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1 Introduction
• Microarray experiments involve noise arising due to measure, physical

and stochastic processes. In addition to these problems, several analysis
methods add biases due to their inherent procedures.
• From a machine learning point of view, the expression level of a gene

is represented as a random variable of a probabilistic process.
• In order to overcome these problems, we present a consensus approach

to microarray gene selection. This consensus procedure combines the
best techniques from each field: a set of discretization policies, a filter-
like selection procedure and statistical coexpression measures.

2 Approach
The search for a robust solution makes us not to rely on a single dis-

cretization method. From the original continuous-value data, differen-
tially discretized data sets are computed, trying to diminish the possible
added bias.

First step: identifying the prototype genes.

Let O be the original microarray data set with continuous features
and S1, . . . , SN the results of N different discretizations of the O set.
Using a filter subset selection method, N different feature selections
are performed in basis of the S1, . . . , SN discrete datasets, producing
the following subsets of genes: G1, . . . , GN . The final consensus gene
subset Γ is the intersection of all of them, that is Γ =

⋂N
i=1Gi, with

| Γ |= m 6 mini=1,...,N |Gi |.

Second step: identifying the genes mostly correlated with the gene
prototypes found.

In the second stage, for each prototype gene a linked list of genes is
constructed. For each prototype, its q more univariately correlated genes
are also selected. This is performed for all the N different discretized
datasets, obtaining the linked list. The aim of this second stage is to find
genes with similar profile behaviours, that is, genes coexpressed within
the prototype ones.

3 Discussion
The first stage of the presented proposal is tested using the Weka frame-

work [Frank et al., 2004] and three well known microarray benchmark
datasets: Colon [Alon et al., 1999], Leukemia [Golub et al., 1999] and
Lymphoma [Alizadeh et al., 2000]. The parameters used for the first step
selection, and the posterior classification validation were:
• Discretizations: equal frequency, equal width –both with three interval

bins–, and entropy [Fayyad & Irani, 1993].
•Feature selection: correlation-based feature selection (CFS)

[Hall & Smith, 1997].
• Classification paradigms: logistic regression, k-NN, naı̈ve Bayes with

Gaussian assumption and random forest.
• Accuracy estimation: leaving-one-out cross validation (LOOCV).

subset genes log. reg. k-NN n. Bayes r. forest
Colon 1, 989

Γ =
⋂

3Gi 03 83.87 80.64 87.10 85.48

GEq.Freq. 22 72.58 83.87 93.55 85.48

GEq.Width 24 74.19 80.65 91.94 85.48

GEntropy 40 74.19 82.26 93.55 91.94
Leukemia 1, 161

Γ =
⋂

3Gi 04 86.11 83.33 87.50 87.50
GEq.Freq. 28 77.78 90.28 90.28 84.72

GEq.Width 19 76.39 88.89 93.05 79.17

GEntropy 48 80.55 95.83 91.67 84.72

Lymphoma 4, 026

Γ =
⋂

3Gi 16 87.50 89.60 87.50 86.46

GEq.Freq. 198 97.92 94.80 85.42 89.58
GEq.Width 125 94.79 94.80 85.42 87.50

GEntropy 165 77.08 94.80 81.25 88.54

4 Conclusion
• The combination of different discretization policies coupled with a

feature selection adds robustness to the final consensed gene sets.
• The size of the final selected gene set is highly reduced: a reduc-

tion that, analyzed by means of non-parametrical tests, does not sig-
nificantly diminish the estimated classification accuracies.
• Complete gene lists and related references are available at

http://www.sc.ehu.es/ccwbayes/members/ruben/cgs/eccb05/.
• As LOOCV is known to produce positive estimations, we envi-

sion the use of estimation techniques fitted to the microarray context
[Statnikov et al., 2005].
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