Simultaneous Search of Genomic and Proteomic Biomarkers in Human Colorectal Cancer

¹ Department of Biotechnology, GAIKER Technological Centre, Parque Tecnológico, Edificio 202, 48170 Zamudio, Bizkaia, Spain.

García Amaia¹, Freije Ana¹, Armañanzas Rubén², Inza Iñaki², Ispizua Ziortza¹, Heredia Pedro¹, Larrañaga Pedro¹, López Vivanco Guillermo³, Suárez Tatiana¹, Betanzos Mónica¹ ²Department of Dolectinology, GAICEN rectinological centre, rayler rayler rectinological centre, rayler rayler rectinological centre, rayler raylerayler rayler rayler rayler rayler rayler rayler rayl

ABSTRACT

ABSTRACT A simultaneous study for searching genomic and proteomic biomarkers is being carried out in human colorectal samples. A total of 133 samples, 60 colorectal tumor samples, 60 paired non tumoral samples corresponding to different stages of the disease, and 13 control non cancerous samples were collected and analyzed by genomic and proteomic genomic approaches

<u>.</u>

Fig. 1. Progression of colorectal cance

1. INTRODUCTION

Colorectal cancer (CRC) is the second cause of cancer death in western countries. The success of the therapy depends on an early diagnostic, the knowledge of the biological behaviour in each tumor, and its susceptibility to each tumor, and its susceptibility to drugs. DNA microarray technology allows the measure of the mRNA expression level of thousands of genes simultaneously. Proteomic approach based on 2D-SDS PAGE strategy permit to identify changes in protein expression induced by cancer involved processes, and to identify protein biomarkers.

2. MATERIALS AND METHODS

Tissues and patients. A total of 133 tissue samples (120 from patients with CRC rent stages, and 13 samples from patients with no colorectal cancer) were d from Cruces Hospital (BIOEF). The 120 samples consisted in 60 turnou in different st bles and 60 paired non tumoral samples

2.1 GENOMICS

Tissue samples were preserved in RNA later Stabilization Solution (Qiagen) and stored at -80°C

RNA extraction. Total RNA was extracted from all the samples using the RNAeasy Mini Kit (Clagen). RNA quality and quantity was determined with the Agilent 2100 Bioanalyzer (Agilent Technologies). We used the RNI algorithm (RNA Integrity Number, Agilent Technologies) as a quality standard to select the samples. We synthesized and labelled the cRNA using the Agilent Low RNA Input Fluorescent Linear Amplification Kit (Agilent Technologies) cRNA hybridization. The selected samples were hybridized onto the Agilent Human 1A 60-mer oligo microarrays (Agilent Technologies) and the microarrays were scanned using the GeneFix 4000B Scan (Axon Instruments). Images were analyzed with Genepix 6.0 (Axon Instruments) and data were filtered and normalized with Acuity 4.1 (Axon Instruments). and data were filtered and normalized with Acuity 4.1 (Axon Instruments). Second and the weollected RNA from paired non-tumoral samples to form the NT Pool. The tumoral samples were labelled using Cy-5 dye (red) and the "pool" was labelled with Cy-3 dye (green)[1]. RNA extraction. Total RNA was extracted from all the samples using the RNAeasy

Spot quality metrics. Reliability in the microarray probes are tackled by applying three different widely used quality metrics[2]: fluorescent intensity measurement quality, background flatness quality and signal intensity consistency quality. In basis

quality, background namess quality and signal intensity consistency quality. In basis of these three metrics a global quality metric with values between 0 and 1 is computed for each spot in each microarray. Imputation of lost values. Collateral undesirable problems, such as small fibres inside the array, or an incomplete hybridization, can cause a spot value to be lost. In order to complete all these lost values we used the KNVImpute[3] procedure which has been proven as one of the best imputation techniques in the microarray domain.

has been proven as one of the best imputation techniques in the microarray domain. Intraclass ratio differences. It is not expectable to find big differences between the expression ratios of a gene in between the same type of tissue. But, due to the heterogeneity of the cells included in the biopsies, genes with expression differences bigger than 2-fold in the same kind of tissue are discarded. Global machine learning approach. On the basis of the CRC state of each patient, we propose a supervised classification problem, or class prediction problem. The classification dataset is then composed of 64 instances from four different classes with cardinalities: 33 non-tumour, 13 Dukes B, 10 Dukes C and 8 Dukes D. Dukes D

Discretisation policy. To apply the following statistical techniques the continuous expression values have to be discretise. Attending to the expected biological behaviour - under, baseline or over expressed-, the values are discretised using an *Equal Width* policy with three intervals.

Univariate statistical metrics. Using the supervised approach we can univariately Univariate statistical metrics. Using the supervised approach we can univariately measure the relevance of each gene (from now on called variable) in the problem. Six different statistical metrics[4] were computed: Mutual information, Euclidean distance, two versions of the Kullback-Leibler divergence, Matusita and Battacharyya metrics. Sorting the variables by means of their coefficients, we can construct six different importance rankings. Consensus univariate relevance. Individually, the univariate relevance metrics

may be biased owing to the low number of instances. In these scenarios and to eve a more dependable result it is better to put all the metrics together into a achi achieve a more dependable result it is better to put an the methods together more consensus. The consensus among the six original rankings is made up using th average position of each variable over all the rankings. The final consensus rankin shows the statistical univariate relevance of each probe in the supervised problem.

133 Protein Extractions	
60 Tumor 60 Non-tumor 13 Control)
60 Fraction 1 60 Fraction 1 13 Fraction1	
60 Fraction 2 60 Fraction 2 13 Fraction 2	
60 Fraction 3 60 Fraction 3 13 Fraction 3	

Fig.6. Schematic scheme of the samples processed.133 Sequential Protein Extractions were made.60 paired samples tumor-nontumor and 13 control samples were processed obtaining 390 protein fractions

Protein Extraction and Quantification. Sequential protein extraction was made by using ReadyPrep sequential extraction kit Ready-Frep sequential extraction kit (Bio-Rad) based on the differential solubility of the proteins [5] Three fractions were obtained, and the soluble fraction (Fraction 1) was cleaned up with the Ready Prep 2-D Cleanup (Bio-Rad). Protein concentration was determined using the RC-DC protein assay (Bio-Rad), and EZQ Protein Quantitation Kit (Molecular Probes)

2.2 PROTEOMICS

IEF assays. IEF assays were made using Bio-Rad pH 4-7 immobilized pH gradient (IPG) strips to separate proteins according to their isoelectric points. The IPG strips were loaded with 40 µg of protein sample, subjected to active rehydration, and focused using PROTEAN IEF Cell (Bio-Rad) for a total of 35kVh. 2D-SDS assays. IPG strips were loaded and on Criterion gels 2D Precast (Bio-Rad) 8-16% acrilamide. Electrophoresis was carried out for 90 minutes on a b) or to a childrandice. Electrophotesis was canned out no so infinites on a childrandice of the gels were stained with SYPRO Ruby dye (Bio d). The gel images were captured with VersaDoc (Bio-Rad) and analyzed using PDQuest Software. Protein identification was made by MALDI-TOF analysis. sing

3. RESULTS

3.1 GENOMICS

After the quality analysis of all the RNA samples and based on the After the quality analysis of an the Kivk Samples and vased on the electropherograms and the RIN number values obtained we decided to discard all those samples with a RIN below 6. Consequently, we selected a total of 32 tumoral and 33 non-tumoral samples for the microarray gene expression

After scanning the 65 microarrays we removed the "control spots" and normalized the data obtained by Lowess Normalization [6]

Fig 5. A) Electropherogram of the RNA 6000 Ladder (Ambion). B) Two samples of tumor (left and paired non tumoral sample (right). C) Microarray image representing the hybridization of each sample above with the pool. D) Data obtained form one microarray showing the "contro sork". E) Unromalized data after removing the "control sock". F) Data normalized by Lowess.

Once the control spots were removed from the data, the total number of probes descended from 22,574 to 17,986 probes. On the quality metrics filter process the acceptance threshold was set up in an average of 0.99 quality value; a total of 11,120 probes surpassed this stage. The imputation algorithm was run with a K value of 15 neighbors. From the 722,800 number of total spots, there were only 1,04% of lost values (7,534 probes) to imputate. The last filtering step removes 3,016 probes that showed differences bigger than 2-0/d in between each of the four classes of tissues. A total of 8,104 probes composed the final dataset.

e data analysis, for each stage the number of probes that surpass boxes. B) Intraclass disperssion measure for the 11,120 filtered Fig 6. A) Overa

Rank	Gene	Description
1	ENC1	Ecodermal neural cortex 1- Altered expression may contribute to brain tumour development and CRC. Marker of neuronal maturation.
2	ACAT1	Ac-Coa acetyltransferase 1.Mutations in the corresponding gene are associated with 3- ketothiolase deficiency.
3	FLJ20539	Protein of unknown function, has low similarity to uncharacterized human KIAA1906.
4	SNRPB2	Small nuclear ribonucleoptrotein polypeptide B. Functions as an autoimmune antigen in systemic lupus erythematosus (SLE) and other rheumatic diseases patients
5	TERA	Protein of unknown function, has high similarity to uncharacterized mouse Tera.
6	TCF3	Transcription factor 3. HLH transcription factor regulates immunoglobulin gene expression; chromosomal rearrangements leading to the expression of a E2A - PBX1 chimeric protein are associated with acute leukemias.
7	I_948907	Member of the DEAD or DEAH box ATP-dependent RNA helicase family. Moderate similarity to ATP-dependent RNA helicase (<i>S. cerevisiae</i> SPB4), which is required for processing of 255 ribosomal RNA precursor.
8	MCT-1	Multiple copies in T-cell malignancy. Putative oncogene is involved in cell cycle regulation and participates in positive control of cellular proliferation through the regulation of CDK activity, amplified and overexpressed in T-cell imphomas.
9	ACO2	Aconitase 2 mitochondrial (aconitate hydratase), catalyzes the conversion of citrate to cis-aconitate in the tricarboxylic acid cycle, may be involved in iron homeostasis; deficiency may be associated with lifelong exercise intolerance.
10	PMAIP1	Phorbol-12-myristate-13-acetate(PMA)-induced protein 1, a likely immediate early response gene; highly expressed in adult T-cell leukemia cells.

Table 2. First ten genes in the consensus relevance ranking.

Protein quantification was estimated before and after clean up step. Rehydration sample buffer was found to interfere with both Bradford, and RC-DC (BioRad) methods. Therefore, we assayed a novel method based on fluorescence (EZQ Protein Quantitation Kit, Molecular Probes), and we found that this method does not interfere with any sample buffer used in our nts (Figure 7).

3.2 PROTEOMICS

b÷o

Proteomic analysis of Fraction 1 is being performed by 2 dimensional gels. In figure 8 a proteome analysis example of a colorectal cancer patient (stage C1) is showed. The assays were made by triplicate, and a matchset containing all the spots from each gel was generated and analyzed using PDQuest software. In this case, a total of 283 spots were found, with variability among gels of 19.08% (229 matched spots, and 54 unmatched spots). 6 spots were selected, picked and identified by MALDI TOF.

Fig.8.Proteome analysis of patient 12. A. Matchset generated from 3 gels from the same patient. B. Filtered image of one of the three gels obtained from patient 12, stained with SYPRO Ruby. Spots indicated in red circle were submitted for identification by MALD-TOF. The identifications as follow: Spot 2: Haptoglobin; Spot Peroxiredoxin-2. The identification of the remaining spots was not

A proteomic analysis of 3 patients of different colorectal cancer stages (B3; C1; and D) (see Table 1) is showed in figure 9. An High level matchest was created from the individual matchests obtained from each patient gels as described above. The spot count gave a total of 298 spots in the high level matchset. Difference among cancer stages was 33.89%, indicating differences in proteome related to the progression of the disease.

a intermediate stage (C1) as a reference, we determined the unmatched ratio in other cancer stages (D, and B3). Stage D showed a 34% ence of unmatched spots, while stage B3 showed a 21.33% of unmatched Using an inte differe

Fig.9.identification of proteins in matcheets obtained from three 2D gels from three different tumoral samples (M7.M9 and M12). Colours indicate protein patterns common to all (bule), M7.M9 (green), M7.M12 (orange) and M9.M12 (red) samples. Numbers refer to the SSP (Standard Spot Number) assigned automatically in the master matchest. A. High Level Matchset obtained from merging all the proteins observed in matchests from M7, M9 and M12 tumoral samples in different cancer stages. B.Matchset of tumoral sample in carcer stage 61 (f50 spots), C. Cancer stage C (214 spots), D. cancer stage D (202 spots). E. Diagram of spot quantities.

CONCLUSIONS

We have already obtained a tentative model (first ten genes are showed in table 2) for the classification of cancerous and non-cancerous samples based on their gene expression profile. We are now in the validation process of this model, and it is of the outmost importance for us to check its potentiality for diagnosis/prognosis.

From the machine learning point of view we envision the building of different classification models. Furthermore, the search for statistical reliable dependencies could bring us some light regarding the complex nature of human CRC. An interesting approach would be as well to try to look for the inherent relationships between the genomics and the proteomics analysis.

Our preliminary results from proteomic studies suggest that differences in protein expression could be related to differential stages of disease. From the identified proteins, **Haptoglobin** was found to be present in both patient M7 (stage B) and M12 (stage C), but was absent in patient M9 (stage D), while **Peroxiredoxin-2** was present in all samples of the 3 stages.

 Bibliografia

 [1] van't Verr L. J et al. Nature, 2002, 415:530-535

 [2] Chen Y. et al. Bioinformatics, 2002, 18(9), 1207-1215

 [3] Troyanskaya O. et al. Bioinformatics, 2002, 18(9), 1207-1215

 [4] Molioy M.P. et al. Electrophoresis 1989, 19(5), 837-44.

 [5] Queckenbush J. Nature Genetics, 2002, 32:496-501

 [6] Ben-Bassat M. Handbook Of Statistics, 1982, 2773-791

 [7] Presalier RS et al. Gastroenterology.2004, 127(3):701-8

 [8] Zhang P. J. Biol Chem. 1997, 272(49): 30615-30618

