
Study of Neighborhood search operators for
unitation functions

In this paper we study the behavior of neighborhood search algorithms
in optimization of unitation functions. The influence of two neighborhood
search strategies is analyzed. The expected number of steps required by these
algorithms to reach the optimum is derived. The analytical results achieved
correspond to previous simulations.

1 Introduction

Unitation functions are functions defined in the finite n-dimensional binary space whose
values are related to the number of components set to 1 (see section 2 for a formal
definition) and have a number of attributes that make them particularly appealing for
the investigation of different optimization algorithms. These functions have received a
particular attention in Genetic Algorithms (GAs) [1] and Estimation Distribution Algo-
rithms (EDAs) [6], two Population Based Search Methods that use Selection (PBSMS),
commonly used as optimization methods. The performance of GAs and EDAs for uni-
tation functions has been extensively investigated.

Unitation functions are also important because they allow the study of the behavior
of optimization algorithms in the presence of multiple local and global optima. They
are useful to understand, for example, how EDAs optimize functions by transforming
the original landscape in the landscape given by the average fitness of the population, a
result that was presented in [5].

One important question that arises is how single searchers behave for these functions.
In [4] the computational complexity of Simulated Annealing (SA) [3] for a fixed tem-
perature and neighborhood sizes was investigated in the framework of the optimization
of unitation functions. A theoretical comparison of stochastic local search using large
neighborhoods with a local search using optimal temperature schedules was done. In [7]
a comparison between EDAs and some local searchers for some unitation problems was
presented.

In this paper we analyze the influence of the way the neighborhood is defined in the
performance of neighborhood based local searchers. We derive a formula for estimating
the probability of reaching the optimum in one single step of the search for a subclass of

1

unitation functions. Results are applied to the calculation of the number steps needed by
the local searcher to reach the optimum in the case of unitation functions with gaps. The
outline of the paper is as follows: Next section introduces the class of unitation functions.
Section 3 presents a neighborhood based search algorithm based on the Boltzmann
distribution. The analysis of two types of neighborhood search operators is developed in
section 4. Section 5 shows how the derived results can be used to estimate the number of
steps to reach the optimum for one particular function, the results on the approximation
are validated comparing with previous simulations. We present our conclusions in section
6.

2 Unitation functions

Let X = (X1, . . . , Xn) be a tuple of random variables and X ∈ Bn where Bn is the finite
n-dimensional binary space. We will use x to denote a value of X, and xi to denote a
value of Xi, the i-th component of X. Let f be a function such that f(x) : Bn 7→ R≥0,
and let u(x) =

∑n
i=1 xi.

Definition 1. f(x) is a unitation function if ∀x, y ∈ Bn, u(x) = u(y)⇒ f(x) = f(y)

u(x) is itself a unitation function, usually called Onemax because it reaches the max-
imum at x = (1, . . . , 1). A unitation function can be defined in terms of its unitation
value u(x) or, in a simpler way, u. One example is the Jump function (1) [4]. The
parameter gap (gap ∈ N, 0 ≤ gap < n) of this function defines the number of steps one
has to go downhill in order to reach the unique maximum. For gap = 0 we have the very
simple Onemax function. As the parameter gap increases, so does the difficulty of the
function. The graphic of function Jump is shown in figure 1.

Jump(n, gap, u) =

u u < n− gap
2 ∗ (n− gap− 1)− u n− gap ≤ u

n u = n
(1)

3 Neighborhood based search algorithms

Neighborhood based search algorithms are local search methods that start from a single
point, and proceed the search for the optimum making transitions to points in a prede-
fined neighborhood of the current one. The ways in which a neighborhood is defined, the
probabilities of visiting the different of visiting the different points in the neighborhood,
and the criteria to accept transitions to the neighbors determine the dynamics of the
search. We will consider neighborhood search algorithms defined on Bn. For this space
the size of the neighborhood is defined as the number of solutions that belong to the
neighborhood.

Some neighborhood search methods use a dynamical variable to determine transitions
in the space of solutions. This is the case Simulated Annealing (SA) which uses the
temperature as a dynamical variable that changes with time, and may allow the system

2

0

5

10

15

20

0 5 10 15 20

Ju
m

p(
24

,3
,u

).
u

Figure 1: Function Jump, n = 24, gap = 3.

to make transitions which would be improbable at a fixed temperature. In SA the
neighborhood of a point is usually comprises the set of points that are in an 1-bit
distance from the current point.

Recently Mühlenbein and Zimmermann [4] have shown that for stochastic local search
algorithms like SA the size of the neighborhood is more important than the temperature
schedule. In fact, in the field of local optimization, it has been reported that updating
more than one variable at the time can be a good heuristic for escaping local optima
when sequential optimization algorithms are used. This is the case for example of GSAT
[2], a very effective local optimization strategy used to solve the Satisfiability problem,
where the number of variables to be updated in each step is not fixed. We will constrain
our analysis to the case of the algorithms that use neighborhood search, where the
neighborhood size s is fixed. A transition from the current state to the next state is
done by changing at most s variables of the current state. The search can be done in
two steps.

• The s variables that will be changed are selected.

• The values of all or some of the variables are changed.

Let Ng represent a set of variables to be updated, s is the number of variables in
Ng, and we will refer to the variables that are not in Ng as X/Ng. For s = n we
have X/Ng = ∅. xNg is the sub-vector of the vector x formed by variables in Ng. The
close neighborhood vNg(x) of x includes x and the set of points that can be accessed by
changing the values in xNg. From now on we understand a neighborhood as a closed
neighborhood.

In the neighborhood search algorithm we use, the set Ng of s variables is uniformly
selected from X without replacement. Available information may be use to select the
neighbors in a ”convenient” biased way. Results for the case where the structure of the
function is used in the selection of the blocks can be found in [7]. The new configuration

3

of variables in Ng is found sampling from a neighborhood probability P that is an input
of the algorithm. P is defined in the space of the 2s binary configurations, and it is fixed
for any set Ng.

The neighborhood search algorithm is shown in algorithm 1. The algorithm receives
as a parameter the block size s, that can be also understood as the maximum number
of variables that will change their values together.

Algorithm 1: Neighborhood based searcher

1 Set t⇐ 0. Generate a random initial point x0.

2 do {
3 Select a set Ng of s different uniformly selected variables of X.

4 Propose a new point x′ such that x′i = xi if Xi ∈ X/Ng and x′i is sampled
from the neighborhood probability P for Xi ∈ X/Ng

5 if f(x′) ≥ f(x) then xt+1 = x.

6 t⇐ t+ 1.
7 } until Termination criteria are fulfilled

We have used two different ways of defining transition probabilities. These two ways
actually define different types of neighborhoods, and we will refer to them as Neig1 and
Neig2. In Neig1 a uniformly random value x′Ng is selected among the 2s − 1 possible
values. Neig2 has been implemented as in [4], the probability is uniform in the space
of the number of the variables that can change their value together. Table 3 shows an
example of how the neighborhood Neig1 and Neig2 are constructed for a point x. Note
that while PNeig1 is uniform in the 2s neighbors, PNeig2 is not, however PNeig2 is uniform
in the space of the unitation. Finally if the value of the function at the proposed point
x′ is not worse that at the current one the transition is made.

Ng = {1, 3, 5} v{1,3,5}(x)

x = (00000) 00000 10000 00100 00001 10100 10001 00101 10101

u 0 1 2 3

PNeig1(x) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125∑
x PNeig1(x) 0.125 0.375 0.375 0.125

PNeig2(x) 0.250 0.083 0.083 0.083 0.083 0.083 0.083 0.250∑
x PNeig2(x) 0.250 0.250 0.250 0.250

Table 1: Definition of two different neighborhood transition probabilities for
v1,3,5(00000).

4

4 Analysis of the neighborhood operators

We consider again a maximization problem. Let us suppose that the optimum of f(x)
is located at point x = (1, 1, . . . , 1). We want to estimate the probability of making a
transition from a point with unitation u to the optimum using a neighborhood search
algorithm with neighborhood size s. Let us call this probability Ptrans. To hit the
optimum the following facts have to occur.

• The (n− u) variables with value 0 are selected among the s variables.

• The new proposal changes the values of these (n−u) variables and keep the values
of the rest of the variables intact.

• The new proposal is accepted.

Then Ptrans can be factorized as:

Ptrans = Psel · Popt · Pacceptance

Psel =

(
u

s−(n−u)

)
(
n
s

) (2)

Where Psel is the probability of having the (n − u) variables among the s variables
selected. Popt is the probability of changing the (n−u) variables to 1, while keeping the
remaining s− (n−u) in their current values. Popt depends on the way the neighborhood
structure is defined. Finally, given that x′ is the new proposal, x′ will be accepted if
f(x′) ≥ f(x) Thus, the probability of hitting the optimum is equal to the probability of
selecting the optimum as the next proposal. If the current solution has unitation u, and
n−u > s, the probability of generating the optimum as the new proposal is 0 because in
this case it is impossible to make the transition in just one step. It could be the case that
the n−u variables that need to be changed are among the set of s variables selected. In
this case the transition to the optimum will be done, i.e. Popt = 1. The analysis leads
to the following theorem.

Theorem 1. The probability that a random neighborhood based search algorithm with
neighborhood size s and that always accept better points reaches the optimum in one step
is given by:

Ptrans =

(
u

s−(n−u)

)
(
n
s

) · Popt (3)

Moreover, equation (2) gives the maximum probability of reaching the optimum in one
step.

Now let us consider Popt for Neig1 and Neig2 introduced in the previous section. In
Neig1 an assignment for the s variables is uniformly random generated in the space of
neighbors. This is:

5

PNeig1trans =

(
u

s−(n−u)

)
(
n
s

) · 1

2s
(4)

This would correspond to a search algorithm with uniform transition rules. But uni-
form transition rules do not imply a uniform search of the space. For the particular case
of uniform search, the Neig2 case, the probability of selecting a new assignment for the
s variables must satisfy that all the points of the neighborhood are visited with the same
probability.

Let us consider the probability of having a neighbor y of x whose Hamiltonian distance
from x is h (i.e. H(x, y) = h). Obviously, the probability for h > s is zero. For h ≤ s
this probability is:

PH(x,y)=h =

(
n
h

)
∑s

h′=0

(
n
h′
) (5)

Then PNeig2opt has to be calculated according to the distance to the optimum hopt. If the
current solution has unitation u then hopt = n− u and

PNeig2opt =

(
n

n−u
)

∑s
h′=0

(
n
h′
) · 1(

s
n−u
)

where the first term in the expression corresponds to the probability of changing exactly
n−u components while the second expression is the probability of finding the right n−u
variables among the s variables selected.

Theorem 2. The probability that a random neighborhood based search algorithm Neig2
with neighborhood size equal s reaches the optimum in one step is:

PNeig2trans =
1∑s

h′=0

(
n
h′
) (6)

Proof: Substituting (6) in (3) we get:

PNeig2trans =

(
u

s−(n−u)

)
(
n
s

) ·
(
n

n−u
)

∑s
h′=0

(
n
h′
) · 1(

s
n−u
)

Considering the case when s = n− u+ a, a ≥ 0 and substituting in (7) we arrive to:

PNeig2trans =

(
u
a

)
(

n
n−u+a

) ·
(
n

n−u
)

∑s
h′=0

(
n
h′
) · 1(

n−u+a
n−u

)

=
u!

(u− a)!a!
· (n− u+ a)!(u− a)!

n!
· n!

(n− u)!u!)
· (n− u)!a!

(n− u+ a)!
· 1∑n−u+a

h′=0

(
n
h′
)

=
1∑n−u+a

h′=0

(
n
h′
) (7)

Finally, substituting a = s− n+ u in (7) we obtain the expression (6).

6

Corollary 1. PNeig2trans is maximal when s = n− u.

5 Structure of the neighborhood, Jump function

We investigate now the role of the neighborhood structure in the case of the Jump
function. For this function most of the steps spent by a neighborhood search algorithm
with neighborhood size s are used to pass from a local optimum with unitation n−gap−1
to the optimum of unitation n.

The expected number of steps to reach the optimum can be calculated as the inverse
of the probability for reaching it. Using (4), and (7) we estimate the total number of
steps to reach the optimum of the Jump function with gap equal gap when Neig1 and
Neig2 are used. We substitute u by n− gap− 1 and s by gap+ 1 + a.

NNeig1 =

(
n

gap+1+a

)
(
n−gap−1

a

) · 2gap+1+a (8)

NNeig2 =

gap+1+a∑

h′=0

(
n

h′

)
(9)

For the Jump function it is clear that the minimal number of steps to reach the
optimum needed by the Neig2 (equation (9)) is achieved when s = gap + 1, otherwise
the number of steps is incremented. This result demonstrates the following theorem
presented as an empirical law in [4].

n g τ NNeig2 g τ NNeig2 g τ NNeig2

8 1 47.6 37.0 2 96.7 93.0 3 164.6 163.0

16 1 191.0 137.0 2 718.6 697.0 3 2538.5 2517.0

24 1 430.0 301.0 2 2379.1 2325.0 3 13026.6 12951.0

32 1 764.6 529.0 2 5590.5 5489.0 3 41633.0 41449.0

64 1 3059.4 2081.0 2 44202.2 43745.0 3 680863.5 679121.0

Table 2: Comparison of the simulation results τ for the function Jump with the expected
number of steps NNeig2

The expected number of steps NNeig2 for the Jump function and different number
of variables are presented in table 2. The predictions are compared with results of the
simulations appeared in [4]. As NNeig2 is just the number of the steps required to jump
from the local optimum to the optimum, it is only a lower bound of the expected passage
time τ . Nevertheless it can be appreciated in the table how close is the prediction.

To analyze the case of Neig1 we consider a simplification of equation (8) for NNeig1.

NNeig1 =
n!a!(n− (gap+ 1 + a))!

(n− (gap+ 1 + a))!(gap+ 1 + a)!(n− gap− 1)!
2gap+1+a

7

=
n!a!

(gap+ 1 + a)!(n− gap− 1)!
2gap+1+a

=
a!(n− gap− 1)!

∏gap+1
i=1 (n− gap− 1 + i)

(n− gap− 1)!a!
∏gap+1
i=1 (a+ i)

2gap+1+a

=

(
gap+1∏

i=1

n− gap− 1 + i

a+ i

)
2gap+1+a (10)

In (10) it can be seen that the number of steps depends on two terms. When a is
increased the first term decreases but the second one gets exponentially higher. When
a = n− gap− 1 the first term is 1 and NNeig1 is equal to the size of the space. If a = 0
then the number of steps becomes:

NNeig1 =

(
n

gap+ 1

)
2gap+1

and this value can be even higher than 2n. So, for the Jump function the Neig2 makes
a more efficient search. Figure 2 shows how NNeig1 and NNeig2 scale when the number
of variables is increased for the Jump function, gap = 1, 5. The size of neighborhood
for Neig1 and Neig2 are respectively (2gap+ 1) and (gap+ 1). In the figure the y axes
is log-scaled, vertical lines show the first n for which the computation of the number
of steps is possible (n > s). It can be seen in the figure that the number of steps
is always higher for Neig2. The difference between the number of steps needed by
both algorithms can be intuitively appreciated if we realize that the average number of
variables that change their value in every step of the Neig1 is less than the average for
Neig2. As a consequence the first algorithm needs more steps for finding a way to cross
the gap.

6 Conclusions

For unitation functions we have calculated which is the maximum probability for a
random neighborhood based search algorithm with neighborhood size s to reach the
optimum in one step. This formula allows to estimate the average number of steps
needed by the algorithm to jump from a local suboptimum of unitation u to the optimum.
We have also presented the formulae for calculating this probability for two commonly
used neighborhood structures, Neig1 and Neig2. In the case of Neig2 we have also
shown that the optimal choice of the neighborhood size is s = n− u. Results have been
applied to derive the number of steps needed by function Jump to reach the optimum,
demonstrating the conjecture presented in [4]. Concerning the differences between Neig1
and Neig2 algorithms, an important conclusion of our analysis is that the way transition
probabilities of the neighborhood are defined is as critical for the efficiency of the search
as the own choice of the neighborhood size is.

8

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40

S
te

ps

n

Neighb1, gap=1, s=2gap+1
Neighb2, gap=1 s=gap+1
Neighb1, gap=5 s=2gap+1
Neighb2, gap=5 s=gap+1

Figure 2: Expected number of steps of the random blocked Gibbs Sampling for the Jump
function when n is increased.

7 Acknowledgments

The author thanks to Heinz Muehlenbein for having introduced him to the problem
and to Li-Vang Lozada Chang for his comments on the paper, valuable discussion and
insight.

References

[1] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI, 1975.

[2] K. Kask and R. Dechter. GSAT and local consistency. In Proceedings of the 14th
IJCAI, pages 616–622, Montreal, Canada, 1995.

[3] S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220:671–680, May 1983.

[4] H. Müehlenbein and J. Zimmermann. Size of neighborhood more important than
temperature for stochastic local search. In Proceedings of the 2000 Congress on
Evolutionary Computation CEC00, pages 1017–1024. IEEE Press, 2000.

[5] H. Mühlenbein and T. Mahnig. Evolutionary computation and beyond. In Y. Uesaka,
P. Kanerva, and H. Asoh, editors, Foundations of Real-World Intelligence, pages 123–
188. CSLI Publications, Stanford, California, 2001.

9

[6] H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of
distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and
H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN IV, pages
178–187, Berlin, 1996. Springer Verlag. LNCS 1141.

[7] R. Santana and H. Mühlenbein. Blocked stochastic sampling versus Estimation of
Distribution Algorithms. In Proceedings of the 2002 Congress on Evolutionary Com-
putation, volume 2, pages 1390–1395. IEEE press, 2002.

10

