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Kikuchi approximations constructed from clique-based decompositions can
be used to calculate suitable approximations of probability distributions.
They can be applied in domains such as probabilistic modeling, supervised
and unsupervised classification, and evolutionary algorithms. This paper
introduces a number of properties of these approximations. Pairwise and
local Markov properties of the Kikuchi approximations are proved. We prove
that, even if the global Markov property is not satisfied in the general case, it
is possible to decompose the Kikuchi approximation in the product of local
Kikuchi approximations defined on a decomposition of the graph. Partial
Kikuchi approximations are introduced. Additionally, the paper clarifies the
place of clique-based decompositions in relation to other techniques inspired
by methods from statistical physics, and discusses the application of the
results introduced in the paper for the conception of Kikuchi approximation
learning algorithms.

1 Introduction

Belief propagation [1, 25] is a well-known technique used in statistical inference to obtain
a posteriori marginal probabilities in graphical models. Generalized belief propagation
enables the class of models to be extended where these inference algorithms can be ap-
plied. Recent work on generalized belief propagation methods [38] have revealed the
applicability that results achieved in the statistical physical domain, in the approxima-
tion of energy and entropy measures have in the machine learning domain. One of the
contributions from the field of statistical physics to inference algorithms comes from the
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use of region-based decompositions, like the Bethe [6] and Kikuchi [14, 21] approxima-
tions, in the context of generalized belief propagation.

Basically, a region-based decomposition can be seen as a function defined on the
variables associated to the vertices of a graph. The global function is formed by the
composition of local subfunctions defined in those variables grouped in each of the re-
gions. Common ways of composition are the sum and product of the local functions. For
instance, in the free energy approximation, regions serve as the basic units to define the
local energies, which are combined to give the global free energy function. Region-based
decompositions can be used for the approximation of other measures; in this paper we
use them to calculate suitable approximations of probability distributions. In this con-
text, an essential question is how to determine a convenient region-based decomposition
that maximizes the accuracy of the approximation. There are algorithms that serve to
calculate these decompositions.

One particular case of such algorithms is the cluster variation method (CVM) [14, 21],
originally introduced to obtain Kikuchi approximations of the free energy in statistical
physics. Starting from an initial set of regions defined on a graph, the CVM determines
a way to obtain a whole set of regions where the free energy is decomposed. The CVM
does not specify any particular choice for the initial regions. Nevertheless, the Kikuchi
approximation clearly depends on this choice.

Some approaches that try to cope with the problem of selecting an approppriate set
of initial regions have been published. This interest highlights the relevance of this
problem for the field. The methods introduced have been proposed in the context of
belief propagation algorithms [32], and are also related to work done on structural mean
field methods [34, 35]. The clique-based decomposition of the graph has been introduced
in [26] as a particular way of selecting the initial regions for the CVM. The method was
used for optimization by means of estimation of distribution algorithms (EDAs) [17] that
employ Kikuchi approximations of the probability.

In this paper, we focus on the clique-based decomposition as the method for selecting
the initial regions of the Kikuchi approximation. We provide a number of theoretical
properties that are satisfied by this approximation. The properties proved in this paper
are useful for tasks such as evaluating the quality of the approximation, designing of al-
gorithms to learn Kikuchi approximations from data, and designing sampling algorithms.
Our work can be seen in the more general context of setting the theoretical basis for the
application of Kikuchi approximations as a practical approximation method in machine
learning. In order to achieve this purpose, we investigate Markov and decomposability
properties of the Kikuchi approximation constructed from clique-based decompositions
of the graphs.

Additionally, we pay attention to recent developments in the application of region-
based decompositions in machine learning. Our analysis intends to throw some light on
the way these approximations are being conceived and applied in the field. We clarify the
place of clique-based decompositions in relation to other techniques inspired by methods
from statistical physics.

The rest of this paper is presented as follows. In Section 2, an introduction to clique-
based decompositions and the Kikuchi approximation of the probability distribution are
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presented. Section 3 proves that the clique-based Kikuchi approximation satisfies the
local and pairwise properties with respect to the independence graph. We show that the
global Markov property is not satisfied. Section 4 shows that the Kikuchi approximation
can be factorized in the irreducible components of the graph. In Section 5 we argue that
our work is part of a current research trend that benefits from the cross-fertilization be-
tween machine learning and statistical physics. Section 6 discusses possible applications
and presents the conclusions of the paper.

2 Kikuchi approximation: recapitulation

Kikuchi approximations of the energy [14] are region-based decompositions of the energy
that satisfy certain constraints. The Kikuchi approximation of a probability distribution
from a clique-based decomposition of an independence graph [26] is a particular type of
factorization that use marginal distributions. The marginals in the factorization are
completely determined by the independence graph. Given this graph, the clique-based
decomposition is formed by the maximal cliques of the graphs and their intersections.
All these cliques are called regions.

Let X = (X1, . . . , Xn) denote a vector of discrete random variables. We will use
x = (x1, . . . , xn) to denote an assignment to the variables. S will denote a set of indices
in N = {1, . . . , n}, and XS (respectively xS) a subset of the variables of X (respectively
a subset of values of x) determined by the indices in S. We will work with positive
probability distributions denoted by p(x). Similarly, p(xS) will denote the marginal
probability distribution for XS . We use p(xi | xj) to denote the conditional probability
distribution of Xi given Xj = xj .

An undirected graph G = (V,E) is defined by a non-empty set of vertices V , and a
set of edges E. An edge between vertices i and j will be represented by i ∼ j. Given
a probability distribution p(x), its independence graph is a graph G = (V,E) that
associates one vertex with every variable of X, and where two vertices are connected if
the corresponding variables are conditionally dependent given the rest of the variables.

We define a region R of the independence graph G = (V,E) of a probability distri-
bution p(x) as a subset of V . A graph region-based decomposition (R, U), is a set of
regions R that covers V , and an associated set of overcounting numbers U which is
formed by assigning one overcounting number cR for each R ∈ R. cR will always be an
integer, and might be zero or negative for some R. There are different methods that find
region-based decompositions [6, 14, 2, 36], among them the CVM that learns Kikuchi
approximations. In the CVM, R is formed recursively by an initial set of regions R0

such that each node is in at least one region of R0, and any other region in R is the
intersection of one or more of the regions in R. The set of regions R is closed under the
intersection operation, and can be ordered as a partially ordered set [21].

To be valid, a decomposition must satisfy a number of constraints that relate R and
U . Inspired by the work by Yedidia et al. [37] we call this sub-problem as that of finding
a valid region-based decomposition of a graph. A set of regions R and overcounting
numbers U give a valid region-based graph decomposition [37] when for every variable
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Xi:

∑

R∈R
Xi⊆XR

cR = 1 (1)

Equation (1) states that for any variable Xi the sum of the overcounting numbers
of regions that contain Xi is 1. Equation (2) can be obtained extending the previous
constraint to every subset of variables XS in the following way:

∑

R∈R
XS⊆XR

cR = 1 (2)

where the sum of the overcounting numbers of regions that contain XS is also 1. Pakzad
and Anantharam [24] call conditions represented by equations (1) and (2) as the balanced
and totally balanced conditions respectively. These authors prove that any collection
of regions that is closed under intersection fulfills the balanced and totally balanced
conditions [24].

We will apply the CVM making a particular choice of the initial regions. We will
form set R0 by taking one region for each maximal clique in G. As a result, all the
regions R ∈ R will be cliques because they are the intersection of two or more cliques.
We call this type of region-based decomposition of undirected graphs a clique-based
decomposition.

We define the Kikuchi approximation of the probability distribution p(x) associated
with a clique-based decomposition, k(x) as:

k(x) =
∏

R∈R
p(xR)cR , (3)

where R comes from a clique-based decomposition and the overcounting numbers cR are
calculated using the following recursive formula:

cR = 1−
∑

S∈R
R⊂S

cS (4)

where cS is the overcounting number of any region S in R such that S is a superset of R.
cR values corresponding to the initial maximal cliques are equal to 1. If cR is different
from zero, the region is included in the clique-based decomposition.

From now on, when we refer to a Kikuchi approximation, we imply a Kikuchi approx-
imation obtained from a clique-based decomposition.

Example 1 Kikuchi approximation corresponding to the independence graph shown in
Figure 1.

k(x) =
p(xA, xT )p(xT , xE)p(xE , xX)p(xE , xL)p(xL, xS)p(xS, xB)p(xB, xD)p(xE , xD)

p(xT )p(xE)3p(xL)p(xS)p(xB)p(xD)
(5)
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Figure 1: Undirected graph associated with the Asia network

In example 1, the Kikuchi approximation of the probability corresponding to the graph
is included. Notice that the factors of the decomposition correspond to the eight maximal
cliques of the graph, and their overlappings. The factor corresponding to variable XE

has an overcounting number 3 because it is included in four original cliques.

3 Markov properties of the Kikuchi approximation

Graphical models associated with probability distributions display a number of condi-
tional and marginal independence properties that are stated by the Markov properties
defined on the graph. These independence properties can be used for more efficient
storing and sampling of probability distributions. Therefore, it is an important question
to investigate which information about the properties of the Kikuchi approximation can
be extracted from the graphical model where it is defined. In this section we show that
certain independence properties of the Kikuchi approximation can be deduced from the
graph structure.

First, we prove that the Kikuchi approximation satisfies the local and pairwise Markov
properties with respect to the independence graph. It is also proved that the global
Markov property is not fulfilled. Instead, we present the Kikuchi decomposition property
that will be an important building block of the decomposability results shown in the next
section.

3.1 Notation

Given an undirected graph G, the boundary and closure of a set of variables (respectively
a set of values) are respectively defined as:

Definition 1 The boundary of a set of vertices, XS ⊆ X, is the set of vertices in X\XS

that neighbors at least one vertex in XS. The boundary of XS is denoted bd(XS).

Definition 2 The closure of a set of vertices, XS ⊆ X is the set of vertices cl(XS) =
XS ∪ bd(XS).
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The marginal and conditional functions of the Kikuchi approximation are defined as:

k(xS) =
∑

x′|x′S=xS

k(x′) (6)

k(xA | xB) =
k(x{A,B})

k(xB)
(7)

where {A,B} is a simplified notation for {A∪B}. As k(x) is not necessarily a probability
distribution, neither are k(xS) and k(xA | xB). Nevertheless, they can respectively be
used as approximations of p(xS) and p(xA | xB).

Given any regionA, K(x, A) =
∏

R∈R
XR∩XA 6=∅

p(xR)cR , and K̄(x, A) =
∏

R∈R
XR∩XA=∅

p(xR)cR ,

then k(x) can be expressed in the following way:

k(x) =
∏

R∈R
XR∩XA 6=∅

p(xR)cR
∏

R∈R
XR∩XA=∅

p(xR)cR

= K(x, A)K̄(x, A) (8)

where K(x, A) and K̄(x, A) have been introduced for notational convenience, to repre-
sent k(x) more concisely.

The non-standard notation ∼ {xS} will be used to represent the summation over all
variables except XS , when XS = xS , obtaining:

p(xS) =
∑

∼{xS}
p(x′) =

∑

x′|x′S=xS

p(x′) (9)

Notice the use of this notation in equation (10) which shows two different ways of
calculating the marginal probabilities of bd(XA).

∑

∼cl(xA)

∑

∼{x\xA}
p(x′) =

∑

∼bd(xA)

p(x′) (10)

Equation (10), together with implications (11) and (12) below, are used in our proofs.

XR ⊇ Xi ⊂ XA ⇒ XR ⊆ cl(XA) (11)

XR + Xi ⊂ XA ⇒ XR ⊆ X \XA (12)

Implication (11) derives from the fact that in the clique-based decomposition any
region is a clique. Therefore, any set of variables in the same region as XA belongs to
its closure. On the other hand, implication (12) represents the fact that if none of the
variables that are in a region XR belongs to XA, then the whole region XR belongs to
X \XA.
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3.2 Markov properties

The Markov properties of a probability distribution p(x) given its independence graph
G are:

(i) Pairwise Markov property: for all non-adjacent vertices Xi and Xj in G,

p(xi, xj | x \ (xi, xj)) = p(xi | x \ (xi, xj))p(xj | x \ (xi, xj))

(ii) Local Markov property: for every vertex Xi in G,

p(xi,x \ cl(xi) | bd(xi)) = p(xi|bd(xi))p(x \ cl(xi)|bd(xi))

(iii) Global Markov property: for all disjoint subsets XA, XB, and XC , whenever XB

and XC are separated by XA in the graph, in the sense that all paths from XB to
XC go through XA, then:

p(xB,xC | xA) = p(xB | xA)p(xC | xA)

We begin the presentation of results by proving an important theorem that will be used
in the demonstration of the Markov properties satisfied by the Kikuchi approximation.

Theorem 1 Given a Kikuchi approximation k(x) defined on a graph G, and a set of
variables XA,

k(xA|x \ xA) = k(xA|bd(xA))

Proof:

k(xA | x \ xA)

=
k(x)

k(x \ xA)

=
K(x, A)K̄(x, A)∑

∼{x\xA}K(x′, A)K̄(x′, A)

=
K(x, A)K̄(x, A)

K̄(x, A)
∑
∼{x\xA}K(x′, A)

=
K(x, A)∑

∼{x\xA}K(x′, A)

∑
∼{cl(xA)} K̄(x′, A)

∑
∼{cl(xA)} K̄(x′, A)

=

∑
∼{cl(xA)}K(x, A)K̄(x′, A)

∑
∼{x\xA}

∑
∼{cl(xA)}K(x′, A)K̄(x′, A)

=
k(cl(xA))

k(bd(xA))

= k(xA | bd(xA))

2
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Theorem 2 (Local Markov property) Given a Kikuchi approximation k(x) defined
on a graph G, and a variable Xi,

k(xi,x \ cl(xi) | bd(xi)) = k(xi|bd(xi))k(x \ cl(xi)|bd(xi))

Proof:
We start from a particular case of theorem 1 when A = i.

k(xi|x \ xi) = k(xi|bd(xi))

⇒ k(x)

k(x \ xi)
=
k(cl(xi))

k(bd(xi))

⇒ k(x)

k(bd(xi))
=
k(cl(xi))

k(bd(xi))

k(x \ xi)
k(bd(xi))

⇒ k(xi,x \ cl(xi) | bd(xi)) = k(xi|bd(xi))k(x \ cl(xi)|bd(xi))

2

Theorem 3 (Conditional independence between disconnected sets) Given a Kikuchi
approximation k(x) defined on a graph G, two sets of vertices XA and XB, such that
there is not any edge between a vertex in XA and a vertex in XB then:

k(xA,xB | x \ (xA,xB)) = k(xA | x \ (xA,xB))k(xB | x \ (xA,xB))

Proof:
First, we propose a suitable factorization of the Kikuchi approximation in cliques

that contain vertices in XA, XB, and X \ (XA,XB). As there is not any clique that
contains one vertex from XA and another one from XB, these three sets determine a non-
overlapping partition of all the cliques and a factorization of k(x). Using the notation
introduced in (8), we obtain:

k(x) =
∏

R∈R
XR∩XA 6=∅

p(xR)cR
∏

R∈R
XR∩XB 6=∅

p(xR)cR
∏

R∈R
XR∩(XA∪XB)=∅

p(xR)cR

= K(x, A)K(x, B)K̄(x, (A,B)) (13)

On the other hand, applying the definition given in Section 3.1 for a conditional
function of the Kikuchi approximation, we have:
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k(xA | x \ (xA,xB))k(xB | x \ (xA,xB))

=
k(x \ xB)k(x \ xA)

k(x \ (xA,xB))k(x \ (xA,xB))

=

∑
∼{x\xB}K(x, A)K(x, B)K̄(x, (A,B))

∑
∼{x\(xA,xB)}K(x, A)K(x, B)K̄(x, (A,B))

∑
∼{x\xA}K(x, A)K(x, B)K̄(x, (A,B))

k(x \ (xA,xB))

=
(K̄(x, (A,B)))2(K(x, A)K(x, B))(

∑
∼{x\xB}K(x, B)

∑
∼{x\xA}K(x, A))

K̄(x, (A,B))(
∑
∼{x\(xA,xB)}K(x, A)K(x, B))k(x \ (xA,xB))

=
K̄(x, (A,B))K(x, A)K(x, B))

k(x \ (xA,xB))

=
k(x)

k(x \ (xA,xB))

= k(xA,xB | x \ (xA,xB))

2

Theorem 4 (Pairwise Markov property) Given a Kikuchi approximation k(x) de-
fined on a graph G, and two variables Xi and Xj, if the corresponding vertices are not
joined in G:

k(xi, xj | x \ (xi, xj)) = k(xi | x \ (xi, xj))k(xj | x \ (xi, xj))

Proof:
This property is a particular case of theorem (3) when XA = Xi and XB = Xj . 2

We show that, in general, the Kikuchi approximation does not fulfill the global Markov
property.

Conjecture 1 (Global Markov property) Given a Kikuchi approximation k(x) de-
fined on a graph G, for all disjoint subsets XA, XB, and XC , whenever XB and XC are
separated by XA in the graph, then:

k(xB,xC | xA) = k(xB | xA)k(xC | xA)

We present a counterexample of conjecture 1. It corresponds to the simplest case,
when XB = Xi, XC = Xj , Xi and Xj are not connected in the graph, and XA = ∅. For
this case, the global Markov property states that:

k(xi, xj) = k(xi)k(xj) (14)

We use the symbol ↔ to represent that two variables are connected by at least one
path in the graph. Let XA = {Xk | Xk ↔ Xi}. XA,XN\A forms a partition of the graph
such that there is not any edge that joins variables from both components. Although
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XA depends on Xi, for a more compact notation we do not represent this dependence
in the notation. Using the factorization of the Kikuchi approximation (8), we obtain an
expression for the bivariate marginal of the Kikuchi approximation for (Xi, Xj).

k(xi, xj)

=
∑

x′|x′i,j=xi,j

K(x′, A)K̄(x′, A)

=
∑

x′A|x′i=xi

∑

x′
N\A|x′j=xj

K(x′, A)K̄(x′, A)

=
∑

x′A|x′i=xi
K(x′, A)




∑

x′
N\A|x′j=xj

K̄(x′, A)




=
∑

x′A|x′i=xi
K(x′, A)

∑

x′
N\A|x′j=xj

K̄(x′, A)

= kA(xi)kN\A(xj) (15)

In the factorization, kA refers to the Kikuchi factorization constructed from the sub-
graph that includes vertices and edges that contain variables in XA. The factorization
is possible since the partition of the graph in two disconnected components similarly
enables the cliques of the graph to be partitioned in only two sets. Likewise, we obtain
an expression for the product of the univariate marginals of the Kikuchi approximation.

For the proof we use the following two equalities:
∑

x′
N\A|x′i=xi

K̄(x′, A) =
∑

x′
N\A

K̄(x′, A) = kN\A(xN\A)

∑

x′A|x′j=xj
K(x′, A) =

∑

x′A

K(x′, A) = kA(xA)

The product of the univariate Kikuchi approximations for variables Xi and Xj results
in:

k(xi)k(xj)

=
∑

x′|x′i=xi
K(x′, A)K̄(x′, A)

∑

x′|x′j=xj
K(x′, A)K̄(x′, A)

=
∑

x′A|x′i=xi
K(x′, A)

∑

x′
N\A|x′i=xi

K̄(x′, A)
∑

x′A|x′j=xj
K(x′, A)

∑

x′
N\A|x′j=xj

K̄(x′, A)

= kA(xi)kN\A(xj)
∑

x′A

kA(x′A)
∑

x′
N\A

kN\A(x′N\A) (16)
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Figure 2: Independence graph with two disconnected components

The left (equation (15)) and right (equation (16)) parts of equation (14) are only
equal, when

∑

x′A

kA(x′A)
∑

x′
N\A

kN\A(x′N\A) = 1 (17)

A sufficient condition for equation (17) to be fulfilled is for kA(xA) and kN\A(xN\A)
to be probability distributions. However, this is not a necessary condition.

Example 2 describes a situation where the Kikuchi approximations of kA(xA) and
kN\A(xN\A) are not probability distributions in general, and the global Markov property
is clearly not satisfied.

Example 2 The graph shown in Figure 2 comprises two disconnected components. For
an arbitrarily chosen probability p(x) that satisfies the conditional independence proper-
ties described by the graph it holds p(x1, x5) = p(x1)p(x5). We can construct the Kikuchi
approximation according to the graph. Let k(x) be such an approximation; then, it may
occur that k(x1, x5) 6= k(x1)k(x5). The reason is that, as k(x) is not a probability distri-
bution, the expressions

∑
x′1,x

′
2,x
′
3,x
′
4
k(1,2,3,4)(x

′
1, x
′
2, x
′
3, x
′
4) and

∑
x′5,x

′
6,x
′
7,x
′
8
k(5,6,7,8)(x

′
5, x
′
6, x
′
7, x
′
8)

can both be different to one. Thus, equation (17) might not be satisfied.

Although the global Markov property is not fulfilled, equation (15) points to the fact
that the Kikuchi approximation can be factorized in the product of Kikuchi approxima-
tions calculated from the components of an independence graph partition. The following
theorem formalizes this observation.

Theorem 5 (Kikuchi decomposition property) Given a Kikuchi approximation k(x)
defined on a graph G, such that X = XA ∪XB ∪XC , and XA is a separator of XB and
XC , then:

k(x) =
kAB(xA,xB)kAC(xA,xC)

kA(xA)
(18)

Proof:
First we propose a suitable factorization of the Kikuchi approximation in three sets

of cliques:
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k(x) =

∏
R∈RXR⊆XA∪B p(xR)cR

∏
R∈RXR⊆XA∪C p(xR)cR∏

R∈RXR|XR⊆XA
p(xR)cR

=
K(x, (A,B))K(x, (A,C))

K(x, A)
(19)

It is clear that every region belongs to XA∪B , to XA∪C , or to both regions. In
the latter case, the region belongs to XA. As cliques in XA are counted twice, the
factorization includes the division by K(x, A). To prove (18) we only need to show that
kAB(xA,xB) = K(x, (A,B)), kAC(xA,xC) = K(x, (A,C)) and kA(xA) = K(x, A).

Let us take the case of kAB(xA,xB). The regions in this Kikuchi approximation are
precisely those in K(x, (A,B)). To see that the overcounting values coincide in every
equation we take a region R, and decompose the expression of the overcounting value in
the following way:

cR = 1−
∑

S∈R
S⊃R

cS

= 1−




∑

S∈R
S|S⊆(A∪B∪C),S⊃R

cS




= 1−




∑

S∈R
S|S⊆(A∪B),S⊃R

cS +
∑

S∈R
S|S⊆(A∪C),S⊃R

cS −
∑

S∈R
S|S⊆A,S⊃R

cS


 (20)

The last term in equation (20) has been substracted because regions contained in XA

have been counted twice, in XA∪B and XA∪C .
If R ∩ B 6= ∅, cR = 1 − (

∑
S∈R
S|S⊆(A∪B),S⊃R

cS), is the overcounting value that can be

calculated from cliques in XA∪B. A similar case takes places if R ∩ C 6= ∅, cR =
1 − (

∑
S∈R
S|S⊆(A∪C),S⊃R

cS). In the particular case in which R ∩ A 6= ∅, two of the factors

simplify and cR = 1 − (
∑

S∈R
S|S⊆(A∪B),S⊃R

cS). The same analysis is valid for kAC(xA,xC)

and kA(xA). 2

To summarize the results proved in this section, we have shown that some of the
properties of the independence graph are translated into the Kikuchi approximation.
Pairwise and local Markov properties are fulfilled. However, the global Markov property
is not satisfied in the general case. Instead, we have proved that it is possible to decom-
pose the Kikuchi approximation in the product of local Kikuchi approximations defined
from a decomposition of the graph.
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Figure 3: Independence graph with one incomplete maximal irreducible component and
two complete ones

4 Decomposability of the Kikuchi approximation

Decomposability is essential to handle feasible approximations of a probability. In this
section, we show how the Kikuchi decomposition property will permit the definition of
Kikuchi approximations in which each factor itself is a Kikuchi approximation corre-
sponding to a subgraph of the original independence graph. We go one step further and
define the class of partial Kikuchi approximations, in which some of the Kikuchi ap-
proximation components correspond to exact marginal probability distributions. First,
we introduce a number of definitions, propositions and theorems, taken from Whittaker
(1991), that lead to a factorization of the Kikuchi approximation based on the irreducible
components of the independence graph.

4.1 Definitions

Definition 3 There exists a decomposition of the random vector X with respect to a
probability distribution p(x) or equivalently, X is reducible, if and only if there exists a
partition X into (XA,XB,XC) such that:

(i) p(xB,xC |xA) = p(xB|xA)p(xC |xA) and neither B nor C are empty; and

(ii) the subgraph on A, in the independence graph of X is complete.

If so, the components of X are XAB = (XA,XB) and XAC = (XA,XC). If such a
decomposition does not exist X is said to be irreducible.

Example 3 Consider the graph in Figure 3 and the partition defined by sets A = {2, 6},
B = {1, 7} and C = {3, 4, 5}. Then, XAB and XAC are the components that form a
decomposition of the graph. XAB is an irreducible component, and XAC is a reducible
one because it can be decomposed according to definition 3.

Definition 4 The random vectors XD1 ,XD2 , . . . ,XDm are the maximal irreducible com-
ponents of X if and only if:

(i) each vector XDi is an irreducible component of X;

(ii) no subset Di, is a proper subset of any other, Dj; and

(iii) X = XD1 ∪XD2 ∪ · · · ∪XDm
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Figure 4: The grid lattice for the Ising and sping glass models is an irreducible incomplete
component

An irreducible component is said to be complete if it is a clique. Otherwise it is called
an incomplete irreducible component.

Example 4 X1,2,6,7, X2,3,5,6, and X3,4,5 are the maximal irreducible components of the
graph shown in Figure 3. X1,2,6,7 and X3,4,5 are complete irreducible components. X2,3,5,6

is an irreducible component that is not complete.

Proposition 1 ((Whittaker [33], pp. 385) Irreducible component factorization)
The maximal irreducible components of X corresponding to the subsets {XD1 ,XD2 , . . . ,XDm}
are unique and the density function of X factorizes uniquely into f(x) =

fxD1
fxD2

...fxDm
g ,

where function g is a product of marginal density functions, g =
∏
fxA, in which each

subset XA is an intersection of irreducible components, and it is complete.

Definition 5 (Whittaker [33], pp. 389) An n-dimensional random vector X, or its
density function, is decomposable if and only if there exists a sequence of decompositions
to complete irreducible components.

Independence graphs can be decomposed into irreducible components. The problem
is known as decomposition by clique separators [27] or maximal prime subgraph decom-
position [23] and it may solved by certain algorithms [27]. Maximal prime subgraph
decompositions have been proposed in Bayesian networks as a computational structure
for lazy propagation [23]. However, in the case of Bayesian networks, this type of decom-
positions has also been criticized as a very limited representation of the independence
relationships of this class of models [7].

One important remark is that irreducible incomplete components can be very large
and, in fact, a graph can be formed by a unique irreducible component (e.g. the graph
shown in Figure 4).
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4.2 Decomposability of the Kikuchi approximation

We study how to extend the results achieved for the factorization of distributions to the
Kikuchi approximation.

Theorem 6 Given the independence graph G of X, and the Kikuchi approximation k(x)
defined on G, if there exists a partition X into (XA,XB,XC) such that the components
of X are XAB = (XA,XB) and XAC = (XA,XC), then:

k(x) =
kAB(xAB)kAC(xAC)

kA(xA)
(21)

Proof:
This is a particular case of theorem 5 when the separator XA is a clique and, therefore,

kA(xA) = p(xA). 2

Theorem 7 Given the independence graph G, a factorization of X in irreducible com-

ponents p(x) =
pxD1

pxD2
···pxDmQm−1

i=1 pxdi

, in which xd1 ,xd2 , . . . ,xdm−1 is the (possibly empty) set

of complete irreducible components, intersection of the irreducible components, then the
Kikuchi approximation k(x) defined on G can be decomposed as:

k(x) =
kD1(xD1)kD2(xD2) · · · kDm(xDm)∏m−1

i=1 pxdi

Proof:
The proof will be done by induction on the number of components, and using theo-

rem 6.
If m = 1, there is only one component XD1 and no separators. In this case, k(x) =

k(xD1).
Let us suppose that, for the component X(D1,D2,...,Di−1), the theorem holds, i.e.

k(x(D1,D2,...,Di−1)) =
kD1(xD1)kD2(xD2) · · · kDi−1(xDi−1)

∏i−2
j=1 pxdj

Now we prove that, for X(D1,D2,...,Di), the theorem is satisfied.
Let A = di−1, B = {D1, D2, . . . , Di−1}, and C = Di. (XA,XB,XC) is a partition of

X(D1,D2,...,Di) that satisfies the conditions of theorem 6. Therefore,

k(x(D1,D2,...,Di))

=
k(x(D1,D2,...,Di−1))k(xDi)

k(xdi)

=
kD1(xD1)kD2(xD2) · · · kDi−1(xDi−1)

∏i−2
j=1 pxdj

k(xDi)

k(xdi)

=
kD1(xD1)kD2(xD2) · · · kDi(xDi)∏i−1

j=1 pxdj
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For all i, Xdi is a complete irreducible component (i.e. clique). Thus, kdi(xdi) =
p(xdi).

We have reached the decomposition of the Kikuchi approximation of X(D1,D2,...,Di).
To complete the proof, notice that X = X(D1,D2,...,Dm). 2

Example 5 We analyze the independence graph shown in Figure 3. The Kikuchi ap-
proximation of this graph is:

k(x) =
p(x1, x2, x6, x7)p(x2, x3)p(x5, x6)p(x3, x4, x5)

p(x2)p(x3)p(x5)p(x6)
(22)

The factorization of k(x) based on the irreducible components of the graph is:

k(x) =
k(x1, x2, x7, x6)k(x2, x3, x5, x6)k(x3, x4, x5)

k(x2, x6)k(x3, x5)
(23)

The Kikuchi approximation of the incomplete irreducible component (X2, X3, X5, X6)
is:

k(2,3,5,6)(x2, x3, x5, x6) =
p(x2, x3)p(x3, x5)p(x5, x6)p(x2, x6)

p(x2)p(x3)p(x5)p(x6)
(24)

Substituting equation (24) in (23), and considering that the other factors are calculated
from complete irreducible components, and that therefore, the Kikuchi marginals coincide
with the probability marginals, we obtain the original Kikuchi approximation shown in
equation (22).

Now we highlight another aspect related to the Kikuchi approximation of an indepen-
dence graph: by identifying the regions of the independence graph where the Kikuchi
approximation is localized (the incomplete components), we can estimate to what extent
the Kikuchi approximation is used for the approximation of the distribution associated
with a given graph, and therefore we can obtain a measure of the approximation accu-
racy. Many irreducible components will imply more components approximated with the
Kikuchi approximation.

Furthermore, we can constrain the use of the Kikuchi approximation to certain areas
of the graph.

Given the independence graph G of X, a partial Kikuchi approximation of the prob-
ability is that where only a subset of all the irreducible incomplete components are
approximated by the corresponding Kikuchi approximation of the components. The rest
of components are calculated exactly.

The partial Kikuchi approximation admits the existence of components that are calcu-
lated exactly, i.e. they can be triangulated like methods for doing inference in graphical
models usually do.

Let us suppose that the number of incomplete irreducible components in G is t. The
number of partial Kikuchi approximation is 2t − 2, including the complete Kikuchi ap-
proximation. Hence, the total number of partial Kikuchi approximations is 2t − 1.
Rationales for selecting one partial Kikuchi approximation rather than others might be
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related to the size of the induced triangulated clique (e.g. 4-sized cliques could be as-
sumed to be triangulated). Another criterion can be the cardinality of the variables that
are in the incomplete irreducible component (e.g. when the cardinality of the variables
involved is high, the Kikuchi approximation is recomendable to diminish the number of
parameters needed to approximate the model).

5 Related work on Kikuchi approximations

We have presented a number of properties fulfilled by the Kikuchi approximation con-
structed from clique-based decompositions. Now we relate these results to current re-
search on similar topics.

5.1 Kikuchi approximations

Kikuchi approximations are an example of a panoply of methods that approach the
problem of approximating a measure (i.e. entropy, energy, probability) using graph-
based decompositions. Initial applications of Bethe and Kikuchi approximations were
constrained to the field of statistical physics [14, 20, 21]. The purpose of finding a way
to decompose the otherwise difficult to handle free energy of a system led to the use of
these approximations in physics. The idea was developed later by Yedidia et al. [38]
in the context of generalized belief propagation. This contribution expanded the scope
of application of belief propagation, which has been traditionally used in tasks such as,
obtaining a posteriori marginal probabilities in graphical models [25], computing the
most probable global states or system configurations [22], and improving the efficiency
of iterative proportional fitting (IPF) [5, 29].

5.2 Generalized Kirkwood superposition

There is another path that leads to the notion of Kikuchi approximation treated in this
paper. The Kirkwood superposition [15] is an approximation for the three-body distribu-
tion of liquids introduced in liquid-state statistical mechanics. Since this approximation
has been recently applied in the machine learning community [12], we elaborate on its
relationship with the clique-based decomposition and the Kikuchi approximation.

The essence of the original Kirkwood superposition approximation is that all possible
correlations in a system are expressed by binary correlations. Although the approach has
been widely applied in the theory of liquids, its implications and range of applications
are controversial (see Grouba et al. [9] for an extensive review on the subject). More
relevant to our research is the derivation of the generalized Kirkwood superposition for
the expansion of the information entropy in terms of correlation functions that have
been proposed in Attard et al. [4].

In simple terms, this derivation proposes an approximation of the information en-
tropy that includes successively higher-order correlations in a systematic fashion. The
approach is extended by Matsuda [18] to calculate the higher order mutual information
In(X):
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In(X1, . . . , Xn) = (−1)n
∑

x1,...,xn

p(x1, . . . , xn)ln
p(x1, . . . , xn)

p̄(x1, . . . , xn)
(25)

where p̄(x) is the generalized Kirkwood superposition defined as:

p̄(x1, . . . , xn) =
n−1∏

k=1

(−1)k+1
∏

{i1<...<in−k}
p(x1, . . . , xn−k) (26)

where
∏
{i1<...<in−k} runs over all possible combinations {i1, . . . , in−k} ⊆ {1, . . . , n}.

There is a clear relationship between the generalized Kirkwood superposition and the
Kikuchi approximation constructed from a clique-based decomposition. The Kirkwood
superposition corresponds to a situation in which a complete graph is considered and,
instead of choosing the single maximal clique of size n, all cliques of size n−1 are chosen
as the initial regions. Nevertheless, the higher-order contributions can be neglected
from (26), obtaining approximations that may yield good results for weakly correlated
examples [18].

5.3 Research trends in the application of region-based decompositions

Concerning the field of machine learning, we identify two main current research trends
in the application of region-based decompositions.

(i) The use of region-based decompositions to design and improve inference methods,
particularly, generalized belief propagation algorithms.

(ii) The use of region-based decompositions to find approximate factorizations of prob-
ability distributions based on marginal probability distributions.

The first research trend [3, 8, 10, 19, 24, 28, 30, 31, 38, 39] includes work on the
determination of efficient message passing schemes in belief propagation, bounds on the
accuracy of the inferred marginals, and conditions of convergence for the propagation
algorithms. The second one [11, 12, 13, 26] focuses on the conception of measures
to evaluate the accuracy of the learned approximations, algorithms to learn and sample
these approximations from data, and the identification of significant interactions in data.

One common problem of both lines of research is the selection of the initial regions
upon which the approximations are based. Some recent work on belief propagation
algorithm addresses this problem using graph partition strategies [34, 35], sequential
methods [32], and other approaches [24, 38].

Jakulin et al. [13] have proposed the used of Kikuchi approximations for supervised
classification. A region-based decomposition learning algorithm is introduced with this
objective. Region-based decompositions based on 2-way and 3-way interactions are
tested. Higher order interactions are not considered.

Clique-based decompositions are a way to automatically determine the initial regions
of the graph that can be used to construct region-based decompositions. The local
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Markov property of the Kikuchi approximation was useful to define algorithms to learn
and sample the approximations from data [26]. However, results presented in [26] did
not provide any measure to evaluate the accuracy of the approximation. Furthermore, it
was not clear whether Kikuchi approximations could be applied locally in the probability
distribution approximations. The properties presented in this paper can be used to define
decomposable accuracy measures that can help to create more sophisticated methods for
learning the approximations.

Another difference between the belief propagation approach and the learning approach
is the type of graph in which the construction of the Kikuchi approximation is based, and
its interpretation. In the original work of Yedidia et al. [36] the Kikuchi approximation
was calculated using pairwise or higher-order Markov random fields (MRFs). Regions
in the graph comprised the variables and the sets in which the potential functions were
defined. Recent work [37] focuses on models defined on factor graphs [16]. Factor graphs
have variable and factor nodes. There is a variable node for each variable of the problem
and a factor node for each node, with an edge connecting variable node i to factor node
a if Xi is an argument of fa.

In factor graphs, functions can represent some sort of interaction among their argu-
ment variables, but there is not any requirement concerning the type and strength of
these interactions. The validity condition of the region-based decomposition used by
Yedidia et al. (2002) [37] establishes that every variable and factor node is counted once
in the approximation (using the cR values in the sum) but, apart from this requirement,
the choice of the initial regions is arbitrary. There are other different ways of represent-
ing the region graph decompositions which include Hasse diagrams [24], region graphs
[37], and hypergraphs [31].

The work presented in this paper can be extended to include different graph repre-
sentations. The definition of the Kikuchi approximation given in Section 2 is based on
an independence graph that is interpreted as a graphical model. However, the Kikuchi
approximation constructed from a clique-based decomposition can be defined not only
on undirected graphical models but also on a larger class of models equivalent to hi-
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erarchical loglinear models. These models can be graphically represented using factor
graphs.

In the factor graph representation of a clique-based decomposition each maximal clique
will have an associated factor. As in the case of hierarchical models, it is assumed that
the existence of a clique means that all lower interactions are covered by the model. The
factor graph coincides with the maximal representation of the hierarchical models.

Example 6 Consider a probabilistic model with factors X12, X23 and X13. The Kikuchi
approximation of this model would be

k(x) =
p(x1, x2)p(x2, x3)p(x1, x3)

p(x1)p(x2)p(x3)

but this approximation can not be recovered from any undirected graph because the origi-
nal model is not graphical. Figure 5 shows the factor graph representation of this model.

6 Conclusions

In this paper, we have investigated a number of properties satisfied by the Kikuchi
approximation constructed from the clique-based decomposition. We have shown that
the Kikuchi approximation satisfies the local and pairwise Markov properties. We have
proved that the global Markov property is not fulfilled. These results lay the foundations
for the further development of algorithms that use Kikuchi approximations.

We have proposed a decomposition of the Kikuchi approximation according to the
irreducible components of the graph. From this decomposition we have introduced the
notion of partial Kikuchi approximations. A consequence of this result is that an initial
measure of the complexity of the Kikuchi approximation can be given, based on the
number of irreducible components and their complexity (number of nodes and of factors
involved in the factorization). The results achieved indicate a way to investigate the
accuracy of the Kikuchi and partial Kikuchi approximations.

This paper intends to go beyond the idea of employing heuristic approaches to con-
struct region-based decompositions. Instead it proposes to construct and to use these
decompositions taking into consideration the properties of the approximations that they
determine.

Based on the results presented in this paper, it is possible to design algorithms that
learn Kikuchi approximations from data by means of scoring-search techniques. These
algorithms could be used for probability approximation, supervised classification, and
optimization using EDAs.

The conception of more general region-based decompositions is a promising research
area in probabilistic approximation. The work presented here is intended to be a modest
step towards this goal.
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