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Abstract

This paper describes MATEDA-2.0, a suite of programs in Matlab for
estimation of distribution algorithms. The package allows the optimiza-
tion of single and multi-objective problems with estimation of distribution
algorithms (EDAs) based on undirected graphical models and Bayesian
networks. The implementation is conceived for allowing the incorporation
by the user of different combinations of selection, learning, sampling, and
local search procedures. Other included methods allow the analysis of the
structures learned by the probabilistic models, the visualization of partic-
ular features of these structures and the use of the probabilistic models
as fitness modeling tools.
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1 Introduction

EDAs [62, 69, 80, 91] are evolutionary algorithms based on estimation and
sampling from probabilistic models and able to overcome some of the drawbacks
exhibited by traditional genetic algorithms (GAs) [37, 46]. Additionally, the
probabilistic models used by EDAs can represent a priori information about
the problem structure, allowing a more efficient search of optimal solutions.
Learning algorithms can also be used to reveal previously unknown information
about the structure of black box optimization problems.

Several EDAs have been proposed for discrete, continuous and mixed prob-
lems. These algorithms mainly differ in the class of probabilistic models em-
ployed and the learning and sampling methods they use. However, it has been
acknowledged that the selection and replacement strategies used can also de-
termine important differences in the EDAs behavior. Sometimes, it is difficult
to decide which is the best EDA choice for a given problem and the user would
like to compare at least a short list of combinations of EDA operators in terms
of their efficacy and efficiency. Other times, it would be convenient to modify
only one component of the EDA, keeping the rest of the components unchanged.
MATEDA-2.0 is conceived for these situations. The idea is that the user can
easily evaluate a number of variants of EDAs before taking a decision about the
final implementation.

Another important use of EDAs is to reveal previously unknown information
about the search space that has been captured during the execution of the
algorithm. This information can be encoded in the probabilistic models learned
or in the points visited during the search. Similarly, the probabilistic models
can be employed as models of functions. It is useful the design of methods that
permit to evaluate the quality of the probabilistic models as function predictors.

MATEDA-2.0 includes three main modules integrated by programs that in-
tend to fulfill the following objectives:

• Optimization module: Implementation of different EDAs for single and
multi-objective problems.

• Data analysis and visualization module: For detecting, extracting and
visualizing characteristic features in the structures of the models learned
during the evolution.

• Function approximation module: Creation and validation of models of the
functions based on the probabilistic models learned by EDAs.

2 Installing MATEDA-2.0

MATEDA-2.0 employs the Matlab Bayes Net (BNT) toolbox [82] and the BNT
structure learning package [65]. These programs, which are freely available
from the authors website1, should be installed previously to the MATEDA-2.0
installation. Some of the MATEDA-2.0 routines also employs the MATLAB
statistical toolbox and the affinity propagation clustering algorithm[31]2.

1They can be respectively downloaded from http://www.cs.ubc.ca/̃murphyk/Software/BNT/bnt.html
and http://banquiseasi.insarouen.fr/projects/bntslp/

2The Matlab implementation of affinity propagation is available from
http://www.psi.toronto.edu/affinitypropagation/
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In order to install the software, follow these steps:

1. Unpack the file IntEDA.tar.gz and copy the files to a directory named
MATEDA.

2. Edit file InitEnvironment.m updating the paths ’path MATEDA’,
’path FullBNT’ and ’path BNT SLP’.

3. Set the current Matlab directory to the MATEDA directory.

4. Execute program InitEnvironments.m. Several warnings but no error
should appear.

The file ScriptMateda.m contains several examples of EDAs implementa-
tion. If the reader is familiarized with the Matlab environment and EDAs,
these examples should be sufficient for a basic EDA implementation. Other-
wise, the following sections provide a detailed explanation of the MATEDA-2.0
components.

3 Defining and executing an EDA

The main component of MATEDA-2.0 is the definition of an EDA in terms of
its parameters and components. The pseudocode of this EDA is described in
Algorithm 1.

3.1 General description of the implementation

The pseudocode of the general EDA is described in Algorithm 1. Each of the
main methods that can be implemented by the user using MATEDA-2.0 are
emphasized in Algorithm 1.

3.2 Implementation of a general EDA

The general EDA program RunEDA.m is called as:
[AllStat,Cache] = RunEDA(PopSize,n,F,Card,cache,edaparams);

where the input and output parameters have the following meaning:

3.2.1 Input parameters

• PopSize: Population size.

• n: Number of variables.

• F : Name of the Matlab file that implements the (possibly multiobjective)
function.

• Card: Cardinalities of the variables for the discrete problems or range of
each variable for the continuous problem.

• cache: A vector specifying which components of the algorithm will be
stored. cache(i) = 1 determines whether the i-th component of EDA (i =
1, 2, . . . , 5) will be saved in each generation and cache(i) = 0 otherwise.
The five components considered are the following:
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Algorithm 1: Estimation of distribution algorithm

1 Set t ⇐ 0.
2 do {

3 If t = 0.
4 Generate an initial population D0 using a seeding method.

5 If required, apply a repairing method to D0.

6 Evaluate (all the objectives of) population D0 using an evaluation
method.

7 If required, apply a local optimization method to D0.

8 Else.
9 Sample a DSampled population from the model using a sampling

method.
10 If required, apply a repairing method to DSampled.

11 Evaluate (all the objectives of) population DSampled using an eval-
uation method.

12 If required, apply a local optimization method to DSampled.

13 Create a Dt population from populations Dt−1, DSampled, and DS
t

using a replacement method

14 Select a set DS
t of points according to a selection method.

15 Compute a probabilistic model of DS
t using a learning method.

16 t ⇐ t + 1
17 } until The evaluation of the termination criteria method is true.

1. Entire population.

2. Selected population.

3. Probabilistic model.

4. Fitness values of the entire population.

5. Fitness values of the selected population.

• edaparams: An array of cells specifying all the components and parame-
ters used by the EDA. The i-th row of edaparams has the form:

{type of method, name of implementation, implementation parameters}.

type of method defines an EDA component. It is a string that can take
one of the following values:

– ’seeding pop method’

– ’sampling method’,

– ’repairing method’

– ’local opt method’

– ’replacement method’

– ’selection method’

– ’learning method’

– ’statistics method’

– ’verbose method’
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– ’stop cond method’

name of implementation is the name of a Matlab program where the
EDA component has been implemented. It can be added by the user or be
one of the methods included in MATEDA-2.0. implementation parameters
is a cell array containing the parameters used by the program name of implementation

which are passed to it during the execution of RunEDA.

3.2.2 Output parameters

• AllStat: For each generation k the cell array AllStat{k, :} contains the
following information:

– AllStat{k, 1}: Matrix of 5 rows and number objectives columns.
Each row shows information about maximum, mean, median, mini-
mum, and variance values of the corresponding objective in the cur-
rent population

– AllStat{k, 2}: Stores the best individual.

– AllStat{k, 3}: Number of different individuals.

– AllStat{k, 4}: Matrix of 5 rows and n columns. Each row shows
information about maximum, mean, median, minimum, and variance
values of the corresponding variable in the current population.

– AllStat{k, 5}: Number of function evaluations until generation k.

– AllStat{k, 6}: Matrix with the time, in seconds, spent at the main
EDA steps, each of the 8 columns stores the times elapsed in the
following steps: sampling, repairing, evaluation, local optimization,
replacement, selection, learning and total (which represents the time
spent by the previous 7 and other EDA operations).

• If cache(i) = 1, for each generation k, Cache{i, k} will store the corre-
sponding component of the EDA. The order is the one presented in the
explanation of the input parameter cache.

Example 1 (Implementation of a continuous Gaussian UMDA).
1 PopSize = 500;

2 n = 30;

3 F = ’sum’;

4 Card(1,:) = zeros(1,n);

5 Card(2,:) = 5*ones(1,n);

6 cache = [0,0,0,0,0];

7 edaparams{1} = {’learning method’,’LearnGaussianUnivModel’,{}};
8 edaparams{2} = {’sampling method’,’SampleGaussianUnivModel’,{PopSize,1}};
9 edaparams{3} = {’replacement method’,’elitism’,{1,’fitness ordering’}};

10 edaparams{4} = {’selection method’,’prop selection’,{}};
11 [AllStat,Cache] = RunEDA(PopSize,n,F,Card,cache,edaparams);

The code shown above is an implementation of a continuous Gaussian uni-
variate marginal distribution algorithm (G-UMDA) [60, 61] using proportional
selection and elitism of one individual. Initially, the parameters of the EDA
are defined as: population size (PopSize = 500), number of variables (n = 30)
and fitness function (F =′ sum′), which corresponds to the sum of the variables
values, i.e. f(x) =

∑n

i=1 xi. The problem has a continuous representation and
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therefore the range of values are defined by instantiating the two rows matrix
Card, in such a way that ∀i, 0 ≤ xi ≤ 5. cache = [0, 0, 0, 0, 0] indicates that the
information about the EDA evolution will not be stored.

edaparams{1} defines the learning method used which is implemented in
function LearnGaussianUnivModel.m. This method learns the mean and vari-
ance for each of the variables and outputs them as the model of the selected
population. It does not receive any other parameter apart from the selected
population size. edaparams{2} defines the sampling method used which is im-
plemented in function SampleGaussianUnivModel.m. It receives the probabilis-
tic model and samples a new population of PopSize individuals using the mean
and variance description of the data. SampleGaussianUnivModel.m receives two
parameters which are passed in the array {PopSize, 1}.

edaparams{3} defines the replacement method which is implemented in
function elitism.m. To determine the best (elite) solutions, program elitism.m

requires the specification of the number of elitist solutions and a criterion to or-
der the solutions. These are passed as parameters in the array {1, fitness ordering}
where fitness ordering.m is a function that orders the individuals according
to their fitness values. The individual with highest fitness value is the first in
the ordering. edaparams{4} defines the selection method which is implemented
in function prop selection.m.

4 Probabilistic models used in MATEDA-2.0

The learning and sampling algorithms used by EDAs depend on the class of
probabilistic models. Usually, instances of the same class of probabilistic mod-
els (e.g Bayesian network, Markov chain, etc.) are learned in each generation.
However, we can think of cases where a different class of probabilistic model
could be learned in each generation [107]. Switching the class of models ac-
cording to the characteristics of the data to be modeled is a natural way to
introduce adaptation in EDAs. MATEDA-2.0 allows the user to learn different
classes of models in each generation. The only requirement is that the model
learned at generation t be compatible with the sampling algorithm used at the
same generation.

In this section, we present the main types of probability models implemented
in MATEDA-2.0.

4.1 Factorized distributions

Some probability distributions can be expressed as a product of marginal proba-
bility distributions, each of which is called a factor. Factorized distributions, or
factorizations, are an effective way to obtain a condensed representation of oth-
erwise very difficult to store probability distributions. In the following analysis
we focus on factorizations of discrete distributions.

We can identify two components of the factorization.

1. The structure of the factorization, which contains information about which
variables belong to each of the factors and the relationships with other
factors.
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Figure 1: Graph representing factorizations of different complexity. a) Univari-
ate factorization. b) Factorization with maximum clique of size 4. c) Factoriza-
tion with maximum clique of size 3.

2. The parameters of the factorizations, which are the parameters of each
of the factors. In the case of discrete factorizations these are usually the
probability values of each factor configuration.

MATEDA-2.0 represents a factorization using two components:

1. Cliques, which represent the variables of each factor, specifying whether
they are also included in previous factors or have not appeared before.

2. Tables, which contain a probability table for each of the factors.

Each row of Cliques is a clique. The first column is the number of overlap-
ping variables with respect to previous cliques in Cliques. The second column is
the number of new variables. Then, overlapping variables are listed, and finally
new variables are listed. Tables{i} stores the marginal tables for clique i.

Example 2 shows different undirected graphs (Figure 1), their associate fac-
torizations and the corresponding MATEDA-2.0 representation (Cliques are re-
spectively shown in Equations 4, 5 and 6).

As illustrated by Example 2, the data format used by Cliques serves to store
the wide class of ordered factorizations [101], which includes marginal product
factorizations [40, 80, 109], Markov chain factorizations [103], factorizations
constructed from junction trees [79, 84] and junction graphs [110].

Example 2 (Representation of different factorizations in MATEDA-2.0).

pa(x) =

7
∏

i=1

p(xi) (1)

pb(x) =
p(x1, x2, x3)p(x2, x3, x4, x5)p(x6, x7)

p(x2, x3)
(2)

pc(x) =
p(x1, x2, x3)p(x2, x3, x5)p(x2, x4, x5)p(x4, x6)p(x5, x7)

p(x2, x3)p(x2, x5)p(x4)p(x5)
(3)
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Figure 2: Structures of: a) General Bayesian network; b) Polytree.

Cliques =










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
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0 1 7





















(4)

Cliques =





0 3 1 2 3 0
2 2 2 3 4 5
0 2 6 7 0 0



 (5)

Cliques =













0 3 1 2 3
2 1 2 3 5
2 1 2 5 4
1 1 4 6 0
1 1 5 7 0













(6)

Figures 1 a) b) c) show the graphs that correspond to the structure of the
factorizations represented by Equations (1), (2) and (3) respectively. The
MATEDA-2.0 representation of these factorizations are respectively shown in (4), (5)
and (6).

4.2 Bayesian and Gaussian networks

4.2.1 Bayesian networks

Bayesian networks are graphical models based on directed acyclic graphs. They
have been used for probabilistic inference in domains such as expert systems
[21, 63] classification problems [5, 32], and optimization [29, 88].

In a Bayesian network, where the discrete variable Xi has ri possible values,
x1

i , . . . , x
ri

i , the local distribution p(xi | paj,S
i , θi) is an unrestricted discrete

distribution:
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p(xk
i | paj,S

i , θi) = θ
xk

i
|pa

j
i
≡ θijk (7)

where pa1,S
i , . . . ,paqi,S

i denotes the values of PaS
i , the set of parents of Xi in

the structure S. qi is the number of possible different instances of the parent
variables of Xi, hence qi =

∏

Xg∈PaS
i

rg.

The local parameters are given by θi = ((θijk)ri

k=1)
qi

j=1. Parameter θijk is the
conditional probability of variable Xi being in its k-th state given that the set
of parents is in its j-th configuration.

4.2.2 Bayesian network toolbox

MATEDA-2.0 uses the Matlab Bayes Net (BNT) toolbox [82] and the BNT
structure learning package [65] for the implementation of EDAs that use Bayesian
and Gaussian models. We include a very brief description of the main features
of the toolboxes used by MATEDA-2.0. Further details could be consulted in
[65].

In the BNT toolbox, a directed acyclic graph (dag) is a structure that serves
to represent the structure of a Bayesian network (bnet). Example 3 shows the
different steps in the creation of a Bayesian network from a given dag. First, the
Bayesian network is initialized using the dag and the cardinality of the variables.
In the second step, the type of each variable is specified (tabular for discrete
values and Gaussian for continuous variables). Finally, the parameters of the
network are learned from the data. The BNT toolbox includes methods for
learning the Bayesian network structure from the data. They are analyzed in
Section 5.7.

Example 3 (Bayesian network learning in BNT).
1 n = 4;

2 Card = 2*ones(1,n);

3 dag(1,:) = [0 0 0 1];

4 dag(2,:) = [0 0 0 0];

5 dag(3,:) = [0 1 0 1];

6 dag(4,:) = [0 0 0 1];

7 init bnet = mk bnet(dag,Card);

8 for=1:n

9 init bnet.CPDi = tabular CPD(init bnet,i);

10 end,

11 bnet = learn params(init bnet,data);

4.2.3 Gaussian networks

In a Gaussian network [119], each variable Xi ∈ X is continuous and each local
density function is the linear-regression model:

f(xi | paS
i ,θi) ≡ N (xi;mi +

∑

xj∈pa
i

bji(xj − mj), vi) (8)

where N (x;µ, σ2) is a univariate normal distribution with mean µ and variance
σ2. Given this form, a missing arc from Xj to Xi implies that bji = 0 in
the former linear-regression model. The local parameters are given by θi =
(mi, bi, vi), where bi = (b1i, . . . , bi−1i)

t is a column vector.
The interpretation of the components of the local parameters is as follows:

mi is the unconditional mean of Xi, vi is the conditional variance of Xi given
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Pai, and bji is a linear coefficient reflecting the strength of the relationship
between Xj and Xi.

4.3 Markov networks

Given an undirected graph G = (V,E) we have the following definitions [39]:

Definition 1. The neighborhood N(Xi) of a vertex Xi ∈ X is defined as
N(Xi) = {Xj : (Xj ,Xi) ∈ E}. The set of edges uniquely determines a neigh-
borhood system on the associated graph G.

Definition 2. The boundary of a set of vertices, XS ⊆ X, is the set of vertices
in X \ XS that neighbors at least one vertex in XS. The boundary of XS is
denoted as bd(XS).

Definition 3. The closure of a set of vertices, XS ⊆ X, is the set of vertices
cl(XS) = XS ∪ bd(XS).

Definition 4. A probability p(x) is called a Markov random field with respect
to the neighbor system on a graph G if, ∀x ∈ X, ∀i ∈ {1, . . . , n}, p(xi|x \ xi) =
p(xi|bd(xi)).

Definition 5. A probability p(x) on a graph G is called a Gibbs field with respect
to the neighborhood system on the associated graph G when it can be represented
as follows:

p(x) =
1

Z
e−H(x) (9)

where H(x) =
∑

C∈C ΦC(x) is called the energy function, being Φ = {ΦC ∈ C}
the set of clique potentials, one for each of the maximal cliques in G. The value
of ΦC(x) depends on its local configuration on the clique C. The normalizing
constant Z is the corresponding partition function, Z =

∑

x e−H(x).

In MATEDA-2.0, Cliques are used to represent the neighborhood structure
in models based on Markov networks [100, 121, 123]. In this particular case, the
first column of Cliques(i, :) represents the number of neighbors for variable Xi.
The second, is the number of new variables (for Markov networks, only one new
variable Xi appears in each clique.). Then, the neighbor variables are listed and
finally variable Xi is added.

The parameters of the Markov network are represented using the Tables
structure which stores the conditional probabilities of each variable given its
neighbors.

4.4 Mixtures of distributions

A mixture of distributions [30, 72] is defined to be a distribution of the form:

Q(x) =

m
∑

j=1

λj · fj(x) (10)

with λj > 0, j = 1, . . . ,m,
∑m

j=1 λj = 1.
fj are called component densities or mixture components, and λj are called

mixture proportions or mixture coefficients. m is the number of components
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of the mixture. A mixture of distributions can be viewed as containing an
unobserved choice variable z, which takes values k ∈ {1, . . . ,m} with probability
λj . In some cases the choice variable z is known.

Examples of mixtures distributions include:

• Mixtures of Gaussian distributions [30].

• Bayesian multi-nets [35].

• Mixtures of trees [73].

In EDAs, mixtures of distributions have been extensively applied to solve
discrete [11, 87, 93, 114, 105] and continuous [11, 17, 33, 127] optimization
problems.

In Mateda-2.0, a mixture of models is represented as an array of components
and coefficients. Each element of the array stores all the relevant information
about the corresponding model. A mixture can contain as components models
of different classes. Example 4 shows the way in which a mixture of Gaussian
distributions can be learned from a cluster of solutions.

Example 4 (Constructing a mixture of Gaussian distributions).
1 % nclusters: number of clusters where solutions in AuxPop are

2 grouped

3 % ind: index of the cluster each solution belongs to.

4 for i=1:nclusters,

5 idx = find(ind==i);

6 nmembers = size(idx,1); % Number

7 model1,i = mean(AuxPop(idx,:)); % Vector of means for each cluster

8 model2,i = std(AuxPop(idx,:)); % Vector of standard deviation for each cluster

9 model3,i = nmembers/PopSize; % Coefficient for the mixture, proportional to the

10 end % number of points in the cluster

4.5 Non probabilistic models

Even if MATEDA-2.0 is conceived for EDAs where modeling of the solutions is
done using probabilistic models, there may be situations in which population
based algorithms that use other types of modeling techniques (e.g. algorithms
that use modeling based on neural networks) or do not use any type of modeling
(e.g. genetic algorithms [37]) are to be compared with EDAs. Assuming that
the main difference of these algorithms with EDAs lies in the variation operation
they use (i.e. the evaluation and selection steps are essentially identical), these
algorithms could be implemented in MATEDA-2.0 using two alternatives:

• Split the implementation of the variation operator in two parts. In the
first part, a model is learned. In the second, the model is used to sample
solutions.

• Define a learning method where nothing is done and implement the vari-
ation operators in the sampling method.

Example 5 presents a model of one-point crossover operator of a GA. The
models correspond to a list of triples, where the first value of each triple corre-
sponds to the crossover point for the creation of an individual and the other two
values are the indices of the parents in the selected population. In this simple
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example, there will be generated 10 new individuals. The first two offsprings
will be formed, during the sampling step, by crossing parents 1 and 3 at point
5.

Example 5 (Model of one-point crossover for a GA).

Cliques =













5 3 1
6 4 2
2 6 2
8 5 3
7 2 5













(11)

5 Implementation of the EDA components

There is a common way in which all EDA components are invoked from the
main program RunEDA using the Matlab function eval. This is:

[Output] = eval([eda method,’(fixed params,user params)’]); where
eda method is the name of the Matlab program that implements the method.
fixed params are a set of parameters determined by the RunEDA implementa-
tion and user params are parameters defined by the users and passed to the
program using eda params. In the following section we briefly describe the
format of the implementations for each of the EDA components. Afterwards,
several examples that illustrate the use of these components are discussed.

5.1 Seeding methods

Seeding methods are used to initialize the starting population when some knowl-
edge about the problem is available or the user wants to bias the search to certain
areas of the space.

In RunEDA, the seeding procedure is invoked at the first population as:
Pop=eval([seeding pop method,’(n,PopSize,Card,seeding pop params)’]);

The seeding methods implemented in MATEDA-2.0 are the following (see
help function-name for details on the input parameters used by the methods):

• seed thispop: Seeds a given population.

• RandomInit: Samples a population of solutions from the uniform distri-
bution.

• Bias Init: Biased initialization of a population of binary vectors, where
the probability of generating 1 is p and the probability of generating 0 is
1 − p.

• seeding unitation constraint: Generates a population of binary vec-
tors where all vectors have the same number of ones. It might be used for
problems with unitation constraints [112, 113].

By default, seeding pop method = RandomInit.
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5.2 Sampling methods

Sampling methods serve to generate the new population from the probabilistic
model learned by the EDA. The type of sampling method is therefore dependent
of the class of probabilistic method used. Traditionally, probabilistic logic sam-
pling (PLS) [44] has been the choice in EDAs, but other proposals incorporate
Gibbs sampling [34, 101, 121, 123], and methods that find the most probable
configurations [74, 102, 124]. MATEDA-2.0 implements variants of all these
sampling methods.

In RunEDA, the sampling procedure is invoked at every generation, except
the first one where seeding is applied, as:

NewPop =eval([sampling method,’(n,model,Card,SelPop,SelFunVal

,sampling params)’]);

where model is a cell array containing the description of the probabilistic
model. The inclusion of the selected population and its evaluation as parameters
of the sampling method allow the implementation of sampling algorithms that
may start from previously found solutions (e.g. Gibbs sampling).

The following sampling methods have been implemented (see help function-
name for details on the input parameters used by the methods):

• MOAGeneratePopulation: Samples a Markov network using Gibbs Sam-
pling.

• SampleFDA: Samples from a factorized model using PLS.

• SampleGaussianUnivModel: Samples from a univariate Gaussian model.

• SampleGaussianFullModel: Samples from a full multivariate Gaussian
model.

• SampleMixtureofUnivGaussianModels: Samples from a mixture of uni-
variate Gaussian models.

• SampleMixtureofFullGaussianModels: Samples from a mixture of full
multivariate Gaussian models.

• SampleBN: Samples a population of individuals from a Bayesian or Gaus-
sian network using PLS.

• SampleMPE-BN: Samples a population of discrete solutions in which the
first individual corresponds to the most probable configuration given by
the model and the remaining individuals are sampled using PLS.

The SampleBN and SampleMPE-BN programs invoke methods defined in the
BNT toolbox. EDAs that use multivariate Gaussian distributions have shown
to suffer from stagnation due to a very fast (at exponential rate) decrease of the
variance [7]. A partial remedy is to use an artificial expansion of the variance.
Therefore, in MATEDA-2.0 some of the EDAs that use Gaussian models include
as a feature a variance scaling parameter. Other adaptive schedules [8, 24, 38,
95] for modifying the variance during sampling could be implemented in this
framework.
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5.3 Repairing methods

Repairing methods are commonly used to guarantee the feasibility of solutions.
They modify (repair) a given individual to guarantee that the constraints are
satisfied.

In RunEDA the repairing procedure is invoked at every generation as:
[Pop] = eval([repairing method,’(Pop,Card,repairing params)’])

The following repairing methods have been implemented (see help function-
name for details on the functions parameters):

• SetInBounds repairing: For a problem with continuous representation,
this program changes the values of each out of range variable to the mini-
mum (respectively maximum) bounds if variables are under (respectively
over) the variables ranges.

• SetWithinBounds repairing: For a problem with continuous represen-
tation, this program truncates the values of each out of range variable to
a random value within the feasible range.

• HP repairing: Recursive procedure, originally introduced in [20], to re-
pair a grid path to avoid self-intersections, guaranteeing feasibility.

5.4 Local optimization methods

Local optimization methods are used to improve the solutions sampled by EDAs.
The combination of EDAs and local optimization methods [78, 89, 108, 133]
have been shown to produce important improvements in the efficiency of the
optimization process.

In RunEDA the local optimization method is invoked at every generation as:
[Pop,NumbEvals] = eval([local opt method,’(k,Pop,FunVal,

local opt params)’])

FunV al is a matrix with fitness values of all the individuals in Pop for all the
objectives. Since the local optimization program receives the entire population,
it is possible to implement optimization methods that use information about
the population to modify each individual. Otherwise, the local optimization
method can be applied to each individual separately. NumbEvals is the number
of evaluations made during the local optimization step.

5.5 Replacement methods

Replacement methods are used to combine the individuals generated in the
current population with individuals from previous generations. In EDAs, they
can be used as an effective way to promote diversity in the population (e.g.
restricted tournament replacement [86]). In addition, research on the role of
replacement methods in EDAs [67] has shown that the type of replacement
method can influence the accuracy of the probabilistic models learned by the
algorithms. Niching methods [70] may also be implemented at this step.

In RunEDA the replacement method is invoked at every generation except the
first one as:

[Pop,FunVal] = eval([replacement method, ’(OldPop,SelPop,NewPop,

OldFunVal,SelFunVal,NewPopFunVal,replacement params)’]);
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where OldPop, SelPop and NewPop are respectively the population at
step t − 1, the selected population and the population generated by sampling
(and possibly repaired or improved using local optimization). OldFunV al,
SelFunV al, and NewPopFunV al are matrices with the fitness values, for all
the objectives, of the individuals in OldPop, SelPop and NewPop.

The following replacement methods have been implemented:

• elitism: Adds the k best individuals of the previous population to the
current population.

• best elitism: Joins the selected individuals with the sampled individuals
to form the next population. It should be enforced that SampledPopSize =
PopSize − SelPopSize.

• popaggregation: Joins the current population with the sampled popula-
tion and selects the best PopSize individuals as the new population.

• none: Pop = NewPop.

• RT replacement: Creates a new population (NewPop) applying restricted
tournament replacement.

All these methods require the definition of an ordering criterion to determine
the best individuals. While this criterion may be straightforward for the single
objective optimization, there are many more options available for the case of
multi-objective optimization.

In RunEDA, when an ordering of the individuals is required, an ordering
method is invoked as:

[Ind] = eval([find bestinds method,’(Pop,FunVal)’])

where find bestinds method is the name of the ordering method, passed
as a parameter of the main EDA component that uses it (e.g. replacement
method), Pop is a population and FunV al the corresponding evaluations of the
individuals for all the objectives. The method outputs an index Ind with the
ordering.

The following ordering methods have been implemented:

• fitness ordering: Individuals are ordered according to the ranking of
its fitness values (best is the maximum). For multi-objective functions,
individuals are ordered according to the average ranking for all the objec-
tives (i.e. for each objective an ordering is done, and they are averaged
later).

• Pareto ordering: Individuals are ordered according to the front they
belong to. Individuals in the first front (nondominated solutions) come
first. Then individuals that are only dominated by those in the first front
and so on. There is no ordering criteria for individuals in the same front.
See ParetoRank ordering for more refined ordering.

• ParetoRank ordering: Individuals are firstly ordered according to the
front they belong to. Then, in each front, they are ordered according to
the average rank of their fitness functions. The first front (non-dominated
solutions) comes first. Then individuals that are only dominated by those
in the first front and so on.
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5.6 Selection methods

Selection methods determine which the set of individuals that will be modeled
is. Usually, it is expected that these individuals correspond to a sample of a
current promising region of the search space. Selection methods are essential
for EDAs. Therefore, some work has been devoted to study the role of selection
operators in EDAs [51, 67, 71, 104]. In particular, to investigate their influence
in the relationship interactions-dependencies. It has been shown [67] that while
some selection methods (e.g. truncation selection) are good at keeping the
original interactions between the problem variables, other selection methods can
be better in terms of the number of function evaluations to reach the optimum
(e.g. tournament selection).

In RunEDA the selection method is invoked at every generation as:
[SelPop,SelFunVal] = eval([selection method,’(Pop,FunVal,

selection params)’])

where the input and output parameters are as described for previous meth-
ods.

The following selection methods have been implemented:

• exp selection: The selection probability of each individual is exponential
of base to its fitness. The selected population is sampled using stochastic
universal sampling (SUS) [3]. Implemented for single objective functions.

• prop selection: The selection probability of each individual is propor-
tional to its fitness. The selected population is sampled using SUS. Im-
plemented for single objective functions.

• NonDominated selection: The set of non dominated individuals is se-
lected. Implemented for multi-objective functions. The number of selected
individuals may change at each generation.

• truncation selection: Individuals are ordered according to the given or-
dering (see previous section for implementations of the ordering criterion).
The best T ∗ PopSize are selected where T is the truncation coefficient.

5.7 Learning methods

In EDAs, the probabilistic models are constructed using learning methods that
build the models extracting relevant information from the data and (possibly)
a priori knowledge about the model structure. Regarding the way learning is
done in the probability model, EDAs can be divided into two classes [59]. One
class groups the algorithms that do a parametric learning of the probabilities,
and the other one comprises those algorithms where structural learning of the
model is also done. Parametric and structural learning are also known as model
fitting and model selection, respectively.

In RunEDA the learning method is invoked at every generation as:
[model] = eval([learning method,’(k,n,Card,SelPop,

SelFunVal,learning params)’])

where k is the number of the current generation and model has the structure
explained in Section 4. The structure and parameters contained in model have
to be consistent with the sampling algorithm used in the same generation.
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To learn Bayesian and Gaussian networks, MATEDA-2.0 uses a number
of methods implemented in the Matlab Bayes Net (BNT) toolbox [82] and the
BNT structure learning package [65]. The following learning methods have been
implemented:

• LearnBN: Learns a Bayesian network from data using the following ap-
proaches:

– PC algorithm [125] as implemented in [82].

– Tree learning algorithm using the mutual information [18] as imple-
mented in [65].

– Greedy score+search [19] with a randomly generated initial node
ordering and Bayesian information criterion (BIC) [117] scores as
implemented in [82].

– Greedy score+search with an initial node ordering constructed from
a learned tree structure [65], and Bayesian and BIC scores [19] as
implemented in [82].

• LearnFDA: Creates a factorized model from a given fixed undirected struc-
ture.

• LearnMargProdModel: Learns a marginal product [109] model using affin-
ity propagation [31] on the matrix of mutual information.

• LearnMOAModel: The Markov network model learned by the Markov op-
timization algorithm (MOA) [123] is learned. The structure of the model
can be given or learned from the data.

• LearnGaussianUnivModel: Learns a Gaussian univariate marginal prod-
uct model [61].

• LearnGaussianFullModel: Learns a full Gaussian multivariate model
[61].

• LearnMixtureofUnivGaussianModels: Learns a mixture of univariate
Gaussian models using clustering.

• LearnMixtureofFullGaussianModels: Learns a mixture of full multivari-
ate Gaussian models using clustering.

• LearnGaussianNetwork: Learns a Gaussian network from data using the
following approaches:

– Tree learning algorithm using the BIC score as implemented in [65].

– Greedy score+search with a randomly generated initial node ordering
and BIC score [19] as implemented in [82].

– Greedy score+search [19] with an initial node ordering constructed
from a learned tree structure [65], and BIC score as implemented in
[82].
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The implemented learning methods incorporate parameters that add flexi-
bility to the EDAs. For instance, EDAs that use mixtures of Gaussian models
are based on a clustering of the solutions. Clustering can be done in the space
of variables, the space of objectives, or both together. User defined cluster-
ing methods can be employed (currently available are affinity propagation and
k-means) with different distance measures. Similarly, it could be also possi-
ble to add adaptation to learning by setting the coefficients of the mixture’s
components according to the accuracy of each component approximation [99].

Notice that the computational cost in terms of time and memory is very high
for some of the Bayesian and Gaussian network learning methods making them
appropriate for only small problems. See file ScriptMateda.m for examples of
learning algorithms used for problems of many variables.

5.8 Methods to compute the statistics

To evaluate the performance of an EDA it is necessary to compute a number of
statistics that describe the behavior of the algorithm. MATEDA-2.0 allows the
user to implement a procedure that processes the information and computes a
number of relevant statistics that could be used by the methods that display
information about the algorithm during the evolution.

In RunEDA, the method to compute the statistics is invoked at every gener-
ation as:

[AllStat] = eval([statistics method,’(k,Pop,FunVal,time operations,

number evaluations,AllStat,statistics params)’]) where time operations
is a cell array containing the time (in seconds) spent by each component of the
EDA at each generation, number evaluations is a vector with the number of
evaluations in each generation and AllStat is an array that contains the statistics
at each generation and is updated by the method for computing the statistics.

The following method for computing the statistics has been implemented:

• simple pop statistics: Computes the following statistics in each EDA
generation and stores them in AllStat.

– Information about maximum, mean, median, minimum, and variance
values of every objective in the current population.

– Best individual (according to an ordering criterion).

– Number of different individuals.

– Information about maximum, mean, median, minimum, and variance
values of every variable in the current population.

5.9 Methods to display information during the evolution

An important feedback about the behavior of EDAs is received from the type
of information displayed during the evolution of the optimization algorithm. In
MATEDA-2.0, this method may be implemented by the user.

In RunEDA, the method to display the EDA information is invoked at every
generation as:

eval([verbose method,’(k,AllStat,verbose params,auxedaparams)’])

where AllStat is the cell array containing the information computed by the
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statistics method and auxedaparams contains the description of all the EDA
methods.

The following method for displaying the information about the EDA behav-
ior has been implemented:

• simple verbose: Displays the information computed by the simple pop statistics.
In addition, the number of evaluations and the time spent by each EDA
component are displayed. A description of each the methods used by the
EDA is displayed as a preamble to the execution of the algorithm.

The method used to compute and store the statistics and the one used to
display them should be consistent.

5.10 Methods to evaluate the stopping conditions

The stopping criterion used in EDA influences the efficiency of the algorithm.
Several stopping criteria can be used, separately or combined. In MATEDA-2.0
the stopping criteria can be defined by the user by means of a method that
determines whether the algorithm should or not stop.

In RunEDA, the method to evaluate the stopping conditions is invoked at
every generation as:

continue evolution = eval([stop cond method,’(k,Pop,FunVal,stop cond params)’])

The stopping condition criteria will use information about the current gen-
eration, the genotypic structure of the population and the function values.

The following methods for displaying the information about the EDA be-
havior have been implemented:

• maxgen: The algorithm stops when a maximum number of generations has
been reached.

• maxgen maxval: The algorithm stops either when a maximum number of
generations has been reached or a given value of the function has been
reached.

6 Functions and testbed problems implemented
in MATEDA-2.0

To validate the behavior of the EDAs, MATEDA-2.0 includes the implementa-
tion of a number of optimization functions. In this section we present some of
the functions that have been implemented and a number of methods used to
generate instances of these functions. The use of EDAs to address more realistic
problems are discussed in the next section.

6.1 Single objective functions

6.1.1 Additively decomposable functions

An additively decomposable function (ADF) is represented as follows:

f(x) =

m
∑

i=1

fi(xsi
) (12)
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where xsi
are subvectors of x called the definition sets of the function, and fi

are its defined subfunctions, or just the subfunctions, of f(x).
ADFs are a clear example of functions where problem structure is known.

In an ADF, structurally related variables are usually considered as those that
belong to the same definition set. ADFs have been extensively employed to
evaluate EDAs. In particular, deceptive ADFs have been used to illustrate
the capacity of EDAs to deal with the linkage problem affecting simple genetic
algorithms.

In MATEDA-2.0, an ADF can be implemented as the sum of its subfunctions
for each definition set. The following ADFs have been implemented as examples:

• Goldberg deceptive function [36].

• Trap function of order k [1].

Single objective functions can also be implemented as particular case of
multi-objective functions discussed in the next section.

6.2 Multi-objective functions

6.2.1 Multi-objective additive decomposable functions

MATEDA-2.0 includes a number of methods that allow the definition of multi-
objective decomposable functions. This class of functions have been proposed
[54, 55, 92] to investigate the behavior of EDAs for multi-objective problems. In
some cases [54, 55, 92], the rationale behind the use of these functions has been
to obtain objectives that compete in all or most partitions of an appropriate
problem decomposition.

In MATEDA-2.0, general multi-objective decomposable functions can be
defined by the user by means of the global variables FunctionStructure and
FunctionTables. The first global variable defines which problem variables are
involved in the evaluation of each of the objectives. FunctionTables defines the
values of an objective for each configuration of the variables it depends on.

The main difference between this type of multi-objective decomposable func-
tions and ordinary ADFs is that each subfunction will map to a different objec-
tive. As a result, we can have different objectives defined on the same subset of
variables.

The following methods have been implemented:

• EvaluateGeneralFunction: Evaluates a vector on a multimodal function
whose structure and values are respectively defined as global variables
FunctionStructure and FunctionTables.

• PartialEvaluateGeneralFunction: Evaluates a vector on a multimodal func-
tion whose structure and values are respectively defined as global variables
but only a subset of the objectives are evaluated.

• SumEvaluateGeneralFunction: Evaluates a vector on a multimodal func-
tion whose structure and values are respectively defined as global variables.
The Sum of the objectives is given as output.
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• SumPartialEvaluateGeneralFunction: Evaluates a vector on a multimodal
function whose structure and values are respectively defined as global vari-
ables but only a subset of the objectives are evaluated and the sum of these
objectives is given as output.

One multi-objective decomposable function can be transformed to a single
objective function by adding the values of all the objectives. This transforma-
tion, that could be seen as the opposite direction of the so-called multiobjectiviza-
tion technique [56] can be done in MATEDA-2.0 using SumEvaluateGeneralFunction
method. Additionally, one may be interested in evaluating just a subset of objec-
tives. This can be accomplished by specifying a global variable SelectedObjectives
and applying the method PartialEvaluateGeneralFunction.

Example 6 shows the generation and optimization of a multi-objective de-
composable function using MATEDA-2.0.

Example 6 (Optimization of multi-objective decomposable functions).
1 PopSize = 1000;

2 n = 50;

3 cache = [1,1,1,1,1];

4 Card = 2*ones(1,n);

5 MaxGen = 30;

6 global FunctionTables;

7 global FunctionStructure;

8 global FunctionAccCard;

9 global SelectedObjectives;

10 % The circular structure is created

11 FunctionStructure = CreateListFactorsCircularNK(n,4);

12 % Values are read from a file

13 FunctionTables = ReadFunctionsFromData(’testNK fnt N50 k4Inst 1.txt’,

14 FunctionStructure,Card);

15 % Auxiliary structure for evaluation

16 FunctionAccCard = FindListCard(FunctionStructure,Card);

17 SelectedObjectives = [1:4:48]; % Only some of the objectives are evaluated

18 % General function that uses the global variables.

19 F = ’PartialEvaluateGeneralFunction’;

20 selparams(1:2) ={0.5,’ParetoRank ordering’};
21 edaparams{1} = {’selection method’,’truncation selection’,selparams};
22 edaparams{2} = {’replacement method’,’best elitism’,{’ParetoRank ordering’}};
23 edaparams{3} = {’stop cond method’,’max gen’,{MaxGen}};
24 [AllStat,Cache]=RunEDA(PopSize,n,F,Card,cache,edaparams);

The code shown above illustrates the way in which multi-objective decom-
posable functions can be generated and used in MATEDA-2.0. In this example,
the multi-objective function is based on the NK circular fitness landscape [53].
Each objective corresponds to a subfunction where each variable depends on
its k

2 previous and k
2 subsequent neighbors. The structure is generated using

CreateListFactorsCircularNK method, which together with other function
generator methods is explained in the next section. Only a subset of 12 objec-
tives is selected for optimization. The default probabilistic model (Tree-EDA)
is used with ParetoRank ordering selection.

6.2.2 Function generator methods

Function generator methods can be defined by the user to generate multiple
instances of a given decomposable function. MATEDA-2.0 includes a number
of auxiliary methods with this purpose. These methods can also be used to save
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and read the structure and values of the function from files. A multi-objective
implementation of the NK landscape model is included as an example of how
to use the function generator methods.

• CreateNKFunctions: Generates random values for the table entries of the
NK landscape.

• CreateGaussianValuesForFactors: Generate function values sampling
from a Normal distribution.

• CreateListFactorsNK: Creates the structure of an instance of the NK
random landscape, i.e. the k neighbors for each of the variables are ran-
domly selected.

• CreateListFactorsCircularNK: Creates the structure of an instance of
the NK landscape where each variable depends on its k

2 previous and k
2

subsequent neighbors in a circular way.

• CreateRandomFunctions: Generates uniform random values for the table
entries of a given structure.

• SaveFunctionStructure: Saves the structure of a function in the form of
a factor graph [58].

• AllNKInstances: Generates m instances of a random NK model. The
structure and function of all instances are saved in files.

• ReadFunctionsFromData: Reads the values of a function from a file.

• ReadFactorGraphFromData: Reads the structure of a given function from
a file.

7 How to use MATEDA-2.0 for a given problem

7.1 Steps to run an EDA in MATEDA-2.0

In order to solve a problem using MATEDA-2.0, the following steps should be
followed:

1. Create or define the file of the function to be optimized.

2. Define the type of representation to be used.

3. Create the vector with the range of values (for the continuous case) or the
cardinality of the variables (for the discrete case).

4. Choose each EDA component and determine the parameters to be passed
to the algorithm.

5. Execute RunEDA.m.

MATEDA-2.0 does function maximization. For minimization problems, the
fitness function f̂(x) has to be modified (e.g. f(x) = −f̂(x)). The choice of the
EDA components depends on several factors. Among them:
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• Type of variable representation (discrete or continuous).

• Domain of definition for each variable (discrete problems of high cardinal-
ity may not be treated using complex models).

• Existence of prior information about the problem (e.g. when a feasible
factorization is known it can be employed).

• Computational cost of the fitness function.

7.2 Examples of the optimization problems implemented

This section presents some examples of the application of MATEDA-2.0 to a
number of optimization problems. Some of the problems implemented and avail-
able with the code are the following:

• EvalIsing: Ising model [49].

• EvaluateEnergy: HP simplified protein model [23].

• EvaluateEnergyFunctional: Functional protein model [45].

• GaussProtein: Off-lattice HP protein model [126].

• EvaluateSAT: Multi-objective max 3-satisfiability problem [118].

In the next sections we show different EDA approaches to some of these
problems.

7.2.1 Tree-EDA for the Ising model

The generalized Ising model [49] is described by the energy functional (Hamil-
tonian):

E = −
∑

i<j∈L

Jijσiσj −
∑

i∈L

hiσi (13)

where L is the set of sites called a lattice. Each spin variable σi at site i ∈ L
either takes the value 1 or −1. One specific choice of values for the spin variables
is called a configuration. The constants Jij are the interaction coefficients. The
ground state is the configuration with minimum energy. We address the problem
of maximizing f(x) = −E(x). The Ising model has been extensively employed
as a testbed of EDAs [13, 47, 74, 76, 90, 121].

Example 7 describes the application of the Tree-EDA to the optimization of
the Ising model. The algorithm uses the most probable configuration sampling
[74] (i.e. the most probable individual from the net is added to the population
during sampling). The algorithm stops when the optimum is found or the
maximum number of generations is reached.

Example 7 (Tree-EDA for the Ising problem).
1 global lattice; % The lattice and the interactions

2 global inter; % are defined as global variables

3 Pop-Size = 500;

4 n = 64;

5 cache = [0,0,0,0,0];
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6 Card = 2*ones(1,n);

7 F = ’EvalIsing’; % Ising function

8 MaxGen = 150;

9 MaxVal = 86;

10 [lattice, inter] = LoadIsing(n, 1); % The Ising instances is read

11 stop cond params = {MaxGen,MaxVal}; % The algorithm stops when

12 % optimum is found or maxgen is reached

edaparams{1} = {’stop cond method’,’maxgen maxval’,stop cond params};
13 edaparams{2} = {’sampling method’,’ SampleMPE BN’,{PopSize}};
14 [AllStat,Cache]=RunEDA(PopSize,n,F,Card,cache,edaparams);

The code above implements the application of the Tree-EDA to the opti-
mization of the Ising model. A characteristic of this application, and a sug-
gested solution for problems where some extra information is needed during the
function evaluation step, is the use of global variables. For the Ising problem
implementation, variables lattice and inter are accessed while reading the Ising
instance from a file and during the evaluation step.

7.2.2 FDA optimization of the Hydrophobic-Polar (HP) protein model

We present in this section an FDA application to the HP protein folding problem
[23]. It can be approached as a discrete problem with constraints and we use a
Markov-chain-like probabilistic model as the structure of the FDA [103, 110].

The HP protein model [23] considers two types of residues: hydrophobic (H)
residues and hydrophilic or polar (P) residues. In this model, a protein is con-
sidered a sequence of these two types of residues, which are located in regular
lattice models forming self-avoided paths. Given a pair of residues, they are con-
sidered neighbors if they are adjacent either in the chain (connected neighbors)
or in the lattice but not connected in the chain (topological neighbors).

In the optimization approach, the search for the protein structure is trans-
formed into the search for the optimal configuration given an energy function.
For the HP model, an energy function that measures the interaction between
topological neighbor residues is defined as ǫHH = −1 and ǫHP = ǫPP = 0.

The HP problem consists of finding the solution that minimizes the total
energy. In the linear representation of the sequence, hydrophobic residues are
represented with the letter H and polar ones, with P. In the graphical represen-
tation, hydrophobic proteins are represented by black beads and polar proteins,
by white beads.

In our representation, for a given sequence and lattice, Xi will represent the
relative move of residue i in relation to the previous two residues. Taking as a
reference the location of the previous two residues in the lattice, Xi takes values
in {0, 1, . . . , z−2}, where z−1 is the number of movements allowed in the given
lattice. These values respectively mean that the new residue will be located in
one of the z − 1 numbers of possible directions with respect to the previous two
locations. A solution x can be seen as a walk in the lattice, representing one
possible folding of the protein. The codification used is called relative encoding,
and has been experimentally compared to absolute encoding in [57], showing
better results.

Folder ../MATEDA/functions/protein contains an implementation of HP
protein model that can be used with different EDA implementations.

Example 8 shows the code that implements the Markov chain FDA for an HP
sequence of 64 residues. Other sequence configurations can be tried by modifying
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Figure 3: Best solution found by the Markov chain FDA after 100 generations.

InitConf variable. The cardinality of the variables is 3 and the Markov model
considers dependence of each variable to the previous one. The fixed structure
of the model (Cliques) is constructed using the CreateMarkovModel method.

The EDA uses a repairing method based on backtracking [20] which tries to
enforce that each sequence is folded forming a self-avoided path in the lattice.
At the end of the run, the solution found by the EDA is visualized using the
method PrintProtein. Figure 3 shows the best solution found by one run of
this algorithm after 100 generations.

Example 8 (Markov Chain FDA for the HP protein model).
1 global InitConf; % This is the HP protein instance

2 % defined as a sequence of zeros and ones

3 InitConf = [zeros(1,12),1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,1,1

4 ,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,1,zeros(1,12)];

PopSize = 500;

5 NumbVar = size(InitConf,2);

6 cache = [0,0,0,0,0];

7 Card = 3*ones(1,NumbVar);

8 maxgen = 100;

9 % The Markov chain model(Cliques) is constructed specifying the number of

10 % conditioned (previous) variables. In the example below this number is

11 % 1., i.e. p(x) = p(x0)p(x1|x0) ... p(xn|xn − 1)
12 Cliques = CreateMarkovModel(NumbVar,1);

13 F = ’EvaluateEnergy’; % HP protein evaluation function

14 edaparams{1} = {’learning method’,’LearnFDA’,Cliques};
15 edaparams{2} = {’sampling method’,’SampleFDA’,PopSize};
16 % Repairing method used to guarantee that solutions do not self-intersect

17 edaparams{3} = {’repairing method’,’HP repairing’,{}};
18 edaparams{4} = {’stop cond method’,’max gen’,{maxgen}};
19 [AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams)

20 % To draw the resulting solution use function PrintProtein(vector),

21 % where vector is the best solution found.

22 vector = AllStat{maxgen,2};
23 PrintProtein(vector);
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7.2.3 Bayesian network based EDA for a multi-objective 3-satisfiability
problem

Let U = {U1, U2 · · ·Un} be a set of n Boolean variables. A (partial) truth
assignment for U is a (partial) function T : U → {true, false}. Corresponding
to each variable Ui are two literals, ui and ¬ui. A literal ui (resp. ¬ui) is true
under T iff T (ui) = true (resp. T (ui) = false). A set of literals is called a
clause, and a set or sequence (tuple) of clauses a formula.

Let φ be a formula, U = vars(φ), and C a clause in φ. We interpret φ as
a formula of the propositional calculus in conjunctive normal form, so that a
truth assignment T for u satisfies C iff at least one literal ui ∈ C is true under
T , and T satisfies φ iff it satisfies every clause in φ. The satisfiability problem
(SAT) [118] is the problem of finding a satisfying assignment for a formula.

In the multi-objective version of the SAT problem, there are m formulas
(φ1, . . . , φm), each representing a different objective. This type of problems
have been employed to test EDAs for multi-objective problems [6]. MATEDA-
2.0 includes the method EvaluateSAT which evaluates a solution on a set of
3-SAT formulas contained in the global variable Formulas. The output is a
multi-objective solution, one component corresponds to the evaluation of one
formula. The method MakeRandomFormulas can be used to generate random
instances of the multi-objective SAT problem and a number of these instances
can be found in the folder ../MATEDA/functions/SAT/instances.

Example 9 shows the code that implements a Bayesian network based EDA
for multi-objective 3-SAT. The global variable Formulas stores the formulas
that are read from the file. In this example, there are 20 binary variables, 10
formulas and 20 clauses in each formula. ParetoRank ordering is used as the
ordering criterion and truncation selection is applied.

Example 9 (Bayesian network based EDA for multi-objective 3-SAT).
1 global Formulas; % Global variable for SAT function

2 load TypeForm 1 Form 1.mat; % Multimodal SAT instance

3 n = 20; % Number of variables

4 m = 10; % Number of objectives

5 c = 20; % Number of clauses

6 PopSize = 500;

7 NumbVar = n;

8 cache = [1,1,1,1,1];

9 Card = 2*ones(1,NumbVar);

10 maxgen = 50;

11 F = ’EvaluateSAT’; % 3-SAT function

12 selparams(1:2) = {0.5,’ParetoRank ordering’};
13 sampling params(1:3) = {PopSize,m,Obj Card};
14 BN params(1:7) = {’k2’,5,0.05,’pearson’,’bayesian’,’no’};
15 edaparams{1} = {’learning method’,’LearnBN’,BN params};
16 edaparams{2} = {’sampling method’,’SampleBN’,sampling params};
17 edaparams{3} = {’selection method’,’truncation selection’,selparams};
18 edaparams{4}={’replacement method’,’best elitism’,{’ParetoRank ordering’}};
19 edaparams{5} = {’stop cond method’,’max gen’,{maxgen}};
20 [AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams);

7.2.4 Mixture of multivariate Gaussian distributions for a spacecraft
trajectory optimization problem

Spacecraft trajectory problems can be posed as global optimization problems
with constraints. One class of these problems is the multiple gravity assist
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missions with the possibility of using deep space manoeuvres (MSGDSM) [129].
It consists of finding an interplanetary trajectory of a spacecraft equipped with
chemical propulsion, able to thrust its engine once at any time between each
trajectory leg.

The generic form of the MGADSM problem can be written as [129]:

find x ∈ ℜn

minimize J(x)
subject to g(x)

where x is the decision vector, J is the objective function and g are non linear
constraints that may come from operational considerations or from the space-
craft system design. These problems have many local optima and constitute a
formidable benchmark for the evaluation of continuous EDAs and other evolu-
tionary algorithms.

We choose an instance of this problem corresponding to the design of a
deltaV-EGA manoeuvre required to reach Jupiter using an Earth Earth Jupiter
fly-by sequence with deep space manoeuvres. An EDA based on the use of a
mixture of multivariate Gaussian distributions is selected to address the prob-
lem.

Example 10 shows the code of the EDA. First, a global variable that will store
the information about the problem instance is defined. Then, a file containing
the problem instance is loaded3. The problem has 12 continuous variables with
ranges defined in Card. The learning parameters of the EDA model specify that:
Points are clustered according to the decision variables values, the clustering
method used to learn the mixture is k-means, the number of mixture components
is 10 and the measure used to cluster the points is the sqEuclidean metric as
defined in Matlab. Once the mixture of multivariate Gaussian distributions
have been learned and sampled, solutions are repaired to guarantee the variables
values are within the prescribed bounds.

Example 10 (Mixture of Gaussian distributions for a trajectory problem).
1 global MGADSMproblem % Global variable for the space trajectory problem

2 load EdEdJ; % The instance is read

3 NumbVar = 12;

4 PopSize = 5000;

5 F = ’EvalSaga’;

6 Card(1,:) = [7000,0,0,0,50,300,0.01,0.01,1.05,8,-1*pi,-1*pi];

7 Card(2,:) = [9100,7,1,1,2000,2000,0.90,0.90,7.00,500,pi,pi];

8 cache = [0,0,1,0,1];

9 learning params(1:5) = {’vars’,’ClusterPointsKmeans’,10,’sqEuclidean’,1};
10 edaparams{1} = {’learning method’,’LearnMixtureofFullGaussianModels’,learning params};
11 edaparams{2} = {’sampling method’,’SampleMixtureofFullGaussianModels’,{PopSize,3}};
12 edaparams{3} = {’replacement method’,’best elitism’,{’fitness ordering’}};
13 selparams(1:2) = {0.1,’fitness ordering’};
14 edaparams{4} = {’selection method’,’truncation selection’,selparams};
15 edaparams{5} = {’repairing method’,’SetWithinBounds repairing’,{}};
16 edaparams{6} = {’stop cond method’,’max gen’,{5000}};
17 [AllStat,Cache]=RunEDA(PopSize,NumbVar,F,Card,cache,edaparams)

3This instance and the Matlab method that allows the evaluation of the function can be
downloaded from www.esa.int/gsp/ACT/inf/op/globopt.htm
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8 Analysis of data related to the points gener-
ated and the evaluation of the (possible mul-
tiple) objective functions

In this section, we present a number of methods used to extract, process, and
visualize the information gathered during the EDA evolution. This information
can reveal new knowledge about the problem structure and may serve to evaluate
the efficacy of the EDA approach and the role played by its different components.

Visualization techniques are an important tool for interpretation and un-
derstanding of data. Classical approaches dealing with visualization of small,
isolated problems have recently shifted to the visualization of massive scale, dy-
namic data, comprised of elements of varying levels of certainty and abstraction
[14, 128].

It is a complex task to find a clear separation between the different classes
of data generated during the EDA search. Nevertheless, we use the following
classification to distinguish the way the different classes of data are produced:

• Data related to the points generated and the evaluation of the (possible
multiple) objective functions (e.g. number and distribution of the points
generated, shape of the Pareto front approximations, etc.).

• Probabilistic models (e.g. structure and parameters of the probabilistic
models).

From the previous classification, it is possible to implement different methods
to extract useful information from the EDA search and visualize this informa-
tion. Methods related to the first class are analyzed in this section, methods to
analyze and visualize the structures and parameters of the probabilistic models
are presented in the next section.

The main classes of methods for the analysis of data related to the points
generated and the evaluation of the objective functions are the following:

• Computation and visualization of fitness related measures.

• Analysis and visualization of dependencies between variables and correla-
tions between the objectives.

8.1 Fitness related measures

Fitness related measures are obtained from the fitness values of the solutions
visited by the algorithm at each generation.

The average fitness (f̄) of the population at each generation can be used
as a source of information about the behavior of the EDA. If we are looking
for a maximum, an increase in the average fitness means that the algorithm is
able to generate better solutions. However, an increase of the average fitness
can hide a loss of diversity in the population. In this case, the fitness variance
(σ(f)) can support additional information about whether the fitness values of
the population are really diverse. Similarly, the distribution of the fitness func-
tion represented using histograms gives a clearer perspective of the diversity in
the population.
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The response to selection (R(t)) is a general measure of the improvements
obtained in the average fitness of the population by the application of evolution-
ary algorithm operators. The amount of selection allows to measure the effect
of the selection operator in terms of the fitness (S(t)). The realized heritability
(b(t)) can serve to evaluate the effect of the sampling and replacement methods.
The mathematical framework that involves the use of R(t), S(t) and b(t) was
originally proposed in population genetics and has been applied to the analysis
of the breeder genetic algorithm [81] and EDAs [75, 98, 107].

The following methods that compute fitness related measures are included
in MATEDA-2.0:

• Mean Var Objectives: Computes the average fitness and variance of the
objectives (f̄ ,σ(f)).

• ObjectiveDistribution: Computes and visualizes the fitness distribu-
tion for a given range of generations and a subset of objectives using
histograms.

• Response to selection: Computes the response to selection for every
objective, R(t) = f̄(t + 1) − f̄(t).

• Amount of selection: Computes the amount of selection for every ob-
jective, S(t) = f̄s(t) − f̄(t + 1).

• Mean Var Objectives: Computes the realized heritability for every ob-

jective, b(t) = R(t)
S(t) .

Example 11 shows the MATEDA-2.0 code for the computation of fitness re-
lated measures from the data generated by a Tree-EDA (the EDA that MATEDA-
2.0 uses when no learning and sampling methods are specified).

Example 11 (Computation of fitness related measures).
1 PopSize = 300;

2 n = 45;

3 cache = [0,0,0,1,1];

4 Card = 2*ones(1,n);

5 F = ’sum’; % Onemax function;

6 ngen = 10;

7 edaparams{1} = {’stop cond method’,’max gen’,{ngen}};
8 [AllStat,Cache]=RunEDA(PopSize,n,F,Card,cache,edaparams)

9 for i=1:ngen,

10 auxr{1,i} = Cache{4,i};
11 auxs{1,i} = Cache{5,i};
12 end,

13 [mean obj,var obj] = Mean Var Objectives(auxr);

14 [RS] = Response to selection(auxr);

15 [S] = Amount of selection(auxr,auxs);

16 [b] = Realized heritability(auxr,auxs);

17 ObjectiveDistribution(auxr,1,[1:ngen]);

The code presented in Example 11 starts by executing a UMDA with a maxi-
mum of 10 generations for the Onemax function. Since cache = [0, 0, 0, 1, 1], the
evaluation of the entire and selected populations for all generations are stored.
From this information, auxiliary variables auxr and auxs are computed and
from them the fitness related measures have been calculated.
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8.2 A posteriori analysis of the dependencies

A posteriori modeling of the dependencies that arise in the selected sets (or
the final Pareto sets approximations found by EDAs), can be useful to study
the efficiency of EDAs that use different classes of models, to construct concise
descriptions of the set of optimal solutions (e.g. graphical models of the obtained
Pareto set approximations), to extract and visualize characteristic features of
the selected sets at each generation, etc. We illustrate this claim in this section
and explain the way in which MATEDA-2.0 allows the user to do a posteriori
modeling of the dependencies

The most straightforward approach to modeling the dependencies between
the variables is to construct a probabilistic graphical model, as usually done in
online modeling employed by EDAs. However, a probabilistic graphical model
is not the only choice available to model the dependencies in the data. For
instance, a matrix of correlations between the objectives has been employed
[22, 50] in multi-objective optimization to detect conflicting and redundant ob-
jectives.

Notice also, that in contrast to the online modeling case, in a posteriori
modeling we do not require to model the selected sets learned at all the gen-
erations, and in general the main objective of modeling is not to sample new
solutions.

The following methods have been implemented in MATEDA-2.0 to model
(a posteriori) dependencies.

• Corr: This Matlab function computes the correlation matrix between a
set of variables given a set of observations:

• Methods for learning probabilistic models: Currently, MATEDA-2.0 uses
the capabilities of the Bayesian networks toolbox for representing depen-
dencies for continuous and mixed variables. The following MATEDA-2.0
functions can be used to learn the models:

– LearnBN.

– LearnGaussianNetwork.

– LearnMixedModel.

• ShowParallelCoord: Parallel coordinate visualization of the objectives.

The correlation matrix of the Pareto set approximation obtained with func-
tion Corr can provide an initial idea of which objectives are contradicting and
redundant. However, extracting a set of non-redundant objectives from this ma-
trix is not straightforward. Different techniques have been proposed in multi-
objective optimization with this purpose [12, 22, 50, 96].

The methods used for learning the models have been analyzed in Section 5.7.
Its application to a posteriori modeling is very similar but the user should take
into account the difference between the problem objectives and the problem
variables in the analysis of the model. Also, the type of representation used by
objectives and variables have to be considered in the selection of the probabilistic
model.
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8.2.1 Parallel coordinate visualization of objectives

In parallel coordinates [48], every observation is plotted for each axis/variable,
and a connecting line is drawn for each observation between all the axes. Parallel
coordinates can be very effective to detect redundant and conflicting objectives.
It can also be used to identify outlier instances. For example, those sets of
objective values that do not follow the same trend than the rest.

An important issue in the effectiveness of the parallel coordinates approach
to the visualization of multivariate data is the order and arrangement of dimen-
sions (which in our case corresponds to the objectives). Ordering may help to
reduce cluttering, improving visualization. One way to deal with this problem
is to rearrange the data dimensions such that dimensions showing a similar be-
havior are positioned next to each other. However, the problem of finding an
optimal one- or two-dimensional arrangement of the dimensions based on their
similarity is NP-complete [2]. Heuristic algorithms have been proposed to find
satisfying solutions [2].

In MATEDA-2.0, the method for displaying the parallel coordinates of the
objectives is invoked as:

ShowParallelCoord(fs,AllObjectives(:,ordering)); where fs is the
font size used in the parallel coordinates representation and ordering is an
order of the objectives.

MATEDA-2.0 includes a function that allows the user to define a method
to find an order of the objectives. The ClusterUsingDist method clusters
together objectives with strong similarity in the Pareto set approximation (or
selected population). Clustering is done according to a parameter distance
which can take as values any of the distances used by Matlab command pdist

(ex. ’correlation’, ’euclidean’, etc.). ClusterUsingDist uses affinity propaga-
tion [31] to cluster the objectives.

Example 12 shows how to find a Pareto set approximation using the best
solutions found by an EDA. The code shown is the continuation of the code in-
cluded in example 6 where the generation and optimization of a multi-objective
decomposable function is presented.

Example 12 (Construction of the Pareto set approximation).
1 AllSols = [];

2 AllVals = [];

3 for i=1:MaxGen,

4 AllSols = [AllSols;Cache{1,i}]; % All the populations

5 AllVals = [AllVals;Cache{4,i}]; % All the evaluations

6 end

7 % The set of Pareto solutions found by the EDA is extracted

8 Index = FindParetoSet(AllSols,AllVals);

9 ParetoPop = AllSols(Index,:);

10 ParetoVals = AllVals(Index,:);

11 % The Pareto set approximation is shown using parallel coordinates

12 parallelcoords(ParetoVals);

13 % The correlations between the objectives are computed.

14 ObjectivesCorr = corr(ParetoVals);

15 % Affinity propagation is used to reduce the number of objectives

16 % by selecting exemplars of the correlated variables

17 [idx,netsim,dpsim,expref]=apcluster(ObjectivesCorr,mean(ObjectivesCorr));

The code shown above illustrates the way in which a Pareto set approxi-
mation can be obtained from the selected solutions found in every generation
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of an EDA. In this example, the multi-objective function is based on the NK
circular fitness landscape. Each objective corresponds to a subfunction where
each variable depends on its k

2 previous and k
2 subsequent neighbors.

After the Pareto set approximation has been found, it is visualized using par-
allel coordinates and the correlation between its objectives are found. Finally,
affinity propagation is applied to reduce ’redundant’ objectives.

9 Analysis of the probabilistic models

Work on the analysis of the probabilistic models learned by EDAs and its re-
lationship with the problem structure for single objective functions, have been
accomplished for directed [4, 25, 27, 41, 43, 67, 76], undirected [101, 106, 109]
and Gaussian [4] models. This work has been mainly focused on the number
and frequency of the dependencies represented in the graphical structure of the
model. Recent work explores other descriptors of the learned models such as
the correlation between the model prediction and the fitness [13], the likehood
of the model [66], and the probabilities given by the model to some relevant
points of the search [26]. MATEDA-2.0 allows the user to conduct the type of
analysis achieved in previous work but also permits the detection of frequent
substructures in the models learned, the visualization of interactions between
edges in the models and other additional features.

9.1 Data structures to represent the models

The basic information about the interactions between the variables of a problem
in a given model is represented in MATEDA-2.0 using an edge matrix E, where
E(i, j) = 1 and E(j, i) = 1 if and only if variables Xi and Xj satisfy some
previously defined structural relationship. Otherwise, E(i, j) = 0 and E(j, i) =
0.

The structural relationship depends on the type of probabilistic model. The
following are some examples of relationships:

• Factorized model: Two variables are related if they appear together in
any of the factors.

• Markov network model: Two variables are related if one of them belongs
to the neighborhood of the other variable.

• Bayesian networks: Two variables are related is there is an arc between
them.

Notice that, for Bayesian and Gaussian networks, we disregard the direction
of the dependencies. This is a common approach in the analysis of this type of
directed graphical models in EDAs [25, 27, 41, 43, 67].

Let us suppose, we have all the models learned in nruns executions of an
EDA with at most maxgen iterations (when using MATEDA-2.0 with the op-
tion cache(3) = 1, all the models of a single execution are saved in the cell
array Cache{3, :}). From this data, the data structure run structures can be
generated.
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• run structures{1} = indexmatrix(n, n): Associates an index to each pos-
sible edge in the network. e.g. indexmatrix(1, 2) = 1, number of edges

m = n(n+1)
2 .

• run structures{2} = AllBigMatrices{nruns}(m,maxgen): For each run
contains whether the edge e appeared in generation j.

• run structures{3} = AllSumMatrices(m,maxgen), i.e. the number of
runs that each edge e appeared in generation j.

• run structures{4} = AllContactMatrix{maxgen}(n, n): The number of
runs in which edge i, j was present in generation k.

• run structures{5} = SumAllContactMatrix(n, n), i.e. the total num-
ber of times edge (i, j) was present in all the structures learned in all
generations of all runs.

The following programs allow to extract from the models learned by different
type of EDAs the information which is stored in the run structures.

• ReadMNStructures: Extracts the information from the Markov networks
or factorization models learned during the execution of MATEDA-2.0 (i.e.
Cliques saved in Cache{3, :}).

• ReadBNStructures: Extracts the information from the Bayesian or Gaus-
sian networks learned during the execution of MATEDA-2.0 (i.e. the
models saved in Cache{3, :}).

• ReadStructures: Extracts the information from a file with the edges
corresponding to the structures learned by an arbitrary EDA.

The program ReadStructures is particularly useful when an implementation
of EDAs not contained in MATEDA-2.0 has been applied and we want to use
MATEDA-2.0 to analyze the structures. In this case, the structure must be
provided in a file that contains two columns of numerical values, where a row
(i, j) means that there is an edge between node i+1 and j+1 (note that vertices
in the file are numbered from 0 to NumberV ar − 1). A negative row (−g,−r)
indicates that the previous (positive) rows were learned in generation g of run
r. Example 13 shows a file containing different structures.

Example 13 (File of some model structures learned by EDAs).
2 0

8 0

14 3

-1 -1

13 8

0 10

3 5

9 10

-1 -2

File that contains the structures learned by a Bayesian network at different
generations and runs.

The structure learned at run 1, generation 1 contains edges (3, 1), (9, 1) and
(15, 4). The structure learned at run 2, generation 1 contains edges (14, 9),
(1, 11), (4, 6) and (10, 11).
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9.2 Methods implemented for the analysis and visualiza-
tion of the structures

The following methods have been implemented:

• ViewSummStruct: Shows one image where each edge has a color propor-
tional to the times it has been present in the structures learned in all
generations.

• ViewInGenStruct: Shows images where each edge has a color proportional
(relative to nruns) to the times it has been present in the structures
learned in those generations specified by the user. There is one figure for
each generation.

• ViewEdgDepStruct: Searches for a given substructure in the set of all the
structures learned, and shows the adjacency matrices corresponding to
the structures that contain it. The substructure is specified by giving the
edges that are present/absent in them. Different visualization options are
implemented.

• ViewPCStruct: Searches for substructures in the set of all the structures
learned and shows the parallel coordinates of the edges and the generations
at which they are learned. The minimal number of times that an edge has
to appear in (all) the structures learned and the method used to order the
variables before displaying them using parallel coordinates are parameters
of the algorithm.

• ViewDenDroStruct: Shows the dendrograms of the edges according to
their co-occurrence in the structures learned by the EDAs. Allows to de-
tect complex hierarchical relationships between the variables of the prob-
lem.

• ViewGlyphStruct: Shows the glyph representation of a subset of edges
learned at a given set of runs and generations.

9.2.1 ViewSummStruct method

The type of structure shown by the ViewSummStruct method is usually called
frequency matrix [25, 27, 106] or probabilistic coincidence matrix [42]. It serves
to detect frequent patterns of interactions in the models learned during the
search. Example 14 describes a case where the frequency matrix has been
computed from the Bayesian network structures learned in several executions
of the EBNA-Exact algorithm [25, 27].

Example 14 (Application of ViewSummStruct method).
1 NumberVar = 20;

2 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,NumberVar );

3 [results] = ViewStructures(run structures,NumberVar ,maxgen,nruns,

4 ’viewmatrix method’,’ViewSummStruct’,[150,14]);

Figure 4 shows the image representation of the frequency matrix computed
from a file containing the structures learned by EBNA-Exact in all runs, all
generations. Bright colors means higher frequencies.
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Figure 4: Frequency matrix computed from the structures learned by EBNA-
Exact.

The frequency matrix representation has two main limitations. First, it is not
possible to investigate the types of structures learned at each generation. It has
been early observed that structures of the models learned by EDAs can change
along the evolution [4]. The other limitation of this type of representation is
that it is not possible to capture interactions between different substructures of
the problem. For instance, if the frequency matrix shows that two edges have
occurred ten times in the structures learned, we cannot determine how often
they have appeared together in the same structure.

9.2.2 ViewInGenStruct method

The ViewInGenStruct method addresses the first limitation of the frequency
matrix representation by displaying frequency matrices computed from struc-
tures learned at each generation. From a sequence of images it is then possible
to distinguish the dynamics of the structures along the evolution. Example 15
shows an example of the application of the ViewInGenStruct method.

Example 15 (Application of ViewInGenStruct method).
1 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,20);

2 [results] = ViewStructures(run structures,20,maxgen,nruns, ’viewmatrix method’,

3 ’ViewInGenStruct’,[150,14];[1,5,10]);

Figure 5 shows the output of the ViewInGenStruct method invoked in Ex-
ample 15. The three frequency matrices shown are learned in generations 1,
5 and 10 respectively. It can be observed that the number of dependencies
captured in the models diminish as the generations increase.

9.2.3 ViewEdgDepStruct method

The ViewEdgDepStruct serves to detect and display particular substructures
learned in the models, allowing to identify complex patterns of interactions in the
problem and addressing the second limitation of the ViewSummStruct method.
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Figure 5: Frequency matrices showing the most frequent edges in the structures
learned by EBNA-Exact at different generations.

For instance, the user might be interested in testing a particular hypothesis
related to the mapping problem structure - model structure. By computing the
frequency of appearance of the substructures in the models these hypothesis
could be tested. Example 16 shows the application of the ViewEdgDepStruct

method.

Example 16 (Application of ViewEdgDepStruct method).
1 viewparams{1} = [100,14];

2 viewparams{2} = [3 4 1; 4 5 1; 3 5 0]; % The substructure is described

3 viewparams{3} = [1:nruns]; % Selected runs (All)

4 viewparams{4} = [1:maxgen]; % Selected generations (All)

5 viewparams{5} = ’all graphs’; % Graphs to be visualized (All)

6 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,20);

7 [results] = ViewStructures(run structures,20,maxgen,nruns, ’viewmatrix method’,

8 ’ViewEdgDepStruct’,viewparams);

Figure 6 shows the four adjacency matrices of those structures learned in
several runs of EBNA-Exact and that satisfy the condition that edges (3, 4)
and (4, 5) appear together in the structure and edge (3, 5) does not appear.
The output variable results describes at which run and generation each of the
visualized structures have been found.

9.2.4 ViewPCStruct method

The parallel coordinates, explained in Section 8.2.1, can also be used to visual-
ize the structure of the models. Method ViewPCStruct implements a parallel
coordinate visualization in which the vertical axis represents the generation at
which edges (shown in the horizontal axis) have been learned. A line between
two points means that both edges appear in the same structure learned at the
same generation.

The method allows to select the most relevant subset of edges for represen-
tation. Parameter constedg is the minimal number of times that an edge has
to appear in (all) the structures learned to be selected for visualization. Since
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Figure 6: Edge matrices of those structures learned in several runs EBNA-Exact
and such that edges (3, 4) and (4, 5) appear together in the structure and edge
(3, 5) does not appear.
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Figure 7: Parallel coordinate visualization of the most frequent edges in the
structures learned by EBNA-Exact.

the clarity of the parallel coordinate visualization depends on the number of
variables, this is an important parameter. Also the minimal number of edges
(minedg > 0) in the substructures selected is a parameter of the algorithm. Fi-
nally, the user can specify the method to order the variables before displaying
them. ViewPCStruct outputs each of the represented edges together with the
generation and run at which it has been learned.

Example 17 shows an example of the application of the ViewPCStruct method.

Example 17 (Application of ViewPCStruct method).
1 viewparams{1} = [14]; % Font size

2 viewparams{2} = []; % The edges will be found by the algorithm

3 viewparams{3} = 60; % Those edges that appear at least 60 times

4 viewparams{4} = 2; % Structures that have at least two edges

5 viewparams{5} = ’ClusterUsingDist’; % Variables are clustered using affinity prop.

6 viewparams{6} = ’correlation’; % Similarity measure used is the correlation

7 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,20);

8 [results] = ViewStructures(run structures,20,maxgen,nruns,’viewmatrix method’,

9 ’ViewPCStruct’,viewparams);

Figure 7 shows the parallel coordinate visualization of the most frequent
edges (they appear at least 20 times) in the structures learned in several runs
of EBNA-Exact and that satisfy the condition that the structures have at least
two edges.

9.2.5 ViewDenDroStruct method

Dendrograms are graphs that serves to represent hierarchical trees. A dendro-
gram consists of many U-shaped lines connecting objects in the hierarchical tree
[52]. The height of each U represents the distance between the two objects being
connected.

Similarly to the ViewPCStruct method, ViewDenDroStruct allows to select
the most relevant subset of edges for representation. Parameter constedg is the
minimal number of times that an edge has to appear in (all) the structures
learned to be selected for visualization. Also the minimal number of edges
(minedg > 0) in the substructures selected is a parameter of the algorithm.
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Figure 8: Dendrogram visualization of the most frequent edges in the structures
learned by EBNA-Exact.

The ViewDenDroStruct method computes first a hierarchical tree of the se-
lected edges based on a distance defined by the user (usually the correlation of
the edges in the structures learned). Then, the hierarchical tree is displayed
using a dendrogram. This representation can be very effective to detect hierar-
chical relationships between substructures in the models. Example 18 shows an
example of the application of the ViewDendroStruct method.

Example 18 (Application of ViewDendroStruct method).
1 viewparams{1} = [14]; % Font size

2 viewparams{2} = []; % The edges will be found by the algorithm

3 viewparams{3} = 60; % Those edges that appear at least 60 times

4 viewparams{4} = 2; % Structures that have at least two edges

5 viewparams{5} = ’correlation’; % Similarity measure used to group edges is correlation

6 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,20);

7 [results] = ViewStructures(run structures,20,maxgen,nruns, ’viewmatrix method’,

8 ’ViewDendroStruct’,viewparams);

Figure 8 shows the dendrogram of the most frequent edges (they appear at
least 20 times) in the structures learned in several runs of EBNA-Exact and
that satisfy the condition that the structures have at least two edges. These are
the same edges shown in Figure 7 using the parallel coordinate representation.

9.2.6 ViewGlyphStruct method

A Glyph is a visual representation of a piece of data where the attributes of a
graphical entity (e.g. shape, size, color, and position) are dictated by one or
more attributes of a data record. The placement or layout of glyphs on a display
can communicate significant information regarding the data values themselves
as well as relationships between data points [130]. Among the best known types
of glyph graphs are star glyphs and Chernoff glyphs [16]. Glyphs have been
extensively used as a visualization technique for many problems [64, 131]

Method ViewGlyphStruct displays the glyph representation of a subset of
edges for a user defined set of runs and generations. If none of the selected
edges is included (the structure learned at run i, generation j) a dot appears
as the glyph representation. This representation is useful to detect common
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Example 19 (Application of ViewGlyphStruct method).

Figure 9: Glyph visualization of the most frequent edges in the structures
learned by EBNA-Exact.

substructures in the models and to observe the complexity of the models learned
along the generations. Example 19 shows an example of the application of the
ViewGlyphStruct method.

1 viewparams{1} = [14];

2 viewparams{2} = results3; % List of edges. From results{3}, previous example.

3 viewparams{3} = [1:10]; % Selected runs that will be inspected

4 viewparams{4} = [1:13]; % Selected generations that will be inspected

5 [run structures,maxgen,nruns] = ReadStructures(’ProteinStructsExR.txt’,20);

6 [newresults] = ViewStructures(run structures,20,maxgen,nruns, ’viewmatrix method’,

7 ’ViewGlyphStruct’,viewparams);

Figure 9 shows the glyphs of the substructures formed by the most frequent
edges found in the previous two examples. However, in this case only the first
10 runs and 13 generations are considered to reduce the number of structures
on display.

10 Function approximation module

The goal of the function approximation module is to implement methods for
using and validating the probabilistic models learned by EDAs for approximat-
ing functions. This research trend has received an increasing attention in the
field of EDAs [13, 115, 116, 120, 122]. In this section, we discuss the question
of function approximation with models learned by EDAs, and then we present
the methods implemented in MATEDA-2.0 for this purpose.

10.1 Probabilistic models of (possibly multi-objective) fit-
ness functions

Probabilistic models of the fitness functions can be useful in different situations:
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• To create surrogated functions that help to diminish the number of eval-
uations for costly functions [68, 85, 115, 116, 120, 122].

• To obtain models of black box optimization problems for which an ana-
lytical expression of the fitness function is not available.

• To unveil and extract problem information that is hidden in the original
formulation of the function or optimization problem [13].

• To design improved (local) optimization procedures based on the model
structure [15, 94, 97, 116].

An important questions is: Given two probabilistic models of a fitness func-
tion, which of the models is better? Notice that in this case, models are not
intended to be evaluated in terms of its accuracy to represent the selected set
(i.e. maximize the likelihood of the data). Instead, we would like to use them
as sufficiently general predictors of the fitness function, or at least of the fitness
function of sufficiently good solutions. For multi-objective problems, we can
think of multi-models, each model representing a different objective.

We make a number of assumptions. First, the models have been already
constructed. Actually, they are a byproduct of the EDA search. Otherwise,
other machine learning techniques devised for function approximation could
be used. The second assumption is that it is possible to generate a sample
of solutions for which the objectives can be evaluated. We then separate the
problem of finding good predictors in two subproblems:

1. Which measures should be used to evaluate the models using the solutions
(with their respective objective evaluations)?

2. Which criteria should be taken into account to generate the solutions used
to evaluate the models?

Different criteria can be employed to compare the models:

• Correlation between the probabilities assigned by the models to the solu-
tions and their fitness values [13].

• Sum of the probabilities assigned to the solutions [99].

• Entropy of the model.

• Expected fitness value of the model, i.e.
∑

x p(x)f(x).

These criteria will be closely related to the way in which the solutions are
selected. Let us suppose the number of solutions to be generated is k. We
identify as relevant the following procedures to generate them:

• The k solutions are randomly generated [13].

• The k solutions correspond to the best known values (for a single objective)
of the function or are the selected solutions [99, 13].

• Solutions correspond to the k most probable configurations (MPC) of the
model [26].
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For random solutions, we can compare different models in terms of the cor-
relations or the expected fitness values. In [13], the analysis of the correlation
has been successfully employed to analyze the fitness modeling capabilities of
EDAs based on Markov networks. The entropy of the model can also be used.
A model that assigns the same or very similar probability to all the solutions is
of scarce interest.

If the best known solutions are used to evaluate the models, the previous
criteria can be used. However, care must be taken to detect the phenomenon of
overfitting since it may have a harmful effect in EDAs [66, 99, 101]. This can
be done by computing the total probability assigned to the best solutions [99].
If the sum of the probabilities given by the model to the k best solutions is very
high (e.g.

∑

x p(x) = 0.9) then we can assume its capacity of generalization is
limited.

The k most probable configurations can be computed using algorithms that
employ abductive inference and dynamic programming as those presented in
[47, 83, 132]. Most probable configurations have been used in different contexts
in EDAs [28, 47, 74, 124].

10.2 MATEDA-2.0 methods for fitness function approxi-
mation

The following methods are implemented in MATEDA-2.0:

• BN Pop Prob: Computes the probabilities given to a set of solutions by a
Bayesian network.

• BN Fitness Corr: Computes the correlation between the probabilities
given to the solutions by a network and the fitness values of the solu-
tions.

• Find kMPEs: Given a Bayesian network, find the k most probable config-
urations of the network.

• Find Fitness Approx: Finds the probabilistic model with the highest
correlation for each of the objectives in the given population (e.g. a Pareto
set approximation).

The implementation of several of the methods discussed in the previous
section (e.g. generation of a random population, computation of the sum of
probabilities, computation of the entropy, etc.) is straightforward in Matlab.

The Find kMPEs method is essentially the algorithm introduced by Nilsson
[83]. The algorithm computes the junction tree of the BN and apply max-
propagation and dynamic programming for finding the k MPCs. In [83], two
schedules for finding the subsequent maxima are proposed. This implementation
corresponds to the first proposed schedule. Currently, it only works for binary
variables.

Find Fitness Approx can be directly applied to select the set of models that
best approximate (in terms of the correlation values) a Pareto set approximation.
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11 Conclusions

It follows a summary of the main characteristics of the MATEDA-2.0 imple-
mentation.

• It can be used for the optimization of single and multi-objective problems.

• Highly modular implementation in which each EDA component (either
added by the user or already included in MATEDA-2.0) is implemented
as an independent program.

• Available implementations include learning and sampling methods of undi-
rected graphical models and Bayesian networks for problems with discrete
and continuous variables.

• Knowledge extraction and visualization module for extracting and display-
ing information from the probabilistic models learned and the populations
generated by the EDA.

• A variety of seeding, local optimization, repairing, selection and replace-
ment methods.

• Statistical analysis of different measures of the EDA evolution.

• Extended library of functions and testbed problems.

11.1 EDAs that can be implemented with MATEDA-2.0

By combining the different implementations of the EDA components already
included in MATEDA-2.0, variants of the following EDAs can be implemented:

• Univariate marginal distribution algorithm (UMDA) [80].

• Factorized distribution algorithm (FDA) [79].

• EDAs based on Bayesian networks, similar to those presented in [29, 77,
88].

• Markov chain estimation of distribution algorithm (Mk-EDA) [103].

• EDAs based on univariate and multivariate Gaussian distributions [10, 9,
61, 60].

• EDAs based on mixtures of continuous distributions [11].

• Markov optimization algorithm (MOA) [123].

• Affinity propagation EDA (Aff-EDA) [109].

In this paper we have presented MATEDA-2.0, a suite of programs in Matlab
for optimization using EDAs. We expect that these programs could help to find
new applications of EDAs to practical problems. The knowledge-extraction
and visualizations methods introduced should be useful in extending the uses
of probabilistic modeling in optimization, particularly for revealing unknown
information in black-box optimization problems. In the future, we also intend
to incorporate new methods for the treatment of highly complicated, mixed,
constrained, and other difficult problems [111].
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