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Abstract. This paper analyzes the behavior of the Mixture of Trees
Factorized Distribution Algorithm (MT-FDA) when priors are incorpo-
rated. It is shown that the addition of priors provokes a mutation like
effect during the search. Adaptive priors that relate the rate of mutation
to the quality of the search are also introduced. Additionally, the learn-
ing step of the MT-FDA is changed to avoid the overfitting of data. The
results of the experiments show that our proposals improve the trade off
between exploration and exploitation displayed by the MT-FDA.

1 Introduction

Population Based Search Methods that use Selection (PBSMS) are non deter-
ministic heuristic search strategies, commonly used as optimization methods.
Their main characteristics are: They use a population of points instead of a sin-
gle point to conduct the search. In every iteration (usually called generation) a
subset of points is selected, and by applying some operators a new population
is created. In this way the algorithm iterates (evolves) until one stop condition
is satisfied.

Genetic Algorithms [2] are members of a subclass of PBSMS where recombi-
nation and mutation operators are applied to the selected set of individuals to
obtain the new population. Another class of PBSMS comprises those algorithms
characterized by the use of probabilistic modeling of the information contained
in the selected set, instead of the genetic operators. These algorithms are the
focus of this paper.

In this paper an Estimation Distribution Algorithm is any evolutionary algo-
rithm that uses the estimation of probability distributions to improve the search.
Although no all the proposals fit well in the EDAs scheme this conceptual frame-
work has been taken before [3] as a model to study the algorithms under analysis.
A special subclass of EDAs will group the algorithms that use factorizations of
the probability distribution. This subclass of algorithms will be called Factorized
Distribution Algorithms (FDAs)!.

! In the literature the term FDA is usually given to a Factorized Distribution Algo-
rithm that uses the same factorization along the evolution
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In this paper we concentrate on the Mixture of Trees FDA (MT-FDA) that
was introduced in [12]. The algorithm uses as its probabilistic model a mixture
of trees. Our main contribution in [12] was to show that a FDA that uses as
its probabilistic model a mixture of trees can perform better than other simpler
FDAs and be competitive, and some times superior to FDAs that use more
complex probabilistic models. In the present study we show how the results of
the MT-FDA can be improved by adding a mutation like effect using priors, and
modifying the algorithm used for learning the probabilistic model.

Along the paper we will concerned with the maximization of a function f :
B™ — R, and X € B" is a set of random binary variables. We will use z;
(z; € {0,1}) to denote a value of X;, the i-th component of X. P = {z!,...z"}
will denote a set of vectors where NN is the number of binary vectors in the set.

The paper’s outline is as follows: In the next section we will present the
mixture of trees as a probabilistic model and the MT-FDA. In section 3 we dis-
cuss the relationship that exits in EDAs between the goals of exploration and
exploitation and probabilistic modeling. Section 4 describes how priors can be
inserted in the MT-FDA to obtain a mutation like effect. Adaptive priors are de-
fined for the first time in EDAs. Section 5 presents a modification to the learning
algorithm based on halting the learning procedure to avoid overfitting. Exper-
imental results on the application of the proposed modifications are shown in
section 6. The conclusions of the paper and future research trends are presented
in section 7.

2 Trees and Mixture of Trees Models

Modeling by finite mixture of distributions [1] concerns modeling a statistical
distribution by a mixture (or weighted sum) of other distributions. The mixture
of trees was introduced as a probabilistic model in [5] where its usefulness as a
density estimator algorithm and a classification tool was demonstrated on a set
of problems. Mixture of trees, and in general mixture distributions have a num-
ber of distinctive attributes that make them particularly appealing for their use
in the framework of FDAs. Maybe the most important is the possibility of rep-
resenting, condensed in just one model, different patterns of interactions among
the variables of the problem. In Bayesian Networks (BN) the change in one vari-
able’s value can determine changes only in the parameters of other variables,
no in their structural relation (edges or arcs in the graphical representation).
In mixture of finite distributions the structure of dependencies among a set of
variables can change depending on the values of the choice variable they depend
on.

Now the probabilistic models are formally introduced. We will utilize the
same notation used in [5]. A probability distribution 7' that is conformal with a
tree is defined as:

T(.’L’) = H Tv\pa(v) (wvlwpa(v)) . (1)
veV
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The distribution T itself will be called a tree when no confusion is possible.
The graph (V, E) represents the structure of the distribution 7. A mixture of
trees is defined to be a distribution of the form:

Q) =Y MT*(a) . (2)
k=1

with Ay >0, k=1,...,m, > ;" A =1.

The tree distributions are the mixture components, and the A\, are called
mixture coefficients. A mixture of trees can be viewed as containing an unob-
served choice variable z, which takes values k € {1,...,m} with probability \.
Conditioned on the value of z the distribution of the visible variables V is a tree.
The m trees may have different structures and different parameters.

Algorithm 1: MT-FDA

1 Set t < 0. Generate N > 0 points randomly.
2 do{
3 Select a set S of k < N points according to a selection method.

4 Calculate a mixture of trees Q that approximates the distribution of points
in S.

5 Generate new points sampling from Q.

6 t<=t+1

7

} until Termination criteria are met.

Above, the pseudo-code of the MT-FDA is presented. The first population
of the algorithm is generated randomly. From the current population, a subset
of points is selected. A mixture of trees () that fits the selected set is found
using the Iterated Estimation Maximization (IEM) algorithm [5]. New points
are generated by sampling from (). Different replacing strategies can be used
to combine points from the current population and new generated points in the
next population. When proportional or Boltzmann selection are used the step
3 of algorithm 1 is not needed and in the step 4 of the algorithm the model
is calculated using the probabilities of selection associated to each point in the
population by the selection method. This can be done because graphical models
can be learned too from a joint probability distribution.

3 Exploration and Exploitation in EDAs

When generating a new population the two traditional goals of an efficient search,
exploitation and exploration of the search space, have to be accomplished. In
the case of FDAs the achievement of these goals will depend on the power of
expression of the probabilistic model, the way it has been learned and the method
used to sample points from it. In principle, a good probabilistic model has to
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be able to exploit the good points that have been already identified, in our case
represented by the set of selected points and possibly some elite points, but also
able to explore new areas of the search space where eventually are located better
points.

In the model learning phase of Bayesian FDAs [11, 3] the quality of the model
is usually evaluated using different measures of the likehood of the data of the
selected points. It is clear that a probabilistic model with a maximal likehood
of the data can be useless to explore new areas of the search space. While an
exact learning of the probabilistic model from the data can benefit exploitation,
if learning is pursued beyond certain limits the phenomenon of overfitting arises.
An overfitted model can less likely generate, during the sampling step, points
that belong to unexplored areas of the search space. Different alternatives have
been proposed to cope with this problem in probabilistic modeling. In the context
of FDAs we identify the following possible solutions to avoid overfitting:

— To allow the learning algorithm to learn a very exact (possibly overfitted)
model and modify this model after.

— To stop the learning process when a predefined quality in the approximation
of the data has been achieved.

— To do the search of the probabilistic model in a constrained space of (simple)
models.

The first idea has been implemented for the Univariate Marginal Distri-
bution Algorithm (UMDA) [10], the Factorized Distribution algorithm with a
fixed model (FDA*) [9] and Learning FDA (LFDA) [8] by means of considering
Bayesian priors during the learning of the model [4]. In the implementation, the
learned model’s parameters are changed after the structure of the model has
been learned. The effect of this type of priors is similar to the effect of muta-
tion in Genetic Algorithms. The authors show that, also for FDAs, mutation
increases in many cases the performance of the algorithm. This can be explained
by the important role played by mutation in avoiding premature convergence
and allowing the exploration of new regions during the search. In our first im-
plementation of the MT-FDA we did not consider the use of priors. One of the
improvements incorporated to the algorithm in this paper is the use of priors.

Although the use of priors can in general improve the results of the search,
it has been shown in [4] that it can decrease the quality of the results for cer-
tain functions. This fact makes convenient to investigate the second alternative
mentioned before, i.e. to stop the learning process when a predefined quality in
the approximation of the data has been achieved. In section 5 we analyze this
issue.

4 Use of Priors

In [4] it is explained how to introduce mutation into FDAs and how to choose
the mutation rate based on a theoretically derived result. In the paper it is
shown that mutation increases in many cases the performance of the algorithms
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and decreases the dependence on the correct choice of the population size. The
authors state that:

Let 7 denote the parameter for truncation selection, I, is the strength of
selection that depends on 7 [7], and M is the size of selected set. When r is the
prior for a single binary variable, the prior r' for a factor p(z1,..., ), and the
prior r* for a factor p(xg|z1,...,2x_1) should be

= =2kl (3)

I. M
n

Using r} = 27Fi~1lr with r =
prior for truncation selection [4].

We use the proposed prior in our experiments adapting it to the case of the
MT-FDA where the marginals used can have only order one or two. Additionally,
we have introduced an adaptive prior that can be different for each tree. This
prior increases the probability of the appearance of events with zero probability
proportionally to the approximation of the data, and inversely proportionally to
the coefficient of the tree (i.e. its weight in the mixture approximation).

Let us introduce some new notation.

We define D¢ as the set formed by exactly one copy of all the different vectors
in D = {z1,22,...,2m}. This means 2 € D° => 2 € D and z;,2; € D° =
z; # x;. We denote as Pk(D¢) to the sum of the probabilities assigned by the
tree T* to all the points in D°. Respectively P(D¢) is the sum of the probabilities
assigned by the mixture to all the points in D°.

is a reasonable choice for the Bayesian

Pk (z;) = MT* () . (4)

PDY= 3 Y Prai). )

z; €D k=1

P is not a probability in D¢ (e.g. P(D¢) # 1). Only when all the points of
the search space are in D¢, P(D¢) = 1. The prior r* for the k tree is defined as
follows.

e P(DO)M

r N (6)

Finally, we substitute = by * in 3. This choice of the priors is related to the
adaptive mutation schedules used in Genetic Algorithms.

5 Adaptive Learning

We address now the problem of how precise has to be the approximation given
by the mixture of trees in order to avoid overfitting. The IEM algorithm, used
in [5] to learn the mixtures, improves the likehood of the data in each iteration
by modifying the structure and parameters of the mixture. In the experiments
done in [13] we have confirmed that stopping the learning process just when no
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improvement is detected in the likelihood can provoke a premature convergence
of the MT-FDA because the learned model overfits the data.

Now we present a solution to the problem of determining the extent of learn-
ing. As a measure for assessing the quality of the learned model in every step
of the mixture of trees learning algorithm we will use P, previously defined in
equation 5. P gives an idea of which is the probability given by the model to
points that are not in the data set D, P(z € X,z ¢ D) = 1 — P(D°). So, in
principle we can run the learning algorithm while the probability given by the
model to points that are in D does not exceed a given parameter y. p defines
a measure of overfitting, or in terms of a population based search method, a
measure of exploitation

When the model is a bad approximation of the data, or the data points are
a very small sample of the state space P(D¢) = 0. When the model completely
overfits the data points P¢ = 1. To summarize, we present the modification
done to the IEM learning algorithm: The calculation of y is incorporated and
the condition P(D) > p is added to the termination criteria.

6 Experiments

In our experiments we will evaluate the impact of all the introduced proposals
in the performance of the MT-FDA. We will focus on the analysis of the algo-
rithm’s behavior when the complexity of the model is constrained using p as
a parameter. Additionally we study the influence of the number of trees and
the use of priors. The test functions used were: fieceptives, faeceptivea, Frsop,
fadeceptive, and Isotorus. Deceptive functions have served to study the perfor-
mance of GAs in the presence of deception. The Frs,p and Isotorus functions
respectively allow the study of problems with a chainlike and grid based struc-
ture. The interested reader is referred to [3] for an account of the performance
of other FDAs for these functions. All the functions are defined below and in
every case u = .| T;.
Function f3,:

0.9 foru=0
0.8 foru=1
3 _
faee = 00 foru=2 " @)
1.0 foru=3
Function f3deceptz've:
i=%
fadeceptive (T) = Z fgec($3z'—2;$3z'—1;$3z') . (8)
i=1

Function general deceptive of order k, fdecK:
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k=1 foru=0

k—2 u=1
fdecK (z) = b—i—1 w—i 9)
k-n foru=k
Function fdeceptiveK:
=3
fdeceptz'vek (.CL') = Z fdeCK(mki—k—i-la Sy xki) - (10)
i=1

Function IsoPeak:

x |00|01{10] 11
IsoCiim|0|0|m —1 (11)
IsoC5|0|0|0| m
m—1
Frsop(z) = Z IsoC\(x2i—1,%42i) + 150Co(T2m—1, Tz2m) -
=1

with n =m + 1.
Function Isotorus:

u |0(1|2|3]4] 5
IsoTim|0[0|0[0jm — 1 (12)
IsoT,| 0ololo]o] m?

FIsoTorus(m) = ISOTl(m17m+n7x17m+n7m17m2;x1+m) +

n
E =2 ISOTQ(mupamleft;mi;xrz’ght:mdown) .

where z,,, etc., are defined as the appropriate neighbors, wrapping around.
In the experiments the number of variables is fixed to 36, as well as the
selection algorithm (Truncation selection with truncation parameter 0.15).

6.1 Numerical Results

Table 1 presents the results of the MT-FDA with 6 trees when the parameter
p is changed and two different types of priors are used: the recommended and
adaptive priors. The table shows the number of trials (of 100) where the optimum
was found and the average number of evaluations. For the deceptive functions
it is evident the influence of parameter p in the behavior of the algorithm. For
these functions a low value of p gives better results than when a higher one is
used. For the Iso functions the same behavior can not be clearly appreciated,
particularly for function Frsororys-
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For deceptive functions the priors increase the number of times the optimum
is found, although in the case of the adaptive prior there is an interaction with
the parameter u, when g is high the successful rate diminishes. The increment
in the number of successful trials reached by using priors is achieved at the
cost of an increment in the number of function evaluations. In the case of the
Iso functions there is not a significative difference when priors are added. Even
more, in the case of function IsoPeak results deteriorate.

In order to create an algorithm of practical use we would like to reduce as
much as possible the number of parameters or to find rules of thumb that can
be used to assign their values. We hypothesize that a good choice for parameter
p is around 0.2. Notice that the case when p = 1 is equivalent to run the IEM
until no further improvement in the likehood is achieved (as we did in previous
implementations). In the first generations, when the data is very diverse a good
approximation is very hard to reach. The same happens when a high prior is used.
In these cases the learning algorithm will stop when no further improvement in
the likehood is achieved, or the improvement is under a given threshold (we use
0.005 as the threshold value).

We evaluate the validity of our proposal in the next experiment. For the 5
functions considered before and different values of the number of trees we run
the MT-FDA and determine the value p in [0.2,0.4,0.6,0.8,0, 1.0] for which best
results are achieved. When the same successful rate is obtained for more than
one value of y we choose the smallest y . Table 2 presents the results that confirm
that our choice is correct even if there exist exceptions. In most of the cases the
0.2 value was the best or among the best assignments for u. This experiment
also allows to evaluate the influence of the number of trees in the performance
of the MT-FDA for the different functions.

When priors are not used the algorithm is very sensitive to an increment in
the number of trees. If priors are incorporated the succesful rate is the same, or
can even increase when the number of trees is augmented, but at the expense
of a higher number or function evaluations. The exception is function Fi,,p, for
this function results remarkably deteriorate with the increment in the number
of trees. Fr,,p is an example of a function for which a simple model gives better
results. Also in the case of fgeceptives it can be appreciated that a simple model
can find the optimum with a lesser number of evaluations. In the case of the
other three functions results improve when mixtures are used.

7 Conclusions and Future Research

In this paper we have introduced a mutation like effect in the MT-FDA by using
priors. We have proposed a way for doing adaptive mutation by relating the
mutation rate of the FDA to the quality of the approximation and the strength
of the components of the mixture model. This is an example of the number of
interesting possibilities that arise in the integration of the theory of Graphical
Models and Evolutionary Computation. The results of the experiments show
that the changes introduced to the MT-FDA improve its performance.
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Table 1. Results of the MT-FDA with 6 components in the optimization of different
functions, n = 36, T'=0.15

Function|Popsize| NoPrior | BestPrior |Adap.Prior
I3 succ.| eval. succ.| eval. succ.| eval.

fdeceptives 0.2| 80| 4807| 100| 5271 100 5579
0.4| 90| 4847| 99| 5310{ 100 5963
0.6] 82| 4979| 99| 5296/ 100| 5886
0.8| 67| 4967| 100| 5683| 99| 7831
1.0 41| 4928| 98| 5643 65| 7034

fdeceptive4 0.2 22| 5497 63| 7135 87111257
0.4| 17| 5839 62| 8129| 84|12516
0.6 6| 6059| 61| 8377| 75|14782
0.8 3| 6059| 55| 8821 51|17983
1.0 2| 3845 40( 9490 3| 6525

fadeceptive 0.2] 24/10657| 62|14454| 98|17677
0.4| 17|11283| 63|14780| 99|16964
0.6 6/10490| 62(15389| 90(21490
0.8 1) 7993| 47(16112| 65|28418
1.0 1/17983| 45(16694 9|27529

Frsop 0.2| 28| 5888| 15| 6861| 30| 6894
0.4| 16| 5808| 17| 7640| 23| 7949
0.6] 21| 5852| 15| 6661 17| 6760
0.8| 24| 5828| 19| 6994| 16| 6744
1.0 21| 5614 8| 7243| 13| 5226
FrsoTorus 0.2| 93| 5436 100| 6134| 97| 5706
0.4| 95| 5511| 95| 6268| 95| 5585
0.6] 93| 5404| 99| 6348 94| 5538
0.8] 92| 5441| 100| 6314| 87| 5627
1.0/ 89| 5456 98| 6015| 90| 5507
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Table 2. Results of the MT-FDA with different number of components in the opti-
mization of different functions n = 36, T = 0.15 when the number of trees is increased

Function|N.Trees NoPrior BestPrior Adap.Prior
Bestu|succ.| eval. Best,u|succ.| eval. Bestu|succ.| eval.
fdeceptives 2| 0.4 100| 3859| 0.2| 100| 4440 0.2| 100| 3851

4| 0.2 98| 4309 0.2| 100 4810{ 0.2| 100| 4705
12|  0.2| 66| 5222 0.2| 100| 5858| 0.2| 100| 6753

fdeceptivea 2| 0.4 47| 4760, 0.8 71| 6164 0.2] 67| 5916
4| 0.2] 34| 5490 0.2| 70| 7400 0.4| 72| 8185
12| 0.2| 15| 6059 0.2 75| 8035 0.2] 88(12916
FrsoTorus 2| 0.2| 94| 5549 1.0 98| 6515 0.2] 92| 5580
4| 0.4] 97| 5490 0.6| 100 6345 0.4] 98| 5710
12| 0.2| 93| 5608 0.4| 99| 6358 0.2| 99| 6056
Frsop 2| 0.2 77| 5100 0.2| 41| 5654 1.0 70| 5053
4| 0.2 45| 5573| 0.4 32| 6089 0.6 38| 5653
12|  0.2| 23] 6386 0.2 21| 8183| 0.2] 18| 8992
fdeceptives 2| 0.2 37] 9370, 0.2| 6612034 1.0 63(11053
4| 0.2] 2310338 0.2 66(13835| 0.2| 93|15942
12| 0.2| 11)11172 0.2] 79(13911 0.2] 95|20244

As trends of future research we identify the creation of learning algorithms for
the mixtures of trees that allow to determine the number of trees incrementally
during the learning phase. Such types of algorithms would be able to adjust the
number of components of the mixture to the characteristics of the data. We plan
to evaluate the convenience of using other types of priors, like structural priors
that allow to change the structure of the trees, and not only the parameters,
and ”smoothing with the marginal”. This method is thought to allow the ap-
pearance of events with zero probability. The probability distributions obtained
from the data are smoothed with some more general probability distribution by
interpolating both distributions. This technique can be seen as a Dirichlet prior
derived from the pairwise marginal distributions for the data set [6].
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