
On the problem of the software cost function

J.J. Dolado

Facultad de Informa´tica, Universidad del Paı´s Vasco-Euskal Herriko Unibertsitatea, 20 009 Donostia, Spain

Received 24 February 2000; revised 15 June 2000; accepted 16 June 2000

Abstract

The question of finding a function for software cost estimation is a long-standing issue in the software engineering field. The results of
other works have shown different patterns for the unknown function, which relates software size to project cost (effort). In this work, the
research about this problem has been made by using the technique of Genetic Programming (GP) for exploring the possible cost functions.
Both standard regression analysis and GP have been applied and compared on several data sets. However, regardless of the method, the basic
size–effort relationship does not show satisfactory results, from the predictive point of view, across all data sets. One of the results of this
work is that we have not found significant deviations from the linear model in the software cost functions. This result comes from the
marginal cost analysis of the equations with best predictive values.q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Software cost function; Genetic programming; Cost estimation; Empirical research

1. Introduction

The prediction of the effort to be consumed in a software
project is, probably, the most sought after variable in the
process of project management. The determination of the
value of this variable in the early stages of a software project
drives the planning of the remaining activities. The estima-
tion activity is plagued with uncertainties and obstacles, and
the measurement of past projects is a necessary step for
solving the question. The problem of accurate effort estima-
tion is still open and the project manager is confronted at the
beginning of the project with the same quagmires as a few
years ago.

The methods for analyzing the data have been varied, but
the referent technique is always the classical regression
method. Other methods such as neural networks, case-
based reasoning, fuzzy logic and expert judgment have
been applied as estimation methods. The motivation for
using different methods to infer the relationship is the impli-
cit understanding that, depending on the method used, we
could probably obtain a different relationship between the
variables under study. Some of these methods provide a
symbolic representation of the function relating the input
to the output, thus characterizing the general pattern of
behavior of the variables. These functions are known as
cost functions, economic functionsor production functions,
and they provide a symbolic interpretation of the type of

economy of scale prevailing in software development. In
this way, neural networks or similar methods, which
embed the pattern being analyzed into the data structure
used for model building, are disadvantageous for the soft-
ware manager, since they do not allow the manipulation of
the model variables.

The overall procedure for the analysis that follows is to
use both classical regression and GP on different publicly
available data sets, and to select the equations which best
values obtain from the predictive point of view (level of
prediction and relative error). Classical regression makes
some assumptions about the data distribution for character-
izing the equations. On the contrary, GP does not make any
assumption and, furthermore, it explores a larger set of
potential equations. Therefore, we can observe which
method performs better. Besides that, the predictive results
of the estimation of effort, by using size as the independent
variable, do not show good values in all data sets, that led us
to believe that size, per se, may not be considered as the key
cost driver or cost factor for software development.

Afterwards, we will take the first derivative (the marginal
cost) of the best equations obtained with both methods
across all data sets, so we can identify the function which
characterizes the marginal cost in every data set. Comparing
those curves we will infer that if we had to assign a model to
the software cost function (size–effort relationship) the
most convincing candidate is the linear model.

The rest of the article is structured as follows: Section 2
reviews the major questions for building software cost

Information and Software Technology 43 (2001) 61–72

0950-5849/01/$ - see front matterq 2001 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(00)00137-3

www.elsevier.nl/locate/infsof

E-mail address:dolado@si.ehu.es (J.J. Dolado).

functions, examining the issue of model validation. Section
3 describes the Genetic Programming (GP) approach for
deriving symbolic equations. Section 4 presents the results
obtained by the methods and analyzes the issue of the line-
arity of the cost function. Finally, Section 5 discusses the
implications of the results.

2. The software cost functions

The consumption of resources can be seen from two
complementary viewpoints: as a cost function or as a
production function [10,20,21]. The effort is the input to
the process and the output is the software product. This
problem is the dual one of finding a cost function for the
software product, although from the methodological point
of view the issues are similar in both cases. Almost all works
in the literature discuss the problem of project estimation
from the perspective of the identification of the cost func-
tion, in which the problem under study is to identify the
function which relates the size of the product to the man-
months employed. This is the approach followed here.

2.1. Building and validating empirical cost models

The underlying idea for building a model is to consider
that the software product is manufactured in some way, and
the factor that affects the cost of the project is the size of the
software. The equation relating size and effort can be
adjusted for different environment factors, such as produc-
tivity, tools, complexity of the product and others. The
equations are calibrated to fit to the actual data points of
the projects.

According to this view several patterns of equations have
emerged [20], but none of them has produced sufficient
evidence as to be considered the definitive cost (or produc-
tion) function for software, if there is any. The functions
proposed range from the linear model�E � a0 1 a1S�;
quadratic models�E � a0 1 a1S1 a2S2�; Cobb–Douglas
model �E � aSb� and translog models�ln E � a0 1
a1 1n S1 a2 ln2 S�; E being the effort employed in develop-
ing a software project of sizeS.

The issue of the existence of economies or diseconomies
of scale has caused heated discussions among researchers
[5,6,24]. In a situation of economies of scale the returns of
the process increase marginally as the volume of the produc-
tion increases, that is, themarginal costof producing an
additional unit decreases as more units are produced. The
opposite happens if there are diseconomies of scale, where
the marginal cost of producing an additional unit of output
increases. As they have different implications for the
management of the project, it is desirable to identify the
existence or not of economies of scale. For instance, in
the case of Cobb–Douglas models, the exponentb . 1 indi-
cates diseconomies of scale andb , 1 economies of scale.
Depending on the data set used, both types of economies
have been found [6]. However, Bieman et al. have criticized

some of the conclusions related to this issue, arguing that
few data sets showed values so significantly different from 1
as to assert, with clear evidence, the existence or not of such
economies of scales. According to these authors, even more
questionable is the association of specific values ofb with
small or large projects [8]. GP will help us to tackle this
issue below, since it is the only technique which can provide
equations analogous to those of classical regression. The
examination of the marginal cost of all equations will ascer-
tain if there are significant deviations from the linear model.

The study of the existence or not of economies of scale
implies the study of the existence of non-linearities in the
cost functions. Some results have tended to postulate the
existence of non-linearities, confronting purely linear
models. In one of the latest works, the quadratic function
has been postulated as the most plausible candidate, based
on the results of the Davidson and MacKinnon tests applied
to alternative models of the same data set under study [20].

The validation of a model is also a persistent issue in the
construction of software cost functions. Depending on
the authors, different measures of the goodness of fit of the
model have been considered. The coefficient of multiple
determinationR2, and adjustedR2, obtained from regression
analysis is being used as a measure of the capability of
explanation of the model. Analysis of the residuals seems
a necessary condition for examining the aptness of the
model, and outlier examination has been suggested for
examining the model stability. There is a wide consensus
in using the mean squared error(mse) as an essential
element for assessing a regression model. The mse was
also considered by Matson et al. [26] as the best criterion
to follow for assessing the regressions, jointly with the iden-
tification of outliers. However, some criticisms argue that
the classical criterion of the least-squares method can be
troublesome in the presence of outliers. Miyazaki et al.
proposed improvements to this criterion by using the least
squares of inverted balanced relative errors [28], but Shep-
perd and Schofield [29] subsequently refuted this. Anyway,
we regard the mentioned criteria as measures ofexplanation
of the fitted equations. For evaluating thepredictive
capability of a model, some well-known measures have
been proposed: Relative error, predictions at levell, usually
l � 25 (PRED(0.25)), and mean magnitude of the relative
error (MMRE) (see Appendix A).

Over and above all these criteria, the characteristic that
has to be fulfilled by an estimation equation is that of accu-
racy: “the model should be able to accurately estimate as
many of the actual values as possible” [28]. In this way, and
in order to allow comparison with other works, the main
measures used in the next section are the mse, for building
regression equations, and PRED(0.25) and MMRE (as
defined in Ref. [11]) for evaluating their predictive power.

2.2. Cost accounting and software development

In designing a cost system, the essential question is to

J.J. Dolado / Information and Software Technology 43 (2001) 61–7262

identify the cost drivers and the cost(s) function(s). Regres-
sion analysis has been one of the classical tools for identify-
ing those functions (see Ref. [19], chap. 10). There are two
basic criteria, apart from those of statistical validity, which
make a cost function valid and comparable to other func-
tions. The first consists in that the function defined must
have “economic plausibility”, meaning by this that the rela-
tion identified should show a reasonable behavior, and
should make economic sense. The second criterion consists
in that the cost functions are only valid within the range of
the data used to derive the equation. If cost functions are to
be compared, they should be derived under the same
assumptions.

With these ideas in mind we can restate some of these
concepts for software cost estimation. First, it is noticeable
that the paradigm used for accounting costs in software is
the manufacturing one, in which the costs are related to the
size of the product built. The collection of the data sets,
cited in Appendix B and publicly available, shows that the
main assumed cost driver is the size of the product, what-
ever the measure used may be.

It is worth noting here that the second criterion, the range
of validity, has consequences in how the cost functions can
be compared. Some of the estimation models provided in the
literature construct the cost function by fitting an equation to
the data points without caring about the reasonable behavior
outside that range. Specifically, most of the functions
proposed do not cross the origin (0,0), which is counter-
intuitive, and it also obstructs the comparison among func-
tions. No effort can be assigned to a project of null size, and
conversely, it is expected that any project, however small
the size, will consume some effort. This forces the cost
function, with effort as the dependent variable, to cross
the origin. Above that point, the function is believed to be
increasing. Although some vague interpretations can be
found if the independent coefficient results positive in the
equation, none can be perceived if the regression gives a
negative coefficient.

Not all cost functions are built with the requirement of
crossing the origin in mind, nor should they be obliged to
fulfill it. Therefore, regression equations can only be inter-
preted within the range of the data and/or within the
assumptions used to define the equations. Another issue is
the elimination of outliers. We cannot remove points from
the data sets solely on the basis of the method of analysis, if
they have been collected under the same assumptions [17].
There is no scientific justification for eliminating proofs of
the phenomenon under study simply because they do not fit
adequately within the method and its corresponding results.
Points can only be removed based on different assumptions
when collecting the data, as Abran and Robillard [2] did
with their original data set. This issue is taken seriously
here, and no data point is taken out of the sample unless
there is serious effects on the predictions. The usual
measures of Cook’s and Mahalanobis’ distances for detect-
ing anomalies have been computed, and this analysis has

been embedded within the overall procedures used for
obtaining the best predictive and accurate values, as
reported throughout the rest of the paper.

Finally, we use all data points for model building and
model evaluation for a very important reason, that is to
make the results comparable to the works cited. However,
we must be aware that when we use all data points, accuracy
is probably overestimated, and real accuracy may be less
than stated (therefore we are setting limits to the predic-
tions). In some instances, we have not observed any prac-
tical benefit when using a sample (or even several different
samples) of the data sets [14], but that may not always be the
case.

3. Genetic programming for software cost estimation

GP is a type of evolutionary computation technique. An
evolutionary algorithm provides a general structure for
solving problems, which mimic the biological paradigm of
the “survival of the fittest” [3]. GP is a variation on the
genetic algorithms, in which the representation of the chro-
mosomes is not a binary string but other data structures [25].
Since there is no restriction on the data structure to be
evolved by the evolutionary algorithm, the result can be a
program, an equation, a circuit, a plan or any other repre-
sentation. The structures to be evolved in the symbolic
regression problem are trees, which represent well-formed
equations (traversed in order). That is, GP is used here as a
symbolic regression technique. The structure of the genetic
programming algorithm for symbolic regression is as
follows [25,27,32]:

Genetic Programming Algorithm
NumGenerations � 0;
Generate initial population P (of size N)
of equations ;
While not TerminateCondition do

Evaluate Fitness of each equation
For each equation in the population P
select randomly one of

(a) Mutation with probability Pm
(b) Crossover with probability Pc
(c) Direct reproduction with probabil-
ity (1- Pm -Pc)
Add the new equation to the new popula-
tion

endfor
endwhile

Fitness is a measure of how well an equation is a solution
to the problem.TerminateCondition can be either a
limit on NumGenerations (the number of generations
already evolved) or an acceptable limit for the fitness
value. Other parameters to control in the algorithm are the
different probabilities for chromosome recombination, and

J.J. Dolado / Information and Software Technology 43 (2001) 61–72 63

the selection of equations from the old population. The
result of the algorithm is a set of equations evolved to better
fit the data set.

There are works which deal with the application of GP to
the identification of physical or chemical systems such as
those described in Refs. [27,32]. We have already applied
GP to software engineering problems. In Ref. [15] GP was
applied to the problem of software size estimation, and in
Ref. [14], we applied GP to software cost estimation in some
data sets, but without the requirements stated in Sections 2.1
and 2.2.

In this work, we use the GP implementation of McKay et
al. [27,32]. It is based on the general structure of an evolu-
tionary algorithm, with some adaptations as explained
below. The elements to be evolved are trees representing
equations (see Fig. 1). That is, the populationP of the algo-
rithm stated above is a set of trees to which the crossover
and mutation operators are applied. The terminal nodes are
constants or variables, and the non-terminals are the func-
tions which are available for system definition, which in the
present work are1, 2, p, /, ∧ , square, square root, natural
logarithm and exponential.

The fitness function, one of the main components of the
algorithm, is defined according to classical measures for
fitting equations to the data. Two variables have been
used for this purpose: the mse and the correlation coeffi-
cient. The mse quantifies the error of the predictions made
by the estimated equation. The correlation coefficient
measures how predicted and actual values together may
vary. Both measures have been used as fitness functions,
the latter being preferred in the works of McKay et al.
[27]. In the present work, the correlation coefficient has
not been especially valuable, and in many cases was unable
to discriminate between equations. We have chosen the mse
as the fitness measure here, since it is a usual and consen-
sued measure of assessing regression models. We compute
the values of PRED(0.25) and MMRE, once the GP obtains
the best equation in a simulation run.

Once a population of equations (a generation) has all its
members with a fitness value assigned to each one, the next
step is to choose the elements that will be used to form the
next generation. GP can use several methods at this step,
like the elitist strategy, tournament selection and fitness
proportionate selection. Fitness proportionate selection is a
method which selects an individual of the population with a
probability proportional to its fitness, according to the value
of fi =F; whereF � PN

i�1 fiand fi is the fitness of the indivi-

dual i in the populationN. We use the latter in this work
because it allows to maintain diversity in the population;
however, there are no clear guidelines on this issue.

The GP algorithm applies mutation and crossover opera-
tors to the selected elements. The algorithm selects some
elements, according to their fitness, fordirect reproduction,
and it is possible to maintain a fixed proportion of the old
population for the next generation. Thecrossoveroperation
consists on exchanging subtrees of two equations, while
maintaining the syntactic correctness of the new formed
trees (equations). The choice of the operator (1, 2, square
root, etc.) is probabilistic.Mutation randomly takes an
element (variable, function or constant) of the tree equation
and replaces it with other elements. The next generation is
formed by the new generated elements jointly with the part
of the old population that directly passes to the next. In our
case, simulations have shown that the best results have
appeared with low values in the parameterNumGenera-
tions . Once the tree that represents the equation has been
completely constructed a non-linear least-squares optimiza-
tion is performed in order to obtain the best values of the
constants in every equation. The computational environ-
ment (Matlab 4.2.c) simplifies the final expression of the
equations. In some cases, we have further simplified the
equations manually, as in the cases of operations between
constants, in order to have a more attractive presentation.

4. Application of genetic programming and classical
regression

We have applied these two techniques to the data sets
described in Appendix B. The parameters for GP have
been set heuristically. The number of runs of the GP
algorithm has varied between 100 and 200, in which the
main parameters of the algorithm have manually been set
with different values. Most of the times convergence has
been very quick, and the best equations have been found
with very few generations (three to six). The number of runs
is large enough, to allow us to consider the results as
representative.

Table 1 summarizes the main results obtained from
applying the methods. The functions examined by curve
estimation include linear, logarithmic, inverse, quadratic,
cubic, power, exponential, growth and logistic (using the
statistical packagespss). We have further simplified some
of the symbolic expressions obtained by GP, and presented
in Table 1, for the sake of clarity. The number of points
involved in each analysis should be borne in mind when
comparing the level of prediction and the MMRE, since
the data sets have different sizes. It is important to remark
here that the syntax of the equations of GP obscures the fact
that those equations are imperceptible deviations from the
linear case, as the column of the marginal cost summarizes.
GP has only tried to better adjust the fit.

Since GP is able to approximate the data with very

J.J. Dolado / Information and Software Technology 43 (2001) 61–7264

fp

*

/

0.0345

ln

fp

Fig. 1. Tree representation of the equation 0:03453× � fp�=�ln� fp��:

J.J. Dolado / Information and Software Technology 43 (2001) 61–72 65

Table 1
Predictive values and marginal cost of each data set. The deviations from the linear trend are insignificant in both GP and curve estimation

Data sets Curve estimation Genetic programming Marginal cost

Abran and Robillard [2]
A Equation 2.649261× fp 6.435× fp0.8245 Unclear (insignificant

economies of scale)
PRED (0.25) 57.14 77.3
MMRE 0.2364 0.256

Albrecht and Gaffney [1]
B Equation 0.001099× fp1.487282 1.06× 1028 × (1.775× 106 × fp 1 fp3) Insignificant diseconomies of

scale
PRED(0.25) 54.17 64
MMRE 0.5313 0.548

Bailey and Basili [4]
C Equation 1.856339× kloc0.868942 kloc1

����������������
1:416× kloc
p

Low economies of scale
PRED(0.25) 61.11 73.7
MMRE 0.2935 0.269

Belady and Lehman [7]
D Equation 0.003067× loc1.0607091 3.83× 1025loc3/

2(1 2 1.2× 1026 × loc)
Unclear

PRED(0.25) 33.33 35.3
MMRE 0.6258 0.71

Boehm [9]
E Equation 0.001852× adjkdsi.1.108397 9.432× 1023 adjkdsi Unclear

PRED(0.25) 17.46 15.6
MMRE 1.1336 1.781

Heiat and Heiat [18]
F Equation 24.856892× reio0.698162 25.21× reio0.6959 Very low economies of scale

PRED(0.25) 94.29 94.4
MMRE 0.0892 0.087

Academic environment [13]
G Equation loc0.730624 0.08843× loc 1 (824.5/ln(loc)) Unclear (insignificant

economies of scale)
PRED(0.25) 43.75 46.9
MMRE 0.3888 0.423

Kemerer [22]
H Equation 0.348135× fp0.903874 Many terms Unclear (insignificant

diseconomies of scale)
PRED(0.25) 33.33 62.5
MMRE 0.4435 0.584

Miyazaki et al. [28]
I Equation 0.946861× kloc0.986412 kloc1 5.3× 10211 × kloc5 Very low economies of scale

PRED(0.25) 42.55 47.9
MMRE 0.3999 0.506

Shepperd and Schofield [29]
J Equation 13.496936× files0.655187 54.93× files0.6621 Very low economies of scale

PRED(0.25) 50 57.9
MMRE 0.4489 0.456

Desharnais [12]
K Equation 21.47× fp0.935265 32.9× fp0.8854 Low economies of scale

PRED(0.25) 44.26 51.6
MMRE 0.5428 0.623

Kitchenham and Taylor [23]
L Equation 0.15474× fp0.816038 0.03453× (fp/ln(fp)) Unclear (insignificant

economies of scale)
PRED(0.25) 27.27 32.4
MMRE 0.8458 1.143

different functions, by minimizing the mse, the assumptions
under which the functions should be built play an important
role. For instance, for data set A (Fig. 2), curveb
obtains a slighter improvement (PRED(0.25)� 81.8% and
MMRE� 0.211) than curvea, but at the cost of having a
shape which is unable to represent any reasonable hypoth-
esis of the effort–size relationship. Moreover, the strange
behavior of this and other curves may go undetected by the
usual residual analysis, since the curve merely tries to

approximate the points with no concern for the shape in
the rest of thex–y range. In data set A, the procedures for
curve estimation have found the same predictive values for
the linear equation -reported- and for the log–log equation;
however, GP finds a power equation which improves the
results. The same situation occurs in other data sets, in
which other curves fit the data by minimizing the mse, but
with no economic plausibility. The values and functions
reported for GP in Table 1 have the property of being

J.J. Dolado / Information and Software Technology 43 (2001) 61–7266

0 50 100 150 200 250 300
0

100

200

300

400

500

600

Adjusted Function Points

E
ffo

rt

a

b

c

Fig. 2. Some curves in the data set of Abran and Robillard.a is the GP derived equation;b is also derived by GP;c is the linear equation.

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

Function Points

E
ffo

rt

c

d

a

b

Fig. 3. Curves approximating the Kemerer’s data set. Linea obtains PRED(0.25)� 62.5% and MMRE� 0.584 (by GP). Lineb is the power equation. Linesc
andd (by GP) provide slightly better values thana or b.

smooth, although GP obtained insignificant gains in the
values in some specific cases. In all cases, the behavior is
increasing, meaning that as the size increases so does the
effort.

In the case of Kemerer’s data set H — plotted in Fig. 3 —,
the hypothesis under which curved (PRED(0.25)� 62.5%
and MMRE� 0.584) and cubicc (PRED(0.25)� 40%,
MMRE� 0.4873; the quadratic behaves similarly) show
decreasing cost and economies of scale in the intermediate
zone should be justified. The same situation occurs in data
set I, where it is difficult to choose, with statistical criteria,
between quadratic or cubic functions and other types of
functions, unless other assumptions are made about the
data. In addition, a similar situation occurs in the data set
J where one could be tempted to choose the cubic function
(PRED(0.25)� 50% and MMRE� 0.6118). However, in
this case it obtains slightly worse results than the power or
the GP equations, also dismissing an unreasonable behavior
(similar to curvesc andd of Fig. 4). In all these cases, the
marginal cost will point out the linear model as the most
plausible one.

Table 1 shows that data set F obtains surprisingly good
predictions; data sets A and C acceptable predictions; B, H,
J, K moderately good; and D, E, G, I, L obtain very bad or
moderately bad results. In cases D and E, the use of other
cost drivers applied to the size can produce moderately good
values (see Appendix B). Size measures embedding some
type of calculation in the final count, such as function
points, do not show better values than other, less elaborated
measures, such as LOC or REIO. We have tested for data set
J other alternative models based on number of changes and
files, with the data provided in Ref. [29], under the hypoth-

esis that different cost drivers could be used for each
activity.

It is sometimes difficult to choose among functions, as
Matson et al. pointed out when analyzing the data set B,
because the statistical parameters do not provide enough
criteria for discrimination. In that case (Fig. 3 in Ref.
[26]) there were two possible functions which appeared
equally to fit the data. Therefore, the final criterion for
selecting a function when the data available is deficient is
left to the software manager, who is responsible for discard-
ing unrealistic behaviors. In other situations the underlying
trend of the marginal cost can be hidden by a misleading
equation; this happens in the same article of Ref. [26],
where the published log–log equation, for the data set of
104 points, is lneffort� 2:511 1:00× ln fp: However,
undoing the transformation, we obtaineffort� 12:3049×
fp1:00

; that is simply a linear equation (the transformation
applied is lny� ln b0 1 b1 ln t) y� b0tb1). The pre-
dictive values reported were MMRE� 0.87 and PRED
(0.25)� 64%. However, the value of PRED(0.25) seems
to be computed on the transformed data and not on the
original variables (it is quite strange to find a data set with
a MMRE above 0.8 with such level of prediction).

Now, let us discuss the results obtained in the data set of
Kitchenham and Taylor (L), which has been the subject of
controversy in Refs. [6,20]. These two works have argued
that a quadratic function is the best curve that fits the data,
against the pure line of regression. The first work [6] also
found that, for eleven data sets, the coefficienty0 in the
quadratic equationy0 1 y1x 1 y2x2

; was different from 0
in the 11 data sets andy2 was different from 0 in 6 of the
11 data sets. Eliminating some outliers with the methods

J.J. Dolado / Information and Software Technology 43 (2001) 61–72 67

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

50

100

150

200

250

300

LOC

E
ffo

rt

a

b

c

d

Fig. 4. Kitchenham and Taylor’s data set.a is the GP derived equation;b is the power equation;c is the quadratic equation, crossing the origin; andd is the
quadratic equation of Table 4 in Ref. [6].

described in (Ref. [6], pp. 278) the linearity assumption was
also rejected for modeling the size–effort relationship. All
models use a constant (independent term) in the equation.
The evaluation of the goodness of fit is done according to the
values of theR2. Hu rejected the use of the linear model
based on the use of theP-test for determining the truth of
alternative software production functions.

However, assuming that the (0,0) is the origin of the
effort–size curves for the data set of Kitchenham
and Taylor, the predictive capabilities of the different
models are PRED(0.25)� 9.09% and MMRE� 1.7635
for the quadratic function; PRED(0.25)� 21.21% and

MMRE� 1.1077 for the cubic; PRED(0.25)� 27.27%
and MMRE� 0.8458 for the log–log; and PRED
(0.25)� 21.21% and MMRE� 1.0922 for the linear
regression (see Fig. 4). Therefore the log–log model
obtains the best predictions (the power curve is
0.015474× LOC0.816038), followed by the linear model.
The cubic model obtains better results than the
quadratic function. GP obtains PRED(0.25)� 32.4% and
MMRE� 1.143 for the best-fitted equation. Kitchenham
and Taylor concluded that the values in the log–log equa-
tion were not very different of having a linear equation. The
line is marked asb in Fig. 4, and as we will show below, the

J.J. Dolado / Information and Software Technology 43 (2001) 61–7268

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Function Points

E
ffo

rt

Fig. 5. Desharnais’ data set. The solid line was obtained by genetic programming and the dot-dashed line is the power equation.

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

Function Points

V
ar

ia
tio

n
of

E
ffo

rt

Fig. 6. Marginal cost in Desharnais’ data set. The solid line is the variation of the GP curve and the dashed line is the variation of the log–log curve. Both lines
show an insignificant variation for small projects, and they are constant in the rest.

marginal variation is so low that it is difficult to distinguish
it from a pure linear equation. Besides the bad predictive
values of the quadratic functions, the shape of linesc andd
in Fig. 4 needs more justification from the managerial point
of view than linesa or b. This is an indication, from our
point of view, that the linear model stands out of the other
candidates.

The data set of Desharnais has also been used for used for
analyzing the effort–size relationship, using function points
as the independent variable. We have analyzed different
subsets of the data, obtaining the log–log equation as the
best curve. For the whole data set the best curve obtained is
21:467186× fp0:935265

; with PRED(0.25)� 44.26% and
MMRE� 0.5428 (see Fig. 5). The remaining curves obtain
worse predictive values, and the curves of marginal cost
show how it is difficult to identify economies or diseco-
nomies of scale. Again, the marginal cost analysis will tell
us that the linear model is the most plausible one. All the
models which Desharnais proposed had non-zero intercepts
in the equations, therefore rendering comparison between
equations difficult.

Besides the interest in the capacity to make predictions,
the question of the type of economy of scale is of paramount
importance. Themarginal costprovides the project manager
with information about the parameters that minimize the
cost with respect the independent variable (size in this
work).

The data sets analyzed in this work are varied in size and
in the independent variables, what makes the comparison of
the marginal costs more difficult. Table 1 summarizes the
type of economy of scale that seems to prevail in each data
set, obtained by analyzing the marginal cost of the equations
providing the best predictive values (derivatives made with
Mathematica 3.0). As indicated in Table 1, except for data
set C, it is quite difficult to assert a definitive type of beha-
vior distinct from the linear case, based on the marginal

cost. Figs. 6 and 7 are examples of this situation, since it
can be observed that the variation of the marginal cost is
insignificant, relative to the values of the independent vari-
able size, and it is almost constant. The word “unclear” in
Table 1 means that the examination of the variations do not
provide values high enough to characterize the trend as
economies or diseconomies of scale, because the derivatives
do not significantly deviate from the linear case. The contro-
versial data set L behaves almost linearly in both the power
equation and in the GP equation (see Fig. 7), as already
reported in ref. [23]. Data set D has insignificant diseco-
nomies of scale below 200,000 LOC, and minimal econo-
mies of scale above that limit. However, the deviations from
the linear trend are almost imperceptible. The data set C is
the only one that shows a return to scale clearly identifiable
(economies of scale), but its magnitude is so low that its
usefulness to the software manager is questionable.

We observe, as a general conclusion, that the independent
variable size, does not define the type of economies of scale
or marginal return with clarity. In most cases, the marginal
return is so low that asserting that economies or diseco-
nomies of scale exist is very questionable. From the point
of view of the capabilities of the two methods, GP achieves
better values in the PRED(0.25) in eleven out of the twelve
data sets, but sometimes at the cost of having a slight worse
value of the MMRE. Only in data sets A and H, GP provides
a significant improvement over classical regression

5. Conclusions

The collection of data for project estimation usually
focuses on measuring effort and size as the key variables,
and later on adjusting the basic relationship with several
cost drivers. This method of making estimates can provide
only moderately good results, as we have seen above. The

J.J. Dolado / Information and Software Technology 43 (2001) 61–72 69

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

LOC

V
ar

ia
tio

n
of

E
ffo

rt

Fig. 7. Marginal costs in the Kitchenham and Taylor’s data set.

data collecting process is rooted in the manufacturing para-
digm, which considers that costs depend on the volume of
production. The manufacturing paradigm is probably not the
most adequate metaphor to portray software development.
The results based on this paradigm cannot ensure a specific
form of the cost function.

Minor variations of the different criteria of the goodness
of fit hide the true problem of the size–cost relationship. The
construction of a predictive theory for effort estimation
requires the gathering of empirical facts which support the
theory. As stated in the results of Table 1, size is a cost
factor but, as presently modeled, its predictions are not
reaching levels comparable to the know-how of project
managers in some cases. Genetic programming allows the
exploration of a vast space of cost functions, according to
the criteria set in the fitness function, providing confidence
in the limits of prediction by symbolic cost functions.

The assumptions under which the models are built, must
be included within the scientific endeavors in software
management research. The development of a theory of the
behavior of the software costs should be based not only on
different statistical tests, but also on a set of assumptions
which can appropriately describe the phenomenon under
study. The development of scientific theories usually
requires frameworks or paradigms that can accommodate
all the empirical facts related to the object of research. In
the software engineering field the principles of software
measurement have only recently been stated, and they
must be applied to every measurement task (e.g. Ref.
[16]). However, the need for a specific paradigm that
embraces all the aspects of software estimation in a unified
form still exists.

It is relevant to quote here some phrases of Simon related
to the process of discovery, since some of the estimation
equations proposed and accepted in other works depend on
the assumptions used: “… we seem to devote much more
time to seeking out possible regularities in phenomena than
simply to proving that regularities we have noted are really
there, and are not products of our imaginations” [30], pp.
xvi. In fact, as the above results have shown, we need a
theory (or different theories) which explains the different
results obtained with empirical data. The present state of
the art in software estimation does not provide a theory
that explains all the data available. Consequently the final
scientific goal is “…to discover candidate theories that
might help explain the facts” [30], pp. xvii. The next step
will be to test those alternative theories, perhaps by using
more knowledge than that which is provided by statistical
analysis [31]. As an example, we can adjust quadratic func-
tions, not monotonically increasing, to some data sets,
obtaining moderate predictive values but with no other
rationale for that behavior apart from specific statistical
tests.

Based on the predictive capabilities of the models that we
have built in Section 4, we have not found a reasonable level
of good predictions attained solely by the independent vari-

able ‘size’. In most cases the economies or diseconomies of
scale have minor variations in the marginal cost, therefore
characterizing the software costs simply as an increasing
linear function of the size of the project.

The linear model has consistently obtained the best
predictive values regardless of the method used, even
when the GP method is able to explore a vast space of
equations. The main consequence of this result is that the
project manager can explain in a straightforward way the
fundamental trend of the project costs and he/she may focus
the attention in identifying other factors that influence the
costs.

Acknowledgements

The analysis by Genetic Programming has been possible
thanks to the software of the Newcastle Symbolic Optimi-
zation Research Group of the University of Newcastle-
Upon-Tyne, to whom the author is very grateful. The
comments of two anonymous referees have greatly
improved the readability of the article. This work was
supported in part by CICYT, under projects CICYT
TIC98-1179-E, CICYT TIC99-0351 and by UPV-EHU
141.226-EA083/98.

Appendix A. Measures for model evaluation

Let ei be the actual value of a variable,êi its correspond-
ing estimate and�e the mean of the values. Letk, n be the
number of independent variables and the number of obser-
vations (projects), respectively. The following variables are
defined

• Mean magnitude of relative error(MMRE) is defined as

MMRE � 1
n

Xn
i�1

ei2êi

ei

���� ����:
Thus if the MMRE is small, then we have a good set of
predictions. A usual criterion for accepting a model as
good is that the model has a MMRE# 0.25.

• Prediction at Level l(PRED(l)), wherel is a percentage,
is defined as the quotient of number of cases in which the
estimates are within thel absolute limit of the actual
values, divided by the total number of cases. For exam-
ple, PRED(0.1)� 90 means that 90% of the cases have
estimates within the 10% range of their actual values. A
standard criterion for considering a model as acceptable
is PRED(0.25)$ 75.

• Coefficient of multiple determination, R2 andadjusted R2,
are some usual measures in regression analysis, denoting
the percentage of variance accounted for by the

J.J. Dolado / Information and Software Technology 43 (2001) 61–7270

independent variables used in the regression equations

R2 � 1 2

Xn
i�1

ei 2 êi

ÿ �2
Xn
i�1

ei 2 �e
ÿ �2

andR2
adjusted� R2 2

k 2 1
n 2 k

× ÿ1 2 R2�
:

Appendix B. Data sets

Twelve data sets (some of them well known) have been
analyzed. The independent variable in all cases is a measure
of the size of the product being developed. It takes several
forms such as LOC, adjusted delivered source instructions,
function points (fp) and others. The dependent variable is
the development cost, and it accounts for the human effort
consumed in the project.

A. Data set from Abran and Robillard [2] (21 points).It is
a subset from a total of 36 projects, from which the points
considered as outliers were removed. The independent vari-
able used is “adjusted function points”, and the effort is
measured in “person-days”.

B. Data set from Albrecht and Gaffney [1] (24 points).
This data set corresponds to projects developed at IBM Data
Processing Services, and Matson et al. [26] and Shepperd
and Schofield [29] have analyzed it. The latter study shows
values of PRED(0.25)� 33% and MMRE� 0.62 when
using estimation by analogyand PRED(0.25)� 33% and
MMRE� 0.9 when using linear regression.

C. Data set from Bailey and Basili [4] (18 data points).
The authors tested several models, including the linear,
exponential and log–log. The base models were adjusted
by means of multipliers. They concluded that no model
could stand above the others. In the present work the multi-
pliers are not used, the independent variable used is “thou-
sand of total lines of code” and the effort is measured in
man-months.

D. Data set from Belady and Lehman [7] (33 data points).
The independent variable is LOC and the effort is measured
in man-months. The generalized COPMO model [11]
applied to this data set gave values of PRED(0.25)� 64%
and MMRE� 0.27.

E. Data set from Boehm [9] (63 points).It is one of the
most analyzed data sets. The independent variable used is
“adjusted delivered source instructions”, which takes into
account the variation of effort when adapting software. The
COCOMO model is built upon these data points, by intro-
ducing many factors in the form of multipliers. An indepen-
dent evaluation made by Conte et al. [11] provides the
following values of the evaluation of the model: Basic
COCOMO gives PRED(0.25)� 27% and MMRE� 0.6.
Intermediate COCOMO (with 16 cost drivers) gives
PRED(0.25)� 76% and MMRE� 0.19.

F. Data set from Heiat and Heiat [18] (35 data points).

They proposed a model to estimate effort (in person-hours)
for small-scale projects by using as independent variable the
REIO, withREIO� total number of corrected relationships
at data stores1 total number of data flows which connect
the system to external entities(see the reference for details
of how to construct this measure). The authors also provide
the LOC and corresponding function points, but in order to
see how another measure of the size product works, the
REIO is used here as the independent variable.

G. Data set from an academic environment (48 data
points).This data set is a combination of the data provided
in Ref. [13] and other projects for which the data effort-LOC
4GL was collected (data available from the author). In this
environment, the function point count was found to be unre-
lated to effort. Therefore, here the LOC 4GL measure is
used as independent variable and the dependent variable is
effort measured in person-hours.

H. Data set from Kemerer [22] (15 data points).It was
used to test different estimation methods. The independent
variable used is function points. Kemerer’s data obtains
PRED(0.25)� 40% and MMRE� 0.62 when usingestima-
tion by analogyand PRED(0.25)� 13% and MMRE� 1.07
when using linear regression [29].

I. Data set from Miyazaki et al. [28] (47 data points).It
was used to test the “robust regression” method. Using three
independent variables and the method of “least-squares
of inverted balanced relative errors” the result was
PRED(0.25)� 29.2% and PRED(0.25)� 18.8% when
using the least squares method. The independent variable
in the present work is KLOC (thousands of LOC).

J. Data set from Shepperd and Schofield [29] (18 data
points).This data set has been used to test the method of
estimation by analogy. The independent variable is “number
of files”. The results of adjusting a regression line are
PRED(0.25)� 44% and MMRE� 0.86, and estimating by
analogy the values obtained were PRED(0.25)� 44% and
MMRE� 0.39.

K. Data set from Desharnais [12] (61 data points).This
data set relates function points to effort, using the concepts
of ‘entity’ and ‘transaction’ for identifying the function
points.

L. Data set from Kitchenham and Taylor [23] (33 data
points).This data set is composed of 33 projects developed
in the same language (S3, a high level language). The data
relates LOC to effort (man-months). It has been the subject
of the controversy about the existence of economies of
scale.

References

[1] A.J. Albrecht, J.R. Gaffney, Software function, source lines of code,
and development effort prediction: a software science validation,
IEEE Transactions on Software Engineering 9 (6) (1983) 639–648.

[2] A. Abran, P.N. Robillard, Function point analysis: an empirical study
of its measurement processes, IEEE Transactions on Software Engi-
neering 12 (12) (1996) 895–910.

J.J. Dolado / Information and Software Technology 43 (2001) 61–72 71

[3] T. Bäck, U. Hammel, H-P. Schwefel, Evolutionary Computation:
Comments on the History and Current State, IEEE Transactions on
Evolutionary Computation 1 (1) (1997) 3–17.

[4] J.W. Bailey, V.R. Basili, A meta-model for software for software
development resource expenditures. Proceedings of the Fifth Interna-
tional Conference on Software Engineering, 1981, pp. 107–116.

[5] R.D. Banker, C.F. Kemerer, Scale economies in new software devel-
opment, IEEE Transactions on Software Engineering 15 (10) (1989)
1199–1205.

[6] R.D. Banker, H. Chang, C.F. Kemerer, Evidence on economies of
scale in software development, Information and Software Technology
36 (5) (1994) 275–282.

[7] L.A. Belady, M.M. Lehman, The characteristics of large systems, in:
P. Wegner (Ed.), Research Directions in Software Technology, MIT
Press, Cambridge, MA, 1979, pp. 106–138.

[8] J.M. Bieman, N. Fenton, D.A. Gustafson, A. Melton, L.M. Ott,
Fundamental issues in software measurement, in: A. Melton (Ed.),
Software Measurement, International Thompson Computer Press,
1995, pp. 39–52.

[9] B.W. Boehm, Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[10] P.E. Byrnes, T.P. Frazier, T.R. Gulledge, Returns-to-scale in software
production: a comparison of approaches, in: T.R. Gulledge, W.P.
Hutzler (Eds.), Analytical Methods in Software Engineering Econom-
ics, Springer, Berlin, 1993, pp. 75–98.

[11] S.D. Conte, H.E. Dunsmore, V.Y. Shen, Software Engineering
Metrics and Models, Benjamin/Cummings, Menlo Park, CA, 1986.

[12] J.-M. Desharnais, Analyse statistique de la productivite´ des projects
de dévelopment en informatique a` partir de la technique des points de
fonction, Masters Thesis, Univ. du Que´bec àMontreal, Décembre,
1988.

[13] J.J. Dolado, A study of the relationships among Albrecht and Mark II
function points, lines of Code 4GL and effort, Journal of Systems and
Software 37 (2) (1997) 161–173.

[14] J.J. Dolado, L. Ferna´ndez, Genetic programming, neural networks and
linear regression in software project estimation, in: INSPIRE III,
Process Improvement through Training and Education, C. Hawkins,
M. Ross, G. Staples, J.B. Thompson (Eds.), The British Computer
Society, 1998, pp. 157–171.

[15] J.J. Dolado, A validation of the component-based method for
software size estimation, IEEE Transations on Software Engi-
neering to appear.

[16] N. Fenton, Software measurement: a necessary scientific basis, IEEE
Transactions on Software Engineering 20 (3) (1994) 199–206.

[17] A.R. Gray, S.G. MacDonell, A comparison of techniques for devel-
oping predictive models of software metrics, Information and Soft-
ware Technology 39 (1997) 425–437.

[18] A. Heiat, N. Heiat, A model for estimating efforts required for devel-
oping small-scale business applications, Journal of Systems and Soft-
ware 39 (1) (1997) 7–14.

[19] C.T. Horngreen, G. Foster, S. Datar, Cost Accounting. A Managerial
Emphasis, 8th ed., Prentice-Hall, Englewood Cliffs, NJ, 1994.

[20] Q. Hu, Evaluating alternative software production functions, IEEE
Transactions on Software Engineering 23 (6) (1997) 379–387.

[21] Q. Hu, R.T. Plant, D.B. Hertz, Software cost estimation using
economic production models, Journal of Management Information
Systems 15 (1) (1998) 143–163.

[22] C.F. Kemerer, An Empirical Validation of Software Cost Estimation
Models, Communications of the Association for Computing Machin-
ery 30 (5) (1987) 416–429.

[23] B.A. Kitchenham, N.R. Taylor, Software project development cost
estimation, Journal of Systems and Software 5 (1985) 267–278.

[24] B.A. Kitchenham, Empirical studies of assumptions that underlie soft-
ware cost-estimation models, Information and Software Technology
34 (4) (1992) 211–218.

[25] J.R. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection, MIT Press, Cambridge, MA, 1992.

[26] J.E. Matson, B.E. Barret, J.M. Mellichamp, Software development
cost estimation using function points, IEEE Transactions on Software
Engineering 20 (4) (1994) 275–287.

[27] B. McKay, M.J. Willis, G.W. Barton, Steady-state modelling of
chemical process systems using genetic programming, Computers
and Chemical Engineering 21 (9) (1997) 981–996.

[28] Y. Miyazaki, M. Terakado, K. Ozaki, H. Nozaki, Robust regression
for developing software estimation models, Journal of Systems and
Software 27 (1) (1994) 3–16.

[29] M. Shepperd, C. Schofield, Estimating software project effort using
analogies, IEEE Transactions on Software Engineering 23 (11) (1997)
736–743.

[30] H.A. Simon, Models of Discovery, Reidel, Boston, 1977.
[31] H.A. Simon, On judging the plausibility of theories, Models of

Discovery, Reidel, Boston, 1977.
[32] M. Willis, H. Hiden, M. Hinchliffe, B. McKay, G. Barton, Systems

modelling using genetic programming, Computers and Chemical
Engineering 21 (1997) 1161–1166.

J.J. Dolado / Information and Software Technology 43 (2001) 61–7272

