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Abstract

In this paper we investigate the problem of an efficient implementation of the selection
step in Factorized Distribution Algorithms. We demonstrate that while in Genetic Algorithms
the selection operator needs the creation of a selected population, in Factorized Distribution
Algorithms this is not always the case.
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1 Introduction

Selection is a corner stone of a number of population based search methods like Genetic Algorithms
(GAs) [4, 3], and Estimation Distribution Algorithms (EDAs) [10]. These methods are non deter-
ministic heuristic search strategies, commonly used for optimization. Their main characteristics
are: They use a population of individuals or solutions, instead of a single point, to conduct the
search. In every iteration (usually called generation) a subset of individuals is selected, and by
applying some operators, a new population is created. In this way the algorithm iterates (evolves)
until a stop condition is satisfied.

In GAs the recombination and mutation operators are applied to the selected set of individuals
to obtain the new population. Other algorithms are characterized by the use of probabilistic
modeling of the information contained in the selected set. In this paper we will use the term
Estimation Distribution Algorithm to refer to any evolutionary algorithm that uses the estimation
of probability distributions instead of the genetic operators. Although not all the proposals fit well
in the EDAs scheme, this conceptual framework has been used before [5] as a model to study the
algorithms under analysis. Algorithm 1 shows the steps of an EDA.

One efficient way of estimating a probability distribution is by means of factorizations. A
probability distribution is factorized when it can be computed as the product of a small number
of factors. A subclass of EDAs groups the algorithms that use factorizations of the probability
distribution. In this paper we call this subclass Factorized Distribution Algorithms (FDAs) [9]. In
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Algorithm 1: EDAs

1 Set t <= 0. Generate N individuals randomly.

2 do{

3 Select a set S of £ < N individuals according to a selection method.

4 Calculate a probabilistic model of S.

5 Generate N new individuals sampling from the distribution represented in the model.
6 t<=t+1

7} until Termination criteria are met

the literature the term FDA is frequently used to name a particular type of Factorized Distribution
Algorithms. Our definition covers it, and other algorithms that use factorizations. FDAs belong to
the EDAs class as well as other evolutionary algorithms where the estimation of the distribution is
achieved by other means. In this paper we show that the selection step in a FDA can be omitted
when this step involves the calculation of the selection probabilities of all the individuals in the
current population. The possibility of changing the way selection is accomplished represents an
important difference with GAs.

Let X = (X1,...,X,) be a tuple of random variables, and X € B™ where B" is the finite
n-dimensional binary space. Throughout this paper z will denote a value of the individual X, and
x; the value of Xj;, the i-th component of X.

The paper is organized as follows: In the next section we review the main types of selections
used by GAs. In section 3 we discuss the way selection is implemented in FDAs. We present
a modification to the traditional way of doing selection. In section 4 we conduct a number of
experiments to evaluate the impact of the proposed changes in the behavior of some FDAs. Finally,
section 5 describes the relationship between selection and the other components of the FDAs, and
presents the conclusions of our work.

2 Selection in GAs

In our analysis we have used the classification of the selection methods proposed by Sastry and
Goldberg [12]. Selection methods are classified in two classes: (1) Proportional schemes, and (2) Or-
dinal based schemes. Proportional schemes select an individual based on its relative fitness value
compared to others. Ordinal schemes select an individual based on its ranking in the population.

In Proportional schemes selection is usually accomplished in two steps. First, the selection
probabilities of the individuals in the current population are determined, then new individuals
are sampled from these probabilities. These individuals form the selected set that serves as a
mating pool. Examples of these Proportional schemes are the Proportional [3] and Boltzmann [8]
selection. In Ordinal based schemes, selection probabilities are not explicitly calculated. Instead,
some procedure is used to select the individuals straight from the population. One example is
the Tournament selection, where s individuals are randomly chosen from the population, and the
best individual from this group is included in the selected set!. This process is repeated until the
selected set has been filled.

! Tournament selection can be done with or without replacement of the selected individual.



When Proportional schemes are applied, different sampling algorithms can be used to sample
from the selection probabilities. The most known example is the Roulette Wheel (RW) selection
[3], generally used for Proportional selection. In RW selection a biased roulette wheel is created
where each current individual in the population has a roulette wheel slot sized in proportion to its
fitness. Every time the wheel is spinned, a copy of the selected individual is included in the selected
set. RW selection is also a clear example of a bad sampling method, for small populations it has a
high variance.

To solve this problem other types of sampling methods, like the Stochastic Universal Sampling
(SUS) [1], have been proposed. SUS consists of simultaneously selecting N individuals by locating N
equally spaced pointers in the roulette. After only one spin, we select the individuals corresponding
to the slots where the N pointers are located.

In table 1 an example of the application of the Proportional selection is shown. From a pop-
ulation of 7 individuals the selection probabilities are calculated based on the individuals’ fitness.
The expected count shown in column 4 is the expected number of copies of each individual (n?),
calculated as the product of the selection probabilities (p(z7)) by the number of generated individ-
uals.

n =p(a?) - N (1)

Possible outcomes of the RW and SUS methods are presented in columns 5 and 6. Due to the
finite size of the population none of the actual counts corresponds to the expected counts.

‘ x ‘ f(x) ‘ps(xj) ‘ n ‘ N ‘ Nous ‘

10100 | 2 0.1 0.7 1 1
10110 | 2 0.1 0.7 0 1
11000 | 2 0.1 0.7 0 0
10011 | 3 0.15 |1.05| 1 1
10101 | 3 0.15 [1.05| 1 1
10111 | 4 0.2 1.4 2 1
11011 | 4 0.2 1.4 2 2

Table 1: Different steps of the Proportional selection method

3 Selection in FDAs

As there is no crossover operator in FDAs, the selected set is not used as a mating pool. These
algorithms use the selected individuals to construct a probabilistic model that captures the inter-
dependencies between the variables. Considering the complexity of the probabilistic models they
use, FDAs can be classified in two classes: (1) Algorithms that make a parametric learning of the
probabilities, and (2) Algorithms where a structural learning of the model is done. In parametric,
as well as in structural learning, the only relevant information extracted from the data is initially
represented in the marginal probabilities of the variables. Structural learning finds a graphic repre-
sentation of the interactions among the variables using these marginals. Parametric and structural



learning are also known as model fitting and model selection. The interested reader is referred to
[5] for a review of probabilistic graphical modeling and EDAs.

3.1 Proportional Schemes

Traditional implementations of FDAs that use Proportional schemes determine firstly the set of
selected solutions, and calculate then the marginal probabilities from this set. We analytically show
that avoiding the creation of the selected set is possible. To present our case we use as an example
of FDAs the Univariate Marginal Distribution Algorithm (UMDA) [10]. The UMDA uses a very
simple probabilistic model that assumes all the variables are independent. The probability of an
individual z is estimated as p(z) = [[—, p{(Xi = =;,t), where pf(X; = z;,t) are the univariate
probabilities calculated from the selected population. In the case of the binary problems we treat
in this paper, we will use pf(z;,t) as a shortcut for pf(X; = 1,1).

| Vars./Univ. | pi | pi®" [p]5%5 | 9} |

zl 1.0 1.0 1.0 | 1.0
x2 0.286 | 0.286 | 0.286 | 0.3
z3 0.571 | 0.571 | 0.571 | 0.55
x4 0.571 | 0.714 1 0.714 | 0.65
d 0.571 | 0.857 | 0.714 | 0.70

Table 2: Univariate Probabilities

In table 2 we show the univariate probabilities corresponding to the selected populations pre-
sented in table 1. Column 2 shows the univariate marginals of the initial population, calculated
assuming that there is only one copy of the 7 individuals. Columns 3 and 4 show the univariate
marginals calculated from the populations obtained using RW and SUS (columns 5 and 6 in ta-
ble 1). The last column corresponds to the univariate probabilities calculated from the expected
counts, we call them expected univariate probabilities pf(z;, t).

N i j
Y (n -2

i Z;V:l n/

Substituting equation (1) in (2), and considering ), p(z?) = 1:

(2)

= p; (x:) (3)

Notice in table 2 that the univariate probabilities of the selected population obtained using SUS
are a better approximation of the expected univariate probabilities, than those calculated from
the selected population obtained using RW selection. Nevertheless, both approximations have a
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departure from pf(z;,t). This difference is due to the sample methods used, and to the fact of using
a small population. Equation (2) shows that for calculating the expected univariate probabilities
there is no need of applying any sampling method, they can be calculated from the expected counts.
Even more, as it is observed in equation (3), no even the expected counts are needed.

When Proportional schemes are applied to FDAs it is possible to avoid the step of selecting a set
of individuals. The marginal probabilities can be calculated straight from the selection probability
distribution determined by the selection method.

If parametric learning is used the learning process finishes after the marginals have been cal-
culated. There is no need to create a selected population, but if a good sampling method like
SUS were applied to create the selected population, the obtained marginals would be close to the
expected ones, just as in the example described in tables 1 and 2. In the case of structural learning;,
the only difference is that the marginals are also used for learning the structure of the probabilistic
model.

3.2 Ordinal Based Schemes

For Ordinal based schemes, for which selection probabilities are not calculated, the model learning
process necessarily has to be done using a selected set of individuals, instead of the selection
probabilities. This is the case of Tournament selection. However, in these cases it can still be
convenient learning the model from a probability distribution. An algorithm for the case of Ordinal
based schemes would have the following steps:

1. Create the selected population.

2. Create a ’compact’ population from the selected population where all the individuals are
different among each other.

3. Associate to each individual in the compact population its probability in the selected popu-
lation.

4. Learn the probabilistic model from the probabilities associated to the individuals in the
compact population.

In table 3 an example of how to construct a compact population is shown. It is more efficient
to do the model learning step when there is only one copy of each individual. Furthermore, by
calculating the frequency of each individual in the selected population we can control early conver-
gence of the FDA, and stop the algorithm when a few numbers of individuals dominate the selected
population.

4 Experiments

In section 3.1 we have analyticly shown that FDAs do not always need to create a selected popu-
lation. Thus, the goal of our experiments is not to investigate the validity of this result. Instead,
we are interested to find out which is the influence of using a (as shown before redundant) selected
population in the behavior of the FDAs that work with Proportional schemes. The goal is to
measure the difference between the two selection procedures: when a selected population was used



Selected | Compact
Pop. Pop. Prob.
10100 10100 0.3
10110 10110 0.1
10100 00100 0.2
00100 01001 0.1
01001 11000 0.2
11000 01010 0.1
01010
11000
10100
00100

Table 3: Construction of a compact population

(SP), or when this was not the case (No SP). We will be concerned with the maximization of a
function f: X — R°.

An important point is that the results shown below are by no means the best that can be achieved
using the FDAs presented. Results with Truncation selection can be much better than those
achieved with Proportional selection. On the other hand, the performance of Boltzmann selection
can be considerably improved when an adaptive Boltzmann selection schedule is incorporated to
the FDA [6]. Similarly, results of the comparison between the different FDAs must not be taken as
conclusive.

4.1 Functions Used in the Experiments

Most of the functions used in our experiments belong to the class of Additive Decomposable Func-
tions (ADFs), for which the value of the function is the sum of the evaluation of a number of
sub-functions in subsets of variables. They represent an interesting class of functions where possi-
ble interactions among the variables are reduced to a subset of them, and thus are used to simulate
problems that can be decomposed in smaller subproblems. The functions presented have served
before as a test bed for evolutionary algorithms. The interested reader is referred to [5] for an
account of the performance of other FDAs for these functions.

The simplest additive function is OneMazx where each sub-function is evaluated in only one
variable.

Function OneMazx:

OneMazx(z) = Z T (4)

Functions of unitation are used to define the sub-functions comprised by an ADF. A function
of unitation is a function whose value depends only on the number of ones in an input string. The
function values of the strings with the same number of ones are equal. Thus, functions of unitation
can be defined in terms of the unitation of the individual (u). The fsgeceptive function is defined as
a sum of the more elementary unitation function f3,.



Function f3deceptive:

=
f3decepti1}e (33) = Z fgec($3i—2, T3i—1, .’1731')
=1

where
: 3.
Function fj,.:

0.9 for u=0

fhow =4 oo T vz, (5)

1.0 for u=3

Function general deceptive of order k, fgecx:

fdecK(uak):< E—i—1 . (6)

Function fdeceptivek:

j— 1
=%

fdeceptivek (-T) = Z fdecK(-Tki—k:—l—la .. ’xki) (7)
=1

Function Checkerboard:

The goal of the chekerboard problem is to create a checkerboard pattern of 0’s and 1’s in an
NxN grid. Only the primary four directions are considered in the evaluation. For each position in
an (N-2)x(N-2) grid centered in an NxN grid, 1 is added for each of the four neighbors that are set

to the opposite value. The maximum evaluation for the function is 4(N — 4)(N — 4).
Function symmetric:

. U if 2-u<n
symmetric(u) = n—u otherwise

4.2 FDAs Used in the Experiments

The FDAs that were chosen for the experiments are briefly described below. Our choice was due
to the possibility of incorporating the proposed changes to the available implementations of these
algorithms.

1. The UMDA, which is a FDA with a simple probabilistic model that assumes variables are
independent. UMDA generates new solutions by only preserving the proportions of the values
of a variable, independently of the values for the remaining variables. This approach can work
well even for problems where variables are not completely independent.



2. A tree based FDA (Tree-FDA), this algorithm is similar to the MIMICs version presented in
[2], where a tree shaped network approximates the joint distribution. It has been used before
in the optimization of binary problems, as well as of functions defined on integers.

3. A mixture of trees FDA (MT-FDA) [11], where a mixtures of trees is used to represent the
distribution. Mixtures of trees can represent, condensed in just one model, different patterns
of interactions among the variables of the problem.

4.3 Numerical Results

n N SpP No SP

s | eval. | f s | eval. | f
12 12 | 46 45.2111.39 | 50 43.7111.39
12 | 24 |98 73.8 [11.98 | 97 69.8 | 11.97
12 | 30 |96 81.611.95| 100 86.3 | 12.00

36 | 36 | 18| 214.9|34.31| 26 | 232.5|34.59
36 | 80 |85 | 409.9|35.83| 8 | 397.9|35.82
36 | 100 | 91| 466.6|35.91 | 98 | 483.9|35.98
100 | 500 |47 | 3886.8 | 98.95 | 48 | 3826.7 | 98.76
100 | 800 | 70 | 5810.9 | 99.56 | 77 | 5697.8 | 99.60
100 | 1000 | 81 | 6920.0 | 99.77 | 85 | 6994.0 | 99.93

Table 4: Comparison of the two selection procedures for the Boltzmann selection using the UMDA
in the optimization of the OneMax function

Every experiment consists of 100 runs of the algorithm for the given parameters. The number
of times the algorithm found the optimum (s), the average number of functions evaluations (eval.),
and the average fitness of the function (f) are calculated from these experiments. As two different
criteria for comparison between SP and No SP we take the number of times the optimum was
reached in the 100 runs, and the average fitness. When for one of these criteria the algorithms are
tied, the algorithm with the minimum number of average function evaluations is considered as the
winner.

Table 4 shows the results of the optimization of function OneMax using the UMDA, when the
Boltzmann selection is used with base b = e. Results are presented for different number of variables
and population sizes. The maximum number of generations was 50. As it can be seen in the table,
if we consider the times the optimum was reached No SP was the best 8 times, and SP was the
best only once. Considering the average fitness, No SP was better than SP 6 times, and SP was
the best the other 3 times. In general, the differences in the results are not significant.

Table 5 shows results of the two selection procedures for Proportional selection, using the Tree-
FDA and the MT-FDA. In all the cases the function used was f3geceptive, 7 = 12. Column 2 refers
to the use of probabilistic priors during the optimization procedure. The use of priors has been
proposed in [7] to enhance the performance of FDAs, and to accelerate their convergence. Column
3 refers to the traditional mutation operator used by GAs. In this case we have used a mutation
rate of 0.02.



FDA Prior | Mut SP
S ‘ eval. ‘ f
Tree-FDA | no no |56| 940.31|3.95
MT-FDA | no no |45|1633.4 | 3.94
Tree-FDA | no yes | 72| 1606.9 | 3.97
MT-FDA | no yes | 67| 2053.6 | 3.97
Tree-FDA | yes no |93 2120.6 | 3.99
MT-FDA | yes no | 7412095.0 | 3.97
FDA Prior | Mut No SP
Tree-FDA | no no |46 | 820.5] 3.94
MT-FDA | no no |45 |1494.3 | 3.94
Tree-FDA | no yes | 68 | 1789.0 | 3.97
MT-FDA | no yes | 55| 2225.2 | 3.95
Tree-FDA | yes no | 8812324.0 | 3.99
MT-FDA | yes no |70 2146.6 | 3.96

Table 5: Comparison of the two selection procedures for the Proportional selection, using the Tree-
FDA and the MT-FDA in the optimization of the fsgecepive function under different conditions

Function n| N FDA SP No SP

s | eval. | f s | eval. | f
Checkerboard | 251300 | UMDA |93| 8739.5|35.87| 81| 9052.2 | 35.64
Tree-FDA |91 | 6174.9 3591 | 93| 6517.9|35.93
MT-FDA |93 |10620.3 | 35.93 | 84 | 11548.1 | 35.83

Jdeceptives 241300 | UMDA 8| 8672.0 | 22.08 71 7476.0 | 21.89
Tree-FDA | 73 | 5993.3 | 23.67 | 63| 6185.1|23.57
MT-FDA |53 |11007.6 | 23.41 | 53 | 11018.9 | 23.43
symmetric | 24200 UMDA |99 | 6334.8|23.99|100| 6576.0|24.00
Tree-FDA | 90 | 4830.1 | 23.88 | 89| 4680.9 | 23.88
MT-FDA | 87| 8278.9|23.86| 86| 8590.4 | 23.84

Table 6: Comparison of the two selection procedures for the Proportional selection using different
FDAs and functions



Prop. Scheme
Pop(t)

Ord. Scheme Pop*(t)

Figure 1: Alternative ways for the selection operator in FDAs. Pop(t): populations at time ¢;
p*(X,t), p*(X,t): Join probabilities determined by selection and the graphical model approxima-
tions.

The idea of this experiment is to study if there exist significant differences in the behavior of
the algorithms when adding a perturbation to the population (in this example by means of priors
and mutation). Considering the number of times the optimum was reached, SP was the best in 5 of
the 6 experiments. The same happens if the average fitness criterion is considered. We hypothesize
that in this case the stochastic noise caused by the use of SUS contributed to infuse a convenient
diversity to the generated population.

Table 6 presents the results for functions fueceptives, Checkerboard, and symmetric. In this
experiment a maximum of 60 generations was allowed. Considering the number of times the
optimum was reached SP was the best in 7 of the 9 experiments. The picture is less clear if we
analyze the average fitness because SP was the best only in 5 of the 9 cases.

5 Conclusions

The main result achieved in this paper is to show that new possibilities of doing selection arise
when crossover operators are replaced by probabilistic modeling of the solutions. Basically, we have
proven that when using Proportional and Boltzmann selection, no selected population needs to be
constructed in order to generate the individuals in the next generation, according to the selection
probabilities. In figure 1 we present how Proportional and Ordinal based selection schemes can be
inserted in FDAs, and related with their other components.

We have conducted a number of experiments to evaluate what is the influence of using sampling
methods like SUS when they are not needed. Our preliminary results show that the use of SUS,
although redundant, does not significantly deteriorate the results, and in some cases can improve
them. This is probably due to the side effect that the random noise associated to the procedure for
sampling the selection probabilities can have in introducing diversity to the search. In this paper
it has been shown that the learning of the probabilistic model from the joint selection probability
distribution can be done also for Ordinal based schemes. We expect that our results have shed
some light to the differences that exist between GAs and FDAs.
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