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Abstract. We propose a class of one-step integrators for ODEs that provide an 
estimation of the global error along with the numerical solution. The schemes 
that we propose can be considered as a generalization of the globally embed­
ded RK methods of Dormand, Gilmore and Prince [2]. We present preliminary 
numerical experiments testing a particular 5th order scheme that we have con­
structed based on an optimized standard RK method. The numerical results 
seem to indicate that our method gives useful information on the behaviour of 
the global error while being practically as efficient as the underlying standard 
RK scheme.

1. Introduction

Very efficient general purpose software is available for the numerical integration 
of non-stiff ODEs. They more or less succeed in keeping the local error below a 
prescribed tolerance. However, they do not give any information about the actual 
global error, unless additional computational effort is done, typically performing a 
second integration. We believe that some useful information about the actual global 
error must be provided to the user of general purpose software, since the global error 
may be much larger than the local error depending on the properties of the system 
to be integrated, the length of the integration interval, and the properties of the 
integrator itself.

Our goal is to obtain schemes that give useful information about the propagation 
of the global error while being as efficient as existing methods that do not provide 
any sort of global error estimation. Interesting work in this direction has been done 
by J.R. Dormand, J.P. Gilmore, P.J. Prince [2].

In this paper, we will focus on non-stiff integrators intended to be implemented 
in sequential computers. We consider ODE systems in autonomous form

f  =  /( !/) , i / e f l D, f - .R D ^ R D. (1)

Recall that the /i-flow of the system is a parametric transformation of phase 
space (j)h : R °  —► RD such that (f>h(y{t)) =  y(t +  h) for any solution y(t).

We wish to integrate initial value problems over an interval [0, T]

y(to) =  yo, y(t) =  ?, t e  [t0, T\.

When numerically solving an ODE system by means of a one-step method, we 
effectively are replacing the flow (f>h of the system by a transformation of phase 
space 'iph ■ RD ~> RD that approximates the flow 4>h- Then, for a given time
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discretization to <  t\ < . . .  <  tw — T  with hn =  tn — £n_i, one computes the 
numerical solution

yn =  ^hn{yn-1), n =  l , . . . , N ,  (2)

as approximations of the exact solution values

y(tn) =  (f>hn{y(tn- 1)), n =  1, . . .  ,N.

The simplest one-step method is the explicit Euler method, where ifth is defined 
by ijjhiy) — y +  hf(y). For the family of explicit Runge-Kutta (RK) methods, tph 
is defined as follows.

S

iphiy) =  y +  h^T^bifiYi),
2 = 1

where for i =  1, . . .  , s
i—1

Yi =  y +  hJ 2 aijf(Yj)-
3=1

Recall that the local error is defined as 5{y, h) =  ifrhiy) ~  (fthiy), and the method
is of order p if S(y, h) =  0(hp+1). In that case we have that the global errors 

en exhibit convergence of order p [1, 3], that is,

en =  yn ~  y{tn) — 0 (H P), nH <  Constant, H =  maxhn.
n

2. One—Step Global Error Estimation of One-Step Methods

The global errors en =  yn — y(tn) of the one-step method (2) satisfy the recur­
rence

=  E hn (jjn— 15 6n_ i  ),

where the mapping Eh '■ R2D —► RD is defined by Eh{y,e) =  iph{y) ~  <f>h{y ~  e). 
Obviously, if the exact flow is not available, that mapping Eh will not be available 
either.

Among the different global error estimation techniques proposed in the literature 
(see [5] for a general survey of different approaches for global error estimation), the 
procedures that retain the one-step nature of the method itself can be described as 
a recurrence defined by a mapping Eh that somehow approximates the true global 
error mapping Eh- Thus, the estimates en are obtained as

6n — Ehn 1, l)} 71 =  1, . . . , N , (3)

If these estimates en of the global errors are good in some sense, one can ex­
trapolate to obtain a second (hopefully) better approximation yn a&yn — en. Thus, 
the process of obtaining the numerical solutions yn together with the global error 
estimates en can be alternatively interpreted as obtaining two approximations yn 
and yn, and then computing the estimated global error as their difference. More 
specifically, define ^ h{y,y) =  ^h(y) -  Eh{y, y - y ) ,  and compute

yn ='lphn(yn-l), Vn =  'PhSyn-l, j/n -i), en = y n - y n. (4)
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Of course, any process of the form (4) can be interpreted as the application (2) of 
an one-step method together with a global error estimation of the form (3), where 
Eh{y , e) =  ijjh(y) -  ^ h{y, y -  e).

Example 2.1. Let us consider Richardson extrapolation based on a given method 
xph- It consists on computing two numerical approximations yn, yn (n =  1,. . .  , N) 
with yo =  yo as follows

Vn =  'tfthn/ 2 (^Phn/2 { y n —l ) Sj  5 2/n =  Iphn {Vn— l )  5 en =  7^ J" {Vn ~  yn )

and the extrapolated solution will be obtained as yn =  yn — en. This can be 
interpreted as a process of the form (4) where

^h(y) =  $h/2 (^h/2(y)) 5

^Phiy^y) =  ( 2P̂ h(y) -  $h{y)) , with y =  y - 2 p( y - y ) .

We now address the following question: What is meant by en being a good 
global error estimate? Typically, en is required to be an asymptotically correct 
global error estimate, in the sense that,

en =  (I +  0 (H ))en, for nH <  Constant, H  =  max hn,n
which is obviously equivalent to the extrapolated approximation yn being of order 
p +  1, that is

Vn ~  y{tn) — 0 {H P+1), nH <  Constant.
More generally, one could require that en has (for some r >  1) r asymptotically 

correct terms, i.e.,

en =  ( l  +  0 (H r))en,

or equivalently, yn — y(tn) — 0 (H P), with p — p +  r.
Richardson extrapolation (Example 2.1), provides in general an asymptotically 

correct global error estimate with r =  1, but if the method is symmetric [3], then 
it gives two asymptotically correct terms of the global error (i.e., r =  2).

An interesting class of schemes that also fits into the format (4) are the so-called 
globally embedded RK methods due to Dormand, Gilmore, and Prince, where the 
mappings and iph are defined as follows,

S

^ h(y) =  y +  h^2bif(Yi), (5)
i= 1

where
i—1

Yi = y +  h^UijfiYj), i — 1,... , s, (6)
j=  1

and

(7)
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where
i— 1

Yi =  y +  h ^ a i j f iY j) ,  * =  s +  l , . . . , s ,  (8)
j = i

The procedure they apply to construct schemes of that kind with different orders 
p and p =  p +  r can be described as follows: They construct an s-stage RK scheme 
of order p with an appropriate continuous extension, and then apply a global error 
estimation technique known as ’solving for the correction’ [5] using RK schemes 
specially designed for that purpose.

An alternative way of deriving such schemes with prescribed values of p and p is 
to study directly which conditions must be satisfied by the mappings iph, and iph so 
that they provide two approximations of y(tn) of order respectively p and p, and 
then translate those conditions in terms of the parameters bi, bi, and a^.

3. A  General Class o f  Schemes

Let us now consider the following generalization of processes of the form (4): 
Take y0 =  yo =  y(to), and compute for n =  1 ,2 , . . . ,

yn =  'iphn{yn -i,yri-i), Vn =  '*/Vl (2/n-i,yn-i)> en = y n - y n. (9)

where, for the moment, iph and l are arbitrary mappings R2D —> RD. The 
values yn,y n are intended to approximate the solution y(tn) of (1) with initial 
value y(to) =  yo, and en will be an estimate of the global error en =  yn — y(tn) of 
the approximation yn.

We would like to find which conditions must those mappings satisfy so that the 
process (9) provides an approximation yn to y(tn) of order p together with valid 
estimates en =  yn — yn of the global errors en. Is it sufficient that yn and yn be 
approximations of order respectively p and p =  p +  r?

Example 3.1. Let ifrh be a method of order p +  r, and C(y, h) uniformly bounded 
for all y and h. If we apply (9) with the mappings tph^h defined by the equations

iph{y,y) =  $h{y) +  C(y,h)hp, t/>h(y ,y ) =  $ h(y), 

then, we have that

e„ =  yn - y ( t n) =  0(HV+r) 
e„ =  yn -y (tn ) =  0 (H »+r) +  C (y,hn)h?l

=  2/n — y n =  ^ ( 2/5

We see that en formally is an asymptotically correct estimate of the global error en. 
But who would accept that as a general purpose global error estimation technique?

In order to avoid the kind of poor global error estimation shown in Example 3.1, 
we must impose additional conditions to the mappings tjjh and ^ h.

Let us define the underlying one-step integrators of the process (9) i/Jh(y) 
*l>h{y,y), Tph(y) :=  We require that for some q,q >  0,

^h(y,y +  e) =  iph(y,y) +  0 (hq+1\\e\\ +  h\\e\\2), (10)
iPh(y +  eiy) =  ^h{y,y) +  o{h q+1\\e\\ +  h\\e\\2). (11)
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The higher q and q, the more similar is the application of (9) to the indepen­
dent application of the two underlying one-step methods yn+ 1 =  fph{Vn) and 
Vn+i =  tPhiVn)' Motivated by that, we will refer to (10)—(11) as the independency 
conditions.

In order that the global error estimation in (9) be useful, we want that en and 
en propagate in a similar way when h is sufficiently small.

Let us denote the local error of the underlying one-step integrators by

5(y, h) =  iph(y, y) -  <f>h(y)> S(y, h) =  y) -  <t>h{y)-

Lemma 3.2. If the underlying one-step methods iph{y) and iph{y) are resp. of 
order p and p +  r, and the independency conditions (10)—(11) hold with q,q >  0, 
then

C-n =  R-n,n—l^ n — 1 "I" 5n “f”

Cn — Rn,n — 1 Cn— 1 “t- 5n -f- 7Tn, (12)
Gn —  R n , n —l € n  — l  “t-  (<^n ^ n )  “I-  (j^n  ^ n ) i  

where en =  yn -  y(tn), en = y n -  y{tn), en =  yn -  yn, and

5n 5{yn—i, hn), 5n — 5{yn_-^,hn),

7fn =  0 ( ^ +1||en_i||+/in(||en_i||2 +  ||en_i||2)),
7Tn =  0 ( ^ + 1 ||en _ i | | + / i n (||en _ i| | 2 +  ||en _ i| | 2 ) ) ,

Rnk =

In addition,
n n

6n =  ^   ̂Rnk (5 k “I-  ^k)t  ^   ̂Rnk (5k “I" 7Tfe)j
fe=l A:=l

n

&n =  ^   ̂Rnk(5k 5k +  7Tfc TTfe)' (13)
fc=l

Remark 3.3. We imply from (12) that, in order that en, en, and en follow similar 
propagation patterns, 7rn and Wn should be sufficiently small. In that sense, the 
higher q and q, the better. However, it is not obvious in which extent it is important 
in practice to have higher or lower values of q and q.

Remark 3.4. Of course, (13) does not guarantee that the global errors en, en and 
the estimated global error en propagate in a similar way, even if 7rn and 7fn are 
negligible. The whole procedure would fail, for instance, in the following situa­
tion: Let us consider a two-dimensional system, where the Jacobians Rnk have 
two eigenvalues A*. and A2 with eigenvectors v\ and v% such that |A fcl »  lAjfel- Let
5k =  5lvl +  5%vl and 5k — $kvk +  ^kvk (f°r eac^ ^)- ^  =  then en can be 
much smaller than en and en. However, we may hope that, in general, the different 
way in which each Rnk affects to en, en, and en (depending on the directions of 5k, 
5k, and 5k — 5k) will tend to compensate for the different k — 1, . . .  , n.
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P roof. We will first prove the first equality in (12). The second equality in (12) 
can be proven in a completelly analogous way, while the third one is obtained by 
substracting term by term the first two equalites in (12). We have that

en =  (fphn(yn-uyn- l ) - ^ h n{yn -l,yn -l))
“I- (V’/in {Vn—li Vn—l) ~  fihn {yn— l))
“1“ hn {Vn-1) ~  0/i„ (y{tn-1))) •

Prom definition of 6n and taking into account the independency condition (10), we 
arrive at

en =  0 (hq+1 ||en_i|| +  /i||en_i||2) +  5n +  ^ (y(^n-i))en- i  +  ^(^llen-i||2)^ ,

which gives the first equality in (12). The equalities (13) follow from (12) by noting 
that Rjik — Rn,n—lRn—\,k- ^

Adapting the standard techniques of studying the convergence of one-step meth­
ods for ODEs [3], the following result is obtained.

Theorem 3.5. Under the hypothesis of Lemma 3.2, if q >  r, then the numerical 
approximations provided by the scheme (9) satisfy

en =  Vn ~ y(tn) =  0 (H P), en =  yn -  y(tn) =  0 (H p+r),

for nH <  Constant (H — maxn hn).

4. Generalized Globally Embedded RK Schemes

As we have already observed, the globally embedded RK methods (5)-(8) are of 
the form (4). We now propose the following generalization, which fits in the more 
general format (9), where the mappings '■ R2°  ~ * RD are defined by

S
M V ,V ) =  V +  hJ^bifiYi), (14)

1 = 1  

s
M y ,y )  =  v +  hYJ>if(Yi), ( is)

i= 1
where for i =  1, .. .  , s,

i—1

Yi =  HiV +  0 --l*i)V  +  h'*rtaijf(Yj ). (16)
j = 1

Remark 4.1. Schemes that fits into the format (4) can be obtained by requiring 
in (14)—(16) that, for some s <  s,

Hi — 1, i — 1,. . .  , s, b{ — 0, i s 1, . . .  , s.

If in addition the following conditions are required,
bi — 0, i — l , . . . , s ,  Hi — 0, i s +  1, . . .  , s,

then the family of globally embedded RK schemes (5)-(8) is obtained.

Remark 4.2. The underlying one-step methods of (14)-(16) are obviously stan­
dard RK methods.
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k tree q — k q — k

1 ^ 6*(1 -  Hi) =  0
i

^  , biHi 0
i

2

2

^   ̂bi Ci (1  Hi ) =  0 
i

)  " bia i j (  1  — f^j) — 0
i j

^ l i d H i  =  0
i

^   ̂biClijHj — 0 
i

3 5 > c t2 ( i - M i )  =  0 ^ 2  biC2iH i =  0

3 ^  '  biCidiji^ 1  Hj0 — 0 ^   ̂biCidijHj — 0
i,j

3 y   ̂bidijCji^ 1  Hi) =  0 y   ̂bi dij Cj Hi — 0

i,j

3 y  ^ b id ijC j( 1 — H j) =  0 ^   ̂bi dij Cj Hj — 0

i,3

3 ^  bid ijd jk i  1  Pk) ~  0 ^   ̂bidijdjkH k — 0
i,j,k i,j,k

In order to apply Lemma 3.2  and Theorem 3.5 , we need to know the order of 
the underlying RK methods, and in addition, to obtain the values of q and q for 
which the independency conditions (10)—(11) hold. It is well known [1, 3] how to 
obtain systematically the conditions on the coefficients of a RK method to achieve a 
prescribed order. But how do the independency conditions translate in terms of the 
coefficients b{,bi, dij, Hi of (14)-(16)? It turns out that the resulting equalities in 
terms of the parameters of the method are similar to those that arise when writing 
down the order conditions for standard RK methods, only that the parameters Hi 
come now into play. There is also a nice correspondence with certain kinds of rooted 
trees. We omit the general formulation of these conditions for lack of space. The 
conditions for q and q being > 3 are displayed in Table 1. Hereafter, we use the 
notation Ci =  ^  .

Rem ark 4.3. One might also be interested in reducing the contribution of the 
0(/i||e||2) terms in (10)-(10). Additional independency conditions (corresponding 
to rooted trees with more than one white vertex) should be considered in that case. 
For instance, if =  0, then the 0(/i||e||2) term in (11) could be replaced by
0 (/.2||e||2 +  ft||e||3).

5. Practical Considerations

Let us assume that Theorem 3.5 holds with r >  1 for the scheme (14)-(16). 
Then, it makes sense to give, instead of yn, the higher order approximation yn as 
the numerical solution. In that case, en is no longer an asymptotically correct global
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error estimate, but an uncertainty estimate [5]. We then expect that, en =  — yn 
is bigger than en — yn — y(tn) for sequences of sufficiently small hn, and the exact 
error en and the estimated en (hopefully) propagate in a similar way. In that sense, 
there is no point in taking p =  p +  r much higher than p, since in that case en will 
be an excessively conservative estimate of en for sequences of sufficiently small hn.

If we compare the application of the scheme (9) defined by (14)-(16) with the ap­
plication yn — t\)hn (yn-i ,y n -i)  of the underlying pth order RK scheme, we observe 
on one hand that, they need practically the same computational effort per step. 
And on the other hand, the higher q, the more similar is yn to yn (for small hn and 
en). Therefore, we may expect that, for reasonable values of q in the independency 
condition (11), yn and yn have approximately the same accuracy. In particular, it 
can be proven that under the hypothesis of Theorem 3.5,

yn -  y(tn) =  (I +  0 (H q~r)) (yn -  y(tn)), for nH <  Constant, H =  maxhn. (17)
n

These considerations induce us to expect that computing yn together with the 
uncertainty estimate en of the global error is practically as efficient as computing 
the RK solution yn alone.

6. Construction of a Method of Order 5(4)

In order to see whether generalized globally embedded schemes (14)-(16) can 
really be as efficient as standard RK methods, we have constructed a method of 
order 5 (more specifically, s =  8, p =  5, p =  4, q =  2, q =  1) based on a very 
efficient RK scheme, namely, the 5th order ERK method of Bogacki and Shampine 
implemented in the code RKSUITE. We will refer to that RK scheme as BSRK5.

We have determined the coefficients (1 < i <  7), and â - (1 < i ,j  <  7) so 
that the underlying RK method of order 5 is the scheme BSRK5. Similarly to what 
is standard in the construction of (locally) embedded RK schemes, we take yn_i 
and respectively yn as the first and respectively last stages of the scheme (14)—(16). 
This is achieved taking a&i =  hi (1 < i <  7), n\ =  0 and fig — 0. Thus, although 
the resulting method is formally a 8th stage order, it only requires 7 evaluations 
per step.

The remaining parameters, that is, bi (1 < i <  8) and Hi (2 <  i <  7) are 
chosen in such a way that the underlying RK method iph(y) =  ^Phiy ŷ) is of order 
4 and the independency conditions (10)—(11) are satisfied for q — 1 and q =  2. 
Due to the properties of the coefficients of the method BSRK5 (i.e., the simplifying 
assumptions made when constructing the scheme), these conditions read as follows: 
For yn being of order 4,

^2=0 ,  =  1, Y biCi =  \' Y bic2i= \'  X ^ a*2 =  0’
i i i i i

and the independency conditions for q =  1, q =  2,

^  ̂biHi — 0, ^  ̂biCifii — 0, ^  ̂6j( 1 — 0.
i i i

That leaves five free parameters, which we have chosen as follows:
800 1469 -520 -2379 L _  -26

_  261’ _  ~500"’ ~  101 ’ ~  401 ’ 8 ~  225'
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h = 0.8975979 h = 0.8975979

F i g u r e  1. The ‘expsin’ example for h — 2-k/I

If we compare our method to the standard RK solution yn =  i}jhn(yn-i ,y n -i)  
(i.e. the solution given by the method BSRK5), we have, according to (17), that

Vn ~ y{tn) =  (I +  0{H )) (yn -  y(tn)), nH <  Constant, H — max hn.

7. Numerical Experim ents

We next present some preliminary numerical experiments in constant step-size 
mode (that is hn =  h for every n). We have considered two initial valued problems:

1. We have taken the first example from [4]. The system is of dimension D — 1, 
and the initial value problem is defined as

y' =  cos(t)y, y(0) =  1, [0,94.6].

Its solution is y(t) =  esm^\ a periodic function with period 2-k. We refer to 
that example as ‘expsin’ .

2. The second example, referred as ‘Arenstorf’ , is a 4th dimensional initial value 
problem taken from [3, pp. 129-130]. It corresponds to a periodic solution of 
the restricted 3-body problem.

The aim of these experiments is to check in which extent our method of order 
5(4), gives use-full global error estimates, and is as accurate as its underlying 
standard Runge-Kutta method of order 5 (i.e. the BSRK5 method). For each of 
the problems and a given step-size h we display two plots, both showing time versus 
the infinity norm of the error in double logarithmic scale: The first one compares 
the exact global error of our numerical solution yn of order 5 (dashed line) with 
the estimated global error (continuous line), while the second one compares the 
exact global error of yn (dashed line) with the exact global error of the solution yn 
provided by the underlying standard RK scheme (BSRK5, in continuous line).

We have integrated the ‘expsin’ example over [0,307r] (fifteen periods) with con­
stant step-size h =  2ir/7. The corresponding two plots are displayed in Figure 1. 
We believe that the result are quite encouraging. The estimated global error re­
mains bigger than the exact global error as expected for sufficiently small values 
of h (first plot), and our new method clearly behaves as a small perturbation of 
the BSRK5 solution (second plot), which shows that in that case our generalized 
globally embedded RK scheme is as efficient as its underlying RK method.
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F i g u r e  2. The ‘Arenstorf’ example for h =  T/14000

h = 0.0050192 h = 0.0050192

F i g u r e  3. The ‘Arenstorf’ example for h =  T f3500

We have integrated the ‘Arenstorf’ problem over one period [0, T]
(T =  17.0652165...), first with step-size h =  T/14000 (Figure 2). The results 
are as encouraging as in the ‘expsin’ problem.

We have made an additional experiment for the ‘Arenstorf’ problem, this time 
with a bigger step-size h =  T/3500 (Figure 3), in order to check what happens 
when the numerical integration process gives completely wrong results. The first 
plot shows that the estimated global error satisfactorily reflects the propagation of 
the true global error. However, the second plot shows that the 5th order numerical 
approximation yn gives completely wrong results before the end of the integration 
interval, while the BSRK5 solution yn gives considerably better results. This is 
apparently due to the fact that the 4th order approximation yn degrades before 
than the 5th order BSRK5 solution yn, so that en =  yn—yn is no longer small, and 
consequently the 0(/i||en_i||2) term in Tn (Lemma 3.2) dominates the propagation 
of the error en.

We are currently working on a variable step-size implementation of our scheme. 
The details about the step-size control strategy, its implementation, and numerical 
experiments will be reported elsewhere.
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