


[model] = LearnGaussianUnivModel(k,NumbVar,Card,AuxPop,AuxFunVal,learning_params)
LearnMargProdModel: Learns a Gaussian univariate marginal product model
INPUTS
k: Current generation
NumbVar: Number of variables
Card: Vector with the dimension of all the variables.
AuxPop: Population from which the model is learned the factorization
AuxFunVal: Evaluation of the data set (required for some learning algorithms, not for this one)
OUTPUTS
model: model{1} = mean of the variables
model{2} = variances of the variables
Last version 8/26/2008. Roberto Santana (roberto.santana@ehu.es)

0001 function [model] = LearnGaussianUnivModel(k,NumbVar,Card,AuxPop,AuxFunVal,learning_params) 0002 % [model] = LearnGaussianUnivModel(k,NumbVar,Card,AuxPop,AuxFunVal,learning_params) 0003 % LearnMargProdModel: Learns a Gaussian univariate marginal product model 0004 % INPUTS 0005 % k: Current generation 0006 % NumbVar: Number of variables 0007 % Card: Vector with the dimension of all the variables. 0008 % AuxPop: Population from which the model is learned the factorization 0009 % AuxFunVal: Evaluation of the data set (required for some learning algorithms, not for this one) 0010 % OUTPUTS 0011 % model: model{1} = mean of the variables 0012 % model{2} = variances of the variables 0013 % 0014 % Last version 8/26/2008. Roberto Santana (roberto.santana@ehu.es) 0015 0016 0017 model{1} = mean(AuxPop); % Vector of means 0018 model{2} = std(AuxPop); % Vector of variances 0019 0020 return; 0021 0022 0023