-

Genetic Programming, Neural Networks and
Linear Regression in Software Project

kNl 2 40 _
nsumation

Javier Dolado® and Luis Ferndndez*
®. University of the Basque Country, San Sebastian, Spain; dolado@si.ehu.es
*: European University of Madrid, Madrid, Spain; lufern@dpris.esi.uem.es

Abstract

The estimations made at the planning phase are critical in providing
the managers with accurate information about what is believed to be
the course of the project. The improvement in the software process
requires improvement in the estimations as an essential prerequisite.
The estimation of effort is the most sought after variable to be
quantified, since it drives the management process. There are several
models in the literature for effort estimation, many of them being
derived from statistical regression. New techniques coming from the
artificial intelligence field are being introduced, such as neural
networks -NN-, Here a new technique named Genetic Programming
-GP- is tested in the software estimation process. GP is used as a
probabilistic technique for deriving equations, following the -
paradigm of the "survival of the fittest". The results of GP, NNand ;.
linear regression -LR-are compared on several datasets Furthermore, T
they are compared on dmffercnt samplcs SRR o E

Part of the success of the activities in software management lies in the ability to
make accurate predlcnons Process lmprovcment depends in part on the

u.upxuvcuwuw achieved in the estimations made at cluy aw.gca of the SOI[W&IU

process. These estimations, in turn, depend on the amount and quahty of the data

oaﬂnﬂrnﬂ The most common method to make ?r-(‘uvhnne is to identify the
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underlymg relationships among the data by means of linear regression and classical
statistics. New methods have appeared attempting to capture the nonlinearities that
can exist in the data, such as neural networks, but the relationships can not be
represented symbolically. Here, GP will generate the symbolic equations,
overcoming some of the problems of NN. -

Therefore, we are concerned with the ability to estimate of different, but
complementary techniques. Genetic Programming is introduced as a new technique
that can help to discover symbolically the nonlinearities of the data. In a second




analysis, every dataset is divided into two subsets, one for model building and
other for prediction evaluation. The datasets used are those of Belady, Boehm,
Albrecht and Gaffney, Kemerer (all publicly available) and other from our
environment. The data relate "project effort" to LOC or to Function Points. In this
study, the important thing is not the interpretation of the underlying relationships
for extrapolation to other environments, but to understand the use of different
methods for the purposes of estimation.

2 The Methods of Analysis

The mathematical methods used to infer relationships in the software estimation
process have been varied, the classical technique of multiple linear regression
being the most common. A comparison of the different methods used for making
estimations can be found in [8] [14] Next, we briefly review those used in the
present work.,
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is a technique of classical statistics for model building. The 2t crnzinlala Io
LR is a technique of classical statistics for moael building. 1he output variable is

assumed to be linearly related to the input variables. However, in case of

e“epm-hno that other functions can better fit the Anfa some transformations are

allowed in the variables to achieve :a linear model The most common
transformations are to take the logarithm of the independent and/or of the
dependent variables. The goodness of fit of the model built is usually evaluated by
means of the R? (and adjusted R?) and the analysis of variance. Furthermore, when
constructing a model some examination has to be made of the effect of outliers on
the function estimated. Since building a model for a dataset is different to
sampling, the two strategies followed here are: a) building a model with all points;
b) building a model on the sample (66% of the data points) and evaluating it on the
rest (3% of the points). The main criteria for validation is to obtain acceptabie
values of PRED(0.25) and MMRE in the validation dataset (34%). The samples have

been selected randomly.
2.2 Neural Networks

Artificial neural networks -NN- are nets of processing elements that are able to
learn the mapping existent between input and output data [9], [20]. It has been
proved that some types of NN are universal approximators, and that a two-level NN
is able to approximate any function. They have already been used previously in
the software engineering field [7], [20]. The motivation for using NN here is that
the equation relating the input variable (LOC of Function Points) and output
variable (Effort) can be left unspecified, allowing to model possibly unknown
relationships to the estimators. NN in this context act as nonlinear regression

models. On the negative side, the manipulation of the mapping learned is very
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limited, since it is not possible to meaningfully reason about the weights of the F

processing ei€ments.

The performance of a NN depends on the architecture and parameters of the net.
The NN used here for prediction are two-layer networks with two nodes in the
hidden layer. Other structures tested included more layers or more neurons, but

thaey tandad ¢ craefit tha tea
they tenaed to overiit tae uu‘;ﬁlﬂg data.

2.3 Genetic Programming

GP is an extension of the genetic algorithm technique, originated after the work of
Koza [12]. It is included in the set of methods named evolutionary computation
techniques [2], characterised by the fact that the solution is achieved by means of a
cycle of generations of candidate solutions that are pruned by the criteria 'survival
of the fittest’. GP has been used in a varieiy of fieids, including the automaicd
synthesis of circuits, nonlinear system identification in chemical process
engineering (identifying relevant variables), symbolic regression, etc. [16], [17],
[19] Here, genetic programming is used as an automated symbohc regression to
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The name GP comes from the similarities with the paradigm of ‘natural
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species evolve according to random mutations of the genes and to the
‘appropriateness' to the environment of the species. In the case of system
identification (symbolic regression) the idea is also simple: to generate randomly a
set of initial equations that relate the input and the output variables and select the
equations according to the principle 'survival of the fittest'. The process is repeated
until an acceptable solution is obtained. S

GP is a nonparametric method since it does not make any assumpuon about the
distribution of the data, and derives the equations according only to fitted values.
The use that is made here can be considered as an alternative to Curve Estimation
(and Linear Regression), and will also allow us to compare the linear equations
with those derived automatically. Since a set different equations are derived in
different runs, only those that give the best results in the evaluation data are
reported. Parameters of GP have been set heuristically.

The equation reported and compared is the one that giVes the best fit in the last
generation. This equation is applied to the evaluation data. Each run had an initial
populauon of 25 to 50 randomly generated equations. The number of generations

al ey Tavet tha L ave
in each run v&xcu, but the best results were obtained with 3 to 5 gvnwnuﬂvm

(works reported in the literature use a higher number of generations). The number
of equations that remained from one generation to the next represented 10% of the
previous one. The new equations of the new generation were formed by:

a) crossover: two equations exchange parts, preserving the syntax of t

f
[

mathematical expression;
k\ mutation: a term of the equation (fimction, variable or constant) is changed
A St i TeeEl B L >
randomly )
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In general, GP has worked as expecied in providing equations "fitted to the

data". The algorithm that evolves a solution for symbolic regression is as follows.
The enftware fnr I‘D lagc haen mmﬂnﬂ l\u f‘un N-nnvaeﬂn Q\nn‘nnlvn nnﬁ«nmeahnn
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Group (runs in Matlab 4.2.c).

iGenetic Programming Algorithm
Generate initial population (of size N) of equations
While there are generations to run do
Evaluate fitness of each equation
For each equation in the population
select randomly one of
aj Mutation with probability Pm
b) Crossover with probability P¢

c) Direct reproduction with probability {1- Pm -Pg)
Add the new equation to the new population
Endfor
endwhile
Figure 1. The algorithm.
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Each eauation in the nonulation is rmrecmfpd as a free. Fumre 2 Tepresents the
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equation Effort = 999.9-loc - 22222- loc The operation of crossover takes a

subtree of two equations and interchange them to form new members of the

populations. Mutation randomly modifies a subtree of an equatmn

The functional set used is: +, -, *, /, %, sqrt, square, log, exp. Probabilities of

mutation and crossover are in the range of Pm=0.8 and Pc=0.2. One of the
nrob]emc of GP is that in order to generate mmnler exm'essmns some limit to the
trees has to be set. Here the best results were obtamed by limiting the number of
generations. The fitness measure in the present work is the mean squared error of
the predicted values of the equation. In the implementation used, regression
constants in the equations are determined using the Levenberg-Marquardt method

of non-linear least-square optimisation.
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2.4 Evaluation of the techniques

The criteria for comparing the three methods on the datasets is to compute the
values for PRED(0.25) and MMRE < 0.25 [5]. In the case of multiple linear
regression an assessment is made by the R* and other statistical criteria in order to
select the best equation.

e Mean magnitude of relative error, MMRE, is defined as MMRE =1 i AR
n = e

where e is a real value of a variable in a project, € is its estimate and # is the
number of projects. Thus if the MMRE is small, then we have a good set of
predictions. A usual criteria for accepting a model as good is that the model
has a MMRE £ 0.25.

o Prediction at Level | -PRED(I)- , where / is a percentage, is defined as the
quotient of number of cases in which the estimates are within the / absolute
limit of the actual values divided by the total number of cases. For example
PRED(0.1) = 0.9 means that 90% of the cases have estimates within the 10%
range of their actual values. A standard criteria for considering a model as
acceptable is PRED(0.25) 2 0.75. This means that at least 75% of the estimates
are within the range of the 25% of the actual values. Some authors relax this
requirement.

e Coefficient of multiple determination, R* and adjusted R’, are some usual
measures in regression analysis, denoting the percentage of variance accounted
for by the independent variables used in the regression equations.

® mean squared error, as defined for regression models is ., _ _1 > 3,
. n -

-
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<

(]

¥
J
=l

3 The Datasets

In all datasets the dependent variable is the effort measured in man-months or in

man-hours.
3.1 Datasetl -DT1-. Belady's data
This dataset is taken from [3] (33 points). The independent variable is LOC.

3.2 Dataset2 -DT2-. Boehm's data

The data was obtained from the book [4]. The independent variable used is

W diseatad dalivracad saviena doa
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Conte et al. [5] provides the following values of the evaluation of the model: Basic

demsnbtmenal!  An tndamandant avalradiac wenda T
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Cocomo PRED{0.25)=27% and MMRE = 0.6; Intermediate (2

PRED(0.25)=0.76 and MMRE = 0.19.

3.3 Dataset3 -DT3-, Albrecht and Gaffney's plus Kemerer's data

This dataset is a combination of the datasets [1] (Albrecht and Gaffney, 24 points)
and [11] (Kemerer, 15 points). This combination was used in the article of Matson
et al. [15], and it has been used here with the purpose of having a dataset with a
number of points sufficient enough for dividing the dataset. The independent
variable is "function points”.

The results of Shepperd and [18] with respect to DT3 is as follows: the data is
disaggregated into the two subsets, Kemerer on one hand and Albrecht and
Gaffney on the other. Albrecht and Gaffney's data obtains PRED{0.25)=33% and
MMRE = (.62 when using analogy and PRED(0.25)=0.33 and MMRE = 0.9 when

rnaine 13w Y ararasla date nltnima nnEr\If\ ”(\—Al\o/ and voune — N £9
ual.us u.uvm IGELGBBAUM HVILIVIVL 9 Uala vvwalls rl\DU\ }ﬁv /70 aug quvu\.D V.V&

when usmg analogy and PRED(O 25)=0 13 and MMRE = 1.07 when using linear

recre«: on,

Matson et al. [15] concluded, cauuously, that the appropnate model to be fitted

could be the lna_lng model (pnmnr curve). The main criterion followed was the

mse. However, they stated that aggregation of the two datasets should only be
made after careful examination of the environments. Our purpose here is only to
test methods, and not to extrapolate the equation to other environments.

3.4 Datasetd -DT4-. Academic Environment

This dataset has been obtained with student's projects (48 points). The independent
wrnmalila 20 TN 18 mnlendn nsn senad Lom cealddaitom Allaccal dlin crnadalola Cficmm add e
Valiauviv d LUVUGL. 1J PULLR 4lb Wil 1Vl valldauvu. muxuugu Wt vailaviv juuvuvl

points” was also computed, it did not provide any predictive value.

3.4 Dataset5 -DT5-

This dataset is an approximation to the data used by Matson et al. [15], since the
original dataset is not available. As it is not a real dataset, the analysis is provided
in Appendix A.

4 The Application of the Methods to the Datasets

The following tables report the results of the application of the three methods (GP,
NN and MLR) to every dataset in the two situations: a) using the same data points
for model building and model evaluation, and b) using a sample for model building
and the rest for model evaluation.
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4.1 Predictions Using the Whole Datasets for Model Building

Table 1 indicates that GP obtains better results than NN and LR in datasets DT3
and DT4, and worse in DT1 and DT2. NN presents the same situation. GP
surpasses NN in all cases. Surprisingly, GP was unable to find the power curves of
DT1 and DT2, although there was a reasonable amount of runs (44 and 32
respectively). The corresponding plots are Figure 3 through Figure 6.

GP finds in DT1 two very different equations. Dashed line in Figure 3 is an
equation with worse evaluation resuls. In DT2 the simple regression or NN cannot
improve the results of Basic or Intermediate Cocomo. In DT3, GP is able to
overcome the problems of aggregating the two datasets, providing
PRED(0.25)=33.3% and MMRE = 0.684. It is peculiar how GP approximates a curve
hane A cannnd
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GP equation seems more plausible.
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Table 1. Note: {n1,n2): number of runs in GP and NN, respectively

GEeNETIC PROGRAMMING NN Curve
ESTIMATION
oT tio 5.331.10 -loc/ (Yloc -3.881.107 ) 1060791
(44,12) [Fauation 70987 (-2.708.10* Ioc) 0003067 -loc
Pred(0.25) 24.2 18.18 33.33
Mmre 0.848 1.2733 0.6258
D12 . |-655.4+0.4894-(1.691-10* +loc)*"* 0.001852 - loc 1"
iCquauon
Pred(0.25) , 15.9 12.70 17.46
(32,10) Mmre 3.227 5.8576 1,1336
DT3 A . 1576590
co.21) I : )%W . | 0.001267- fp
quation
B) 1.139-10* - fp?
Pred(0.25) A) 33.3 -B) 1564 17.95 7.69
| Mmre 0.684 1.586 2123 1.18
D74 quuau.on 121.1+8.211-10°% -Joc +2.946 -10~7 - loc? 1.995953 - loc****<
Pred(0.25) 438 43.75 37.99
(38,21) WMmre 0.433 0.4211 0.4375

4.2 Models using a subset of the data for model building

4.2.1 Datasetl. Belady's data
GP works well except for Sample3. NN obtains better results in the three samples,

commparatively, It can be observed from the followine tables that sammles do not
paratively, It can be observed ifrom the Ioliowmg tables that sampies €O not

significantly improve or worsen the results of DT1 in Table 4. Curves in Figure 7
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represent economies of scale as well as discconomies of scale, including quadratic,
power and other types.
Table 2

DATASET1 GENETIC PROGRAMMING NN CURVE ESTIMATION.
Sample1 | Pred (0.25) 18.2 27.27 0

{8,18) Mmre 1.912 1.8960 1.4124
Sample2 | Pred (0.25) A)27.3 B)364 36.36 18.18

(9,9) Mmre A)2.760 B)8.036 2.0549 4.6568
Sample3 | Pred (0.25) 27.3 27.27 36.36

(9,9) Mmre 1.911 3.0705 0.6266

4.2.1 Dataset2. Boehm's data

Sampling does not seem to have a clear effect on the evaluations. Curve
estimations improve a little. GP appears to be very dependent on the sample (see
Figure 8). Quadratic equations are found by GP, and the linear regression finds
power equations, -~ - N ‘

Table 3
DATASET2 GENETIC NN CURVE ESTIMATION
' PROGRAMMING (LR)
Sample1 | Pred(0.25) 14.3 14.29 14.29
(11,10) Mmre 13.293 9.4686 1.0985
Sample2 | Pred(0.25) 19 23.81 28.57
{12,14) Mmre 2.954 5.0499 0.6345
Sample3 | Pred(0.25) 9.5 14.29 23.81
(13,13) "~ Mmre 0.087 5.8588 1.1671
4.2.3 Dataset3. Albrecht and Gaffney's plus Kemerer's data
Samplin have any clear benefit on the evaluations. Genetic

Sampling does not seem to enetic
Programming works slightly better than linear regression. GP finds quadratic as
well as other rarer equations. Linear regression shows cubic, quadratic and

exponential equations (Figure 9).

Have aily Wwawv

Table 4
DATASET2 GENETIC NN CuRVE ESTIMATION
PROGRAMMING {(LR)

Samplet | Pred(0.25) 15.4 15.38 15.38 _

(11,23) Mmre 0.614 1.1738 0.6151
Sample2 | Pred(0.25) 15.4 15.38 0.0769

(13,10) Mmre 1.829 3.6960 12.8257
Sample3 | Pred(0.25) 30.8 23.08 23.08

(9,22) Mmre 1.4444 1.6320 3.3374
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4.2.4 Datasetd. Academic environment

Similar results to Table 1. GP appears to be very dependent on the sample (see
Figure 10). Linear regression derives power equations and GP derives a variety of
equations .

Table 5
DATASET4 | GENETIC NN CURVE ESTIMATION
PROGRAMMING (LR)

Sample1 | Pred (0.25) 48.7 40.00 46.67

(12,18) Mmre 0.34 0.3656 0.3073
Sample2 | Pred (0.25) 53.3 46.67 40.00

(10,17) Mmre 0.355 0.4127 - 0.3181
Sample3 | Pred (0.25) 40.0 40.00 46.67

(9,22) Mmre 0.541 0.5571 0.4856

4.3 The Effort-Size Relationship and the Methods to Discover It

The major question of "what is the shape of the effort-size relationship?" remains
unsolved. There seems to be no pattern whether samples are chosen for model
building or the whole dataset, observmg Tables 1 through 5 and Figures 3 through
10. The work of Hu [10] only concluded that there was no linear model in the
production function of soﬁware and that the quadrauc model is a candldate to
describe the effort-size relationship.

Quadratic functions have anng_rgd in Table 1 for datasets DT1 and DT3 and DTS,
by means of Genetic Programming. The procedures used in curve estimation and
linear regression do not have selected the quadratic functions due to the values
provided for the R? and to the errors incurred on the statistical model. So, from this
point of view, GP has caused the emergence of the equations by checking only the

mean squared error (the fitness measure). o

Neural networks and genetic programming have more flexibility in approximating
models than classical statistics. However, from the point of view of making good
predictions, no technique has been proved to be clearly superior. In the work of [6]
the GP provided similar or better solutions than classical statistics, overcoming
also the problems of NN, which did not provide symbolic explanation of the
relationship.

Taken samples of the datasets have neither improved nor degraded the results in a
clear way. Therefore, and from the practical point of view it would not matter
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which way is followed for the analysis. GP, tr ving to minimize the error will show
some uncommon Curves.

5 Conclusions

The first and more evident conclusion is that estimating effort is -really- a very
difficult task, as the values of the PRED(0.25) and MMRE variables indicate. All
environments analyzed here have provided results far away from the ideal values.
The quality of the data seems to be more important.

When using all points in every dataset for model building the results are not
better than those obtained when using a sample for model building and the rest for
evaluation. This contradicts the common assumption about using the same points
for equation building and equation evaluation. This is probably due to the nature of
the data points, that is the effort-size relationship. No generalization of this result
should be made without explicit consideration of the environment. '

From the values shown in the tables there is no great superiority of one method
versus the others. GP is able to find rarer relationships than those that can be
obtained with classical statistics, which can help to uncover some data trends. GP
can be used as an alternative to linear regression, or as a complement to it. Neural
networks provide mo better values than the others. The use of different and
complementary methods helps the estimator to assess the predictions. Other
different datasets, such as those presented in [18], provide values of Pred(0.25)
ranging between 13% and 51%, values of Mmre between 0.37 and 2.52, and even
when analogy is used things remain not very good.

As an aside result it is observed that the academic environment is the one with
best predictible results. In this case the variable used has been LOC. The
independent variable used is responsible for that result, since in a previous work
the prediction capabilities of the "Function Points" variable was null. Selection of
the independent variables is an important factor in obtaining good estimations. The
academic environment may be suspicious of lacking some of the situations of
reality, but at least it can provide some type of "homogeneity".

Curiously, the results of this study tend to support the ideas of Lederer and
Prasad [13] that "the use of complex statistics, software, and standards do not
facilitate more accurate estimates”. While not trying to be naive (at all) about this
issue, and acknowledging that the "estimating problem" is still open, the fact is that
the evaluation neither of the algorithmic nor of the neural network models provide
much confidence for generating predictions. But it is worth quoting the phrase
from [15]: "function points, even in concert with other predictions, seem only
moderately helpful in software development cost estimation”.

Also, the conflicting methods used by different authors impede further
clarification of the important issues of the production function definition for
software. Either a sample of the dataset is used for maodel building or all datapoints
are used. The first option is intended to be statistically more useful for prediction,
but the second seems to be appropriate for finding a production function for
software. Furthermore, the measures Pred(0.25) and Mmre have been used in this
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study to choose the model, what conveys the idea of "ability to predict” as being of
interest (not fitting a model to the data).

There remain many issues related to the application of the GP to the software
engineering field to be researched. The powerful capabilities of the "genetic
paradigm" could be used in combination with other more cognitive human abilities
to solve questions about prediction in the software engineering field (such as
analogy or other non-algorithmic methods). Moreover, it is important to define
what the estimators want: either predictions without knowing the model (NN) or to
build equations that give the best predictions. The questions of how to use the
statistical tests hovers over any decision about the model to choose.
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Appendix A Analysis of an Approximation to a Dataset -DTS-

An analysis has been carried out with an approximation to the dataset described in
[15]. We had a special interest in this dataset since the number of points is very
large (104 points). Since the numerical values are not publicly available, a recovery
procedure was designed, starting from the plots depicted in the article. The data
thus obtained was an approximation to the original data. In order to respect the
confidentiality of data but serving scientific interest of the software engineering
community, we comment briefly the conclusions obtained.

As with the rest of the datasets used in the present study three different samples
were extracted for model building and evaluation. Also 2 comparison of the
methods was made using all the data points.
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A.1 All data points

The original analysis (with the correct data) [15] found that the most reasonable
equation was Ineffort =2.51+1.00-In fp. The Mmre is 0.87 and the Pred(0.25)=
0.64. However, the value of Pred(0.25) seems to be computed on the transformed
data and not on the original variables. This is corroborated by the fact that it is
quite strange to find a data set with a Mmre above 0.8 with such level of
prediction. Also, it seems that the equation is not complete or the coefficient 1.00
is incorrect, because undoing the transformation we  obtain
effort =12.3049- fp'®, that is simply a linear equation (The transformation

appliedis Iny =Inb, +b Int = y=bt*).

Sl y = Yy
In our environment it has been discovered that:
¢ Genetic Programming finds two equations (26 runs) with similar resuits:
a) 14.22- fp +0.001113- fp*, that gives Pred(0.25)=27.9 and Mmre=1.031;
b)((~0.1569+8.134-10~ - fp)- /pf +10.02- fp, that gives Pred(0.25)=29.8 and
Mmre=1.295;
o Neural Networks: Pred(0.25)=30.77 and Mmre=1.1448;
e Statistical Equation: 10.051811- fp"®**, Pred(0.25)=27.88 and Mmre=0.8485;
The differences of [15) from the results of this study may be due to the
approximation of the data, too. All values are worse that those attributed to the

correct dataset. ,
The three samples provide an insignificant improvement in the evaluations.

A.2 Evaluation on a sample

Table 6
35 POINTS GENETIC NN CURVE ESTIMATION
PROGRAMMING (LR)
Sample1 | Pred(0.25) 314 31.43 28.57
(9,40) Mmre 1.199 1.1381 0.8363
Sample2 | Pred(0.25) 314 25.71 25.71
(7,40) Mmre 0.485 0.6045 0.494
Sampie3 | Pred(0.25) 28.6 31.43 20.0
(8,40) Mmre 1.029 1.0621 0.804

—

Appendix B. Plots of the curves for DT1 to DT4.

Figures 3 to 10 in next pages.
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