Ton DO

k:=0;

I(X“X]) = 0;

Ind :=[1..N];

WHILE (£ < N) DO

biv_freq :=1;

univ_freq.x; = 1;

univ_freqz; :=1;

FORI:=k+1TO N
IF (mgnd(z) _ m(nd(k))

univ_freqx; := univ_freqx; + 1;

END
IF (:L.]I.nd(l) _ x]I_nd(k))
univ_freq_z; := univ_freq-z; + 1;
END

IF (wgnd(l) — pInd(®) g TndD) x(nd(k))
7 7 7

biv_freq := biv_freq+ 1;
swap Ind(k + current_biv_freq), Ind(l);
END
END
k =k + current_biv_freq;
END
tmp = bi'”—]\];Teq ’ log uniu_frclz\;._l;i;;ﬁ:uq_freq_zj)
I(X,,X]) = I(Xi, X]) + tmp;
END
END
END Mutual Information

Figure 2: Algorithm for calculating the mutual in-
formation

bivariate probabilities.

4 Vector generation

Now we outline the idea of our algorithm. We will
create two tables that allow to identify which are
the feasible values v; C (vj,1; ...;vjj,r;) a variable X;
can take given that its parent X; has been assigned
a value v; C (vi1;...;Vir;). Tables permit also to
generate X; with the same probability p(X;|X;)
that exists in the selected set. During the gener-
ation step the instantiation of the root variable will
be done by randomly choosing a vector from the
selected population picking the value of the root
variable from this vector as it is usually done for all

p(X) = p(z1)p(z2|z1)p(2s5|21)p(23]T2)...
p(x4|z2)p(ws|Ts)p(27 |26)p(25|26)
a)
ry X9 I3 T4 Iy Tg IT7 I
4 2 4 1 2 0 1 1
p_| 2 2 1 2 2 4 0 3
2 2 3 1 2 3 0 3
1 0 0 2 2 2 3 3
11 0 0 2 1 0 O
b)
1 X5 Tg I1 Is5 Te
4 1 1 -1 -1 1
5 2 5 2 -1 2
PV = 2 3 4 PI= 4 5 3
3 4 3 4 5 4
1 5 2) 5 B
c)

Figure 3: Example of the use of the auxiliary tables
for the sampling

variables in the GPR.

In our case the problem to be solved is how to
instantiate variables that descend from variables al-
ready instantiated in the tree. The structure of the
dependency tree is used during this generation step
to track the parental relations among the variables.
Given that the parent X; has been assigned a value
x;, possible values for the descendant X; are those
in the position j of all the vectors in the original se-
lected population that satisfy X; = x;. Hence, it is
enough to know the indices, in the selected popula-
tion, of all the vectors corresponding to each value
of each parent.

In tables PopulValues and ParentIndices this
information will be stored. We will introduce and
illustrate the meaning of these tables with an ex-
ample. Figure 3a) shows a tree factorization corre-
sponding to a problem of 8 variables, each variable
can take values in [0, ...,4]. In figure 3b), P repre-
sents a population of 5 vectors (the distribution of
points in P does not correspond to the factoriza-
tion).

Column ¢ in the PopulV alues table contains the
vector’s indices in the population ordered accord-
ing to the values of variable 7. In figure 3c) PV
represents columns corresponding to variables z1,
x5 and xg of the PopulValues table. Column 1 in
PV represents the indices of vectors in P ordered

Algorithm for the generation of vectors

INPUT: P, PopulValues, ParentIndices, Tree
BEGIN Vector Generation

Instantiate the root variable.
FOR each variable X; whose parent X; is already
instantiated to value v;, in the vector

Select a random value r between
ParentIndices(k—1,i)+1and ParentIndices(k,);

X; = PopulValues(ParentIndices(k—1,i)+r , j);

END
IF there exists any variable that has not
been already instantiated.
Go to step 2;
END
END Vector Generation

Figure 4: Algorithm for the generation of vectors

according to values of variable x;, the first couple
of values (4,5) correspond to the indices where x;
is equal 1 in P (note that x; is never equal zero in
P), then values (2, 3) correspond to indices where
1 = 2, and so on.

Entry (k,) in ParentIndices keeps the last in-
dex of values v;, for variable ¢ in PopulValues. If
ParentIndices(k,i) = ParentIndices(k — 1,7) or
ParentIndices(1,i7) = —1 then there are not val-
ues of type v;, in the component ¢ of all the vec-
tors in the population. In figure 3d) PI repre-
sents the columns of ParentIndices corresponding
to variables x1, x5 and xg. First entry in column
1 of PI is —1 because z; is never zero in P. En-
try 2 of the same column is 2, which is the last
row in PopulV alues corresponding to indices where
Iy = 1.

Finally we point out that in the worst case (when
there are n — 1 parents) the total memory required
to store tables PopulValues and ParentIndices is
N(S)-(n—1) + ¢- (n —1). Considering that trun-
cation selection is used, and thus N(S) is a small
fraction of the original population size we confirm
that (n — 1) - (N(S) + ¢) < <D,

In figure 5 we present the final algorithm that
uses the procedures introduced in previous sections.

5 Experiments

We conducted several experiments to study the be-
havior of our algorithm. We will first present re-

Tree based FDA for Integers (Int-Tree)

e STEP 0: Set t < 0. Generate N > 0 points
randomly.

e STEP 1: Select £ < N points according to a
selection method.

e STEP 2: Create the tree T using the algo-
rithm for finding the mutual information and
the MWST method.

e STEP 1: Create, using T, the auxiliary ta-
bles that represent the information stored in
the selected set.

e STEP 3: Generate N new points using T'
and the auxiliary tables. Set t < ¢+ 1

o STEP 4: If the termination criteria are not
met, go to STEP 1

Figure 5: General scheme of the FDAs that consider
up to pairwise dependencies

sults of the comparison between the introduced al-
gorithm with a tree based FDA that stores the bi-
variate probabilities of a binary problem.

Table 1 presents the results achieved for the checker-

board problem [1]. The goal of the problem is to
create a checkerboard pattern of 0’s and 1’s in an
NxN grid. In our experiments N was set to 12. We
used truncation selection, and the elitism strategy
of best selection that adds to the next population
all the points selected in the current generation.

In Table 1 are shown the times the optimum
was found for different population sizes. The dis-
crepancy between the number of times that both
algorithms found the optimum was very tiny. In
experiments with other functions we validated that
for binary problems, the algorithm has similar ef-
ficiency that the tree based FDA that stores the
bivariate probabilities.

Alg/Psize-10° [1 [15] 2 [25] 3 [3.5
Tree 021 | 55| 81 |93 | 96
Int-Tree 0| 18 | 51| 83 | 93| 97

Table 1: Times the optimum of the checkerboard
function was reached for Int-Tree and a tree based
FDA.

The second group of experiments was designed
to test the algorithm on integer functions. In the ex-
periments we compare the Int-Tree algorithm with

the UMDA. It has been shown that the UMDA be-
haves as well or better than the simple GA [§].
We have shown that the UMDA is also very sim-
ilar to a GA with multi-parent recombination. We
will present results for the general deceptive func-
tion intdecpy of order 2 (k = 2). This function
is formed as an additive function composed by the
function Fyec(x,k,c) evaluated in substrings of size k,
where ¢ is the cardinality of the variables, Sum(x)
is the sum of the values of the &k variables evaluated
by the sub-function, and

7 [k-¢, for Sum(X)=k-c
dec(Xokp) =\ k- ¢ — Sum(X) — 1, otherwise
3)

Table 2 (Left) shows a comparison of the pro-
posed algorithm with the UMDA for the intdecpy
function n = (10, ...,90), ¢ = 10. Table 2 (Right)
shows the results obtained for the intdecp3’ func-
tion when the cardinality of variables is increased
from 2 to 10. In both experiments the parameters
of the algorithms were N = 25000, truncation se-
lection with T" = 0.02, and best selection. In the
tables, entries represent the mean fitness of 50 runs
for the UMDA and the proposed algorithm.

The mean of the sub-optima found by the Tree-
Int algorithm is higher than when the UMDA is
used. Thus, even when the population size is too
small, it is expected that an algorithm based on
pairwise dependencies, dealing with a problem de-
fined on integers, could achieve partial solutions
better than those obtained by the UMDA.

n | UMDA | IntTree ¢ | UMDA | IntTree
10 86.74 89.84 2 50 50
20 170 177.9 3 100 100
30 255 267.18 4 130.68 150
40 340 352.46 5 175.46 194.76
50 425 436.5 6 225.02 244.96
60 510 519.68 7 275 202.7
70 595 603.6 8 325 334.08
80 680 687.1 9 375 386.82
90 765 770.44 10 425 436.5

Table 2: Comparison between the Tree-Int algo-
rithm and the UMDA for intdecpy. (Left): when
the number of variables is increased. (Right): when
the cardinality of variables is increased

5.1 The Multiple Sequence Alignment
problem

After testing the algorithm in a number of theoret-
ical functions we evaluate its behavior for a more

practical problem. The main problem of Multiple
Sequence Alignment (MSA) is to find an optimal
superposition between n strings defined on an al-
phabet B. The most simple objective is to opti-
mize the percentage of letters that are identical in
each position between the n sequences. Multiple
alignments are very used in Molecular Biology, for
instance to find diagnostic patterns, to characterize
protein families, and to detect or demonstrate ho-
mology between new sequences and existing families
of proteins.

When the number of sequences is two the prob-
lem can be efficiently solved with a simple dynamic
program. This program can incorporate insertions
or deletions (gaps) in the sequences in order to ob-
tain a better alignment. Qur approach to the MSA
problem splits its solution in two parts. First we
look for the substrings that are common in the se-
quences. Then, in a second phase, that we do not
analyze in this paper, these common substrings are
combined to create the final alignment. To find the
common substrings no gaps are required.

The algorithm Int-Tree will be used to find an
alignment between the n sequences. Only some sub-
strings of the sequences are considered for the align-
ment. Thus, a window of observation W is defined.
The width of the window |W| represents how long
are the substrings of the sequences we try to match.
The window can be set at position S;; of sequence
S; guaranteeing that S;; + |W| < |S;].

Representation: Each possible solution is repre-
sented using a vector with length equal to the num-
ber of sequences. Each variable z; in the vector
takes values in [1, L; — |W|] where L; is the length
of sequence 7. In our experiments all the sequences
have the same length L. A vector encodes the posi-
tions of the window for every sequence. The optimal
solution is when the windows have been located in
such a way that their content is the same for all the
sequences

Fitness function: We use a measure of similar-
ity between all substrings enclosed by the windows.
This measure has been previously used in [12] where
a hill climbing algorithm is employed to find a mul-
tiple alignment of ungapped DNA sequences.

Let € denote the alphabet where sequences are
defined. Each member of the alphabet will be called
a letter or a base. W(i,7) denotes the base at po-
sition j of the window located on sequence S;. Let
n(b, j) to denote the number times letter b is found
at position j of the windows (W (i, j) = b). Then,
the uncertainty f(b,j) of each possible base in po-
sition j of the window is calculated as:

n(b, j)

f(b,4) = (4)

The function information from the entire win-
dow is finally considered in the following summa-
tion.

W]

F(Si) = W] -logy |2 + Y D (b,5) - log, f (b,)

j=1beQ
(5)

This function is maximized when the second term
of the expression is zero, i.e. all the substrings are
identical.

Convergence

UMDA | Int —Tree

5 10 5 10
W|=3 | 30| 30 | 30 30
W|l=4 (15| 0 | 30 0
W|=5 0 0 23 15
W|=6 0 0 0 0
W|=9 | 0 0 0 0
W[=12 | 5 | 0 | 29| 7

Table 3: Comparison between the Int-Tree algo-
rithm and the UMDA for the MSA problem (Con-
vergence).

Average Fitness

UMDA Int — Tree
5 10 5 10
=3 9 9 9 9

=4 | 11.33 | 11.67 12 11.85
= 14.37 | 14.37 | 14.83 | 14.42
= 17.1 | 16.43 | 17.61 | 16.9
W|= 24.92 | 23.43 | 24.94 | 2391
|[W|=12 | 34.73 | 35.61 | 35.94 | 34.19

Table 4: Comparison between the Int-Tree algo-
rithm and the UMDA for the MSA problem (Aver-
age Fitness).

In Tables 3 and 4 we present results achieved
for an artificial generated set of 10 sequences of
length 30, defined on an alphabet of cardinality 4.
Sequences were generated to contain many partial
alignments of short length but only one of size 12.
In table 3 there are shown results achieved by the
UMDA and Tree-Int algorithm in the alignment of
5 and 10 sequences, using windows with different
width. 30 experiments where conducted for each set

of parameters. In all the experiments the parame-
ters of the algorithms were N = 15000, truncation
selection with T' = 0.05, and best elitism.

The alignment was achieved only when the win-
dow’s width was 12. This could be explained due to
the existence, when the windows are small, of many
partial solutions. In this case there are many sub-
optima that lead the search to different, some time
opposite, directions. When the window’s width is
12, more information is considered for the search.
Nevertheless, it can be seen in the table that even
for this case results of the UMDA are very poor.
The Int-Tree algorithm is superior, but it also fails
to find the optimum when the windows’ width is
shortened.

The MSA problem deserves more study. A rigor-
ous comparison of the Int-Tree algorithm with other
search strategies previously used for the MSA prob-
lem solution, and that are not based on populations
is advisable. This comparison could throw light to
the convenience of applying FDAs to complex real
problems of this kind.

6 Conclusions and further work

In this paper we have tried to partially remedy an
unsatisfactory state of affairs in the use of FDAs
for the optimization of integer problems. The algo-
rithm we have introduced allows the use of pairwise
dependencies in the optimization of functions de-
fined on integer variables. Although previous FDAs
that use up to pairwise dependencies can theoreti-
cally deal with integer variables, in practice memory
and time requirements make them useless. The al-
gorithm shows better results than the UMDA for
the optimization of the functions considered.

References

[1] Shumeet Baluja and Scott Davies. Using op-
timal dependency-trees for combinatorial opti-
mization: Learning the structure of the search
space. In Proceedings of the 14th International
Conference on Machine Learning, pages 30-38.
Morgan Kaufmann, 1997.

[2] C. K. Chow and C. N. Liu. Approximating
discrete probability distributions with depen-
dence trees. IEEE Transactions on Informa-
tion Theory, TT14(3):462-467, 1968.

[3] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-
Wesley, Reading, MA, 1989.

[4]

[5]

[10]

[11]

[12]

[13]

Marina Meila. Learning Miztures of Trees.
PhD thesis, Massachusetts Institute of Tech-
nology, 1999.

H. Miihlenbein and H. M. Voigt. Gene pool
recombination in genetic algorithms. In I. H.
Osman and J. P. Kelly, editors, Proceedings of
Metaheuristics International Conference, Nor-
well, 1995. Kluwer Academic Publishers.

Heinz Mihlenbein. The equation for response
to selection and its use for prediction. FEvolu-
tionary Computation, 5(3):303-346, 1997.

Heinz Miihlenbein, Thilo Mahnig, and Alberto
Ochoa. Schemata, distributions and graphical
models in evolutionary optimization. Journal
of Heuristics, 5(2):213-247, 1999.

Heinz Miihlenbein and Gerhard Paaf}. From re-
combination of genes to the estimation of dis-
tributions I. Binary parameters. In A.E. Eiben,
T. Back, M. Shoenauer, and H.P. Schwefel,
editors, Parallel Problem Solving from Na-
ture - PPSN IV, pages 178-187, Berlin, 1996.
Springer Verlag.

Martin Pelikan and Heinz Mihlenbein.
Marginal distributions in evolutionary algo-
rithms. In Proceedings of the International
Conference on Genetic Algorithms Mendel
’98, pages 90-95, Brno, Czech Republic, 1998.

A. Rosete. Automatic Graph Drawing and
Stochastic Hill Climbing. PhD thesis, CEIS,
ISPJAE, Cuba, 2000. In Spanish.

Franz Rothlauf, David E. Goldberg, and Armin
Heinzl. Bad codings and the utility of well-
designed genetic algorithms. TIIIGAL Report
No. 200007, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Labo-
ratory, Urbana, IL, 2000.

Thomas. D. Schneider and David N. Mas-
tronarde. Fast multiple alignment of ungapped
dna sequences using information theory and a
relaxaton method. Discrete Applied Mathemat-
ics, (71):259-268, 1996.

Josef Schwarz and Jiri Ocenasek. Experimental
study: Hypergraph partitioning based on the
simple and advanced algorithms BMDA and
BOA. In Proceedings of the Fifth International
Conference on Soft Computing, pages 124-130,
Brno, Czech Republic, 1999. PC-DIR.

