global outconfs;
global outdegree;
load('fve30'); % The original brain network matrix is kept in variable CIJ
NumbVar = size(CIJ,1)^2;
Card(1,:) = zeros(1,NumbVar);
Card(2,:) = ones(1,NumbVar);
F = 'MatrixNumberMotifs';
InDegree = sum(CIJ');
OutDegree = sum(CIJ);
PopSize = 500; cache = [1,1,1,1,1]; maxgen = 200;
selparams(1:2) = {0.5,'ParetoRank_ordering'};
edaparams{1} = {'learning_method','LearnMutationPoints',{PopSize}};
edaparams{2} = {'sampling_method','SampleMutatedNetworks',{PopSize}};
edaparams{3} = {'selection_method','truncation_selection',selparams};
edaparams{4} = {'replacement_method','best_elitism',{'ParetoRank_ordering'}};
edaparams{5} = {'stop_cond_method','max_gen',{maxgen}};
seeding_params{1} = [InDegree];
seeding_params{2} = [OutDegree]';
edaparams{6} = {'seeding_pop_method','seeding_constrained_network',seeding_params};
[AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams)