ACM SIGSOFT

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 46

STRUCTURED DEVELOPMENT OF GRAPH-GRAMMARS FOR ICON
MANIPULATION

José Javier DOLADO
Facultad de Informdtica, 20.080 - San Sebastin, Spain.

ABSTRACT. In this work we are showing a structured process to build a grammar for
icon manipulation. We presuppose that the object to be manipulated in the computer screen
can be stated as a set of relations among its parts. We describe a procedure (0 generate a
program that manipulates the object, guaranteeing that only objects with those properties
will be constructed, and that every instance of that object is allowable. The formation rules
for the object are stored in terms of attributed graph-grammars productions.

Keywords: programmed graph-grammars, visual editors development, icon manipulation,

reusable software engineering techniques.

I. INTRODUCTION

The use of syntax-directed editors for visual
programming is well-known, and with that purpose
have been applied in [1], [10] and [13]. We are
interested in developing these editors in a systematic
way for a specific area. In that respect we state the
given work in [2], where they show a process to
automatically generate visual syntax-directed editors.
The example and main thrust they give is for a
conventional programming language, although noting
that the applied area also includes the structured and
unstructured graphs. In this way our attention is
explicitly directed according to N.C. Shu [15, p.12] to
the "diagrammatic and iconic systems", and according
10 B.A. Myers [14, p.110] to "flowcharts, graphs and
graph derivatives" specification techniques.

The other basis for our approach was founded in
{11}, {12]. There the use of attributed programmed
graph-grammars -APGG- is proposed as an
environment to develop syntax-directed editors for
graphics [12], being in this case the analyst who
develops the grammar, based on his or her experiences
and other examples of grammars. The purpose of this
paper is precisely to aid the development of any
grammar.

The structured approach we propose here for that
development consists of a translation to a programmed
graph-grammar the whole set of relations that define
an object. Afterwards, the grammar only allows to
build correct objects. Moreover, at each step it can be
known the allowed actions to complete the defined
object. Some previous works of the author have shown
the feasibility of this approach with a specific type of
symbolic methodology (8], {9].

The first step of the method is to define the
properties of a specific diagram. Second, and
associated to the previous diagram, a graph-grammar

and a control program are designed. This set is
configurated in such a way that it allows the basic
manipulation operations of a diagram (addition and
deletion).

In Section II we make some observations about the
diagrams we deal with and how to define them. In
Section III we present the APGG and the necessary
process to construct a grammar that manipulates the
diagram defined through the procedure expressed in
paragraph II.1. In Section IV we give an example of
the use of this method.

II. DESCRIPTION OF A DIAGRAM

The main interest in a diagram is how the set of
symbols are organized in it. Given a diagram, the
relations that concern our work are the adjacency
relations, more specifically the adjacency between two
elements, which will be expressed graphically by
connectedness and proximity. Thus, we will say that if
two elements do not show graphically their relation,
there is no relation between them.

This relation -R- is defined as: aRb implies that
the elements a and b exhibit on the computer screen
some graphic characteristics (connectedness, etc.) that
show clearly a and b have some type of relation -at
least, to the specialist-. Therefore, we distinguish
between: a) what the relations among elements are; b)
how those relations are shown on the computer screen
(usually approaching and connecting symbols). What is
relevant 1o our work is the point a}, because part b)
depends on the efficiency of graphical routines of a
specific computer and the specific topic of the symbols
of the diagram.

Our aim is that a program can create and
compound diagrams correctly, independently of what
is their graphical expression and relative position of

ACM SIGSOFT

the objects on the screen. Other routines will do this
properly. The basic scheme which allows the
interaction with the software in our framework is the
"direct manipulation” approach, assisting the user with
appropriate messages in the application of the rules.

The simplest operations to be considered are

» addition of a symbol, a new symbol is attached to

the host-graph. Only one relation R is manifested

at this time.

+ addition of another relation R between symbols

already existent (to connect symbols or to approach

them).

The reciprocal operations are

» deletion of a relation. It implies the deletion of a

coupling (and maybe graphical rearrangement).

» deletion of a symbol. It implies the deletion of a

node and every arc connected to it.

The following paragraph is devoted to make
concrete these operations over a procedure so that be
as general as possible. In Figure 1 the operations are
expressed in the form of graph-grammars productions
{5], [12]. Addition and deletion operations previously
defined are supported by the transformations of Figure
1. So we should adapt the entity's definition to those
classes of operations, obtaining a set of productions in
which every component is defined.

O—O
O O

1) @ n=
2ROND)

Figure 1. Four classes of operations: 1) addition of node 2 to
node 1; 2) addition of a relation between 1 and 2; 3) deletion
of arelation between 1 and 2; 4) deletion of node r

11.1. Definition of Graphical Entities.

The entities will be defined describing their parts.
Amongst the parts, so far, only relations in number
and type are stated. The basic procedure for defining
graphical entities is as follows

Pr T N

begin
1) define the list of different components -symbols-
2) for each component -symbol- define its possible
adjacents
3) define for each symbol the maximum and
minimum number of adjacents
4) define forbidden combinations of symbols

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 47

end.

An attributed graph will support this information.
The task i1s to design a grammar with a set of
productions in the form of Figure 1, in such a way tha.
we can build whichever diagram defined through
Procedure DEFINE (see II1.2).

[II. PROGRAMMED GRAPH-GRAMMARS FOR ICON
MANIPULATION

I1.1. Programmed graph-grammars.

An attributed graph-grammar is a grammar such
that its formation rules are defined in terms of graphs
{61, [7]. Such rules, named productions, are composed
of five components.

» two graphs, the left-hand and right-hand side of a
production (it is a straightforward exiension of the
string-grammars case).
» the embedding transformation takes into account
the peculiarities arising from subgraph
replacement. In our case, this embedding
transformation is trivial because the introduction
of new elements does not mess up the original
graph.

*» by means of the applicability predicate certain

conditions to fulfill by the left-hand side of a

production in order to be replaced by the right-

hand side can be formulated. This enables us to
express constraints on the attributes.

+ a finite set of partial functions: the node auribute

transfer functions.

The direct derivation of a graph g’ from a graph g
by means of a production p is defined by the following
procedure [S]

1) Check whether the left-hand side of the
production occurs as subgraph in g and check whether
the applicability predicate is "True" for this
occurrence. If both conditions are fulfilled go to step
2).

2) Replace the left-hand by the right-hand side.

3) Attach attributes to the inserted right-hand side
according to the set of functions.

A programmed graph-grammar specifies in a
control program (or control diagram) (Fig. 2) how the
rules (productions) should be organized in order to
derive a specific result. The entities delineated are the
set of all attributed-graphs which can be derived in the
following way: .

1) Start with an initial graph.

2) Apply productions in an order defined by the
control program. After successful application of a
production, a Y-edge (yes) in the control diagram is
tracked, while the tracking of a N-edge (no) is caused
by the failure of a production. Adding explicit control
by programming, we also choose simple embedding
transformations for the underlying graphs rewriting
steps.

p3) Stop the derivation sequence when the final node
Z in the control program has been reached.

ACM SIGSOFT

Y 1

Y N 1
o‘oao
3

a)

Rl e
ZTZ)] »

b}
Figure 2. Matrix b) corresponding to the control program a)

In a control program we state the grammar which
constructs our desired graphs. The control program
defines the permitted rules at each step. Examples of
programmed graph-grammars can be found in [5], [6]
and [7].

111.2. Designing the grammar for our specific task.

The set of productions is obtained defining -in the
general case- 2n+2 productions, being n the number of
different graphic symbols (n for addition of a node, n
for connecting two nodes in the graph, I for symbol
deletion and I for connection deletion). The
applicability predicates are built depending on the
relations among elements and the cardinality of the
adjacencies; the embedding transformation is trivial
and the attribute transfer functions depend on the
attributes. The following extension of an APGG comes
from the specific considerations done about the two
attributes considered here, number of adjacents and
their types:

a) number of adjacents: the maximum number is a
property that can be expressed in the applicability
predicate of a production. To ensure the minimum
number of adjacents we are obliged to apply
productions, and the diagram is not valid until such
characteristic is verified in the corresponding predicate
(see procedure PUSH-TEST below).

b) type of nodes: since the I1; are referred -in part-
to the type of node, given the failure of a production
we can associate the applicability of the next
production to every symbol. This will imply the
definition of table TB associating productions to
symbols.

So, once the set of productions is obtained, two
matrices remain to be constructed: @) TB defines for
every element the productions that can be used to
modify their attributes; b) CP is the control program
1o order the productions. Let P be a finite set of
productions and ST a stack. A control program -CP-
over P is a graph with the set P u {O, Z, PT} as node
iabels and the set [Y, N} as edge labels. Furthermore,
the following conditions hold true.

- O and Z are the initial and final node

- P is the set of productions

- ST is a stack which contains graph nodes

- PT is an action PUSH-TEST

PUSH: 'push v', being v the set of nodes involved
in the last production P; applied to the graph. When
dealing with node deletions the instruction is "push v
except the node deleted". After apply TEST.

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 48

TEST is a procedure which consists of

a) stack -ST- condition: empty or not.

b) test of nodes in the stack. The test consists of

testing if the node attribute has fulfilled its

lower limit.

¢) application of a production depending on the

node n. This is accomplished by a matrix TB.

TB contains the productions which are to be

applied when the test is true for a node n. After the
stack has been treated, we can continue in every
production. The set v is pushed to the stack in order to
check if some axiom of v has been violated, thereby
making a requirement to apply productions to restore
the node.

Let us call EAPGG -Extended APGG- an APGG
with the table TB, stack ST and with the PUSH-TEST
procedure applicable to the nodes of the CP.

The purpose of defining the stack ST and the table
TB is 10 consider the problem that appears when
programming the numerical lower limit of a node. A
node is popped out the stack when its properties have
been restored.

The CP must be designed with these characteristics:

« allowing the application of Pj,....., Py, Z after O,

Pi,eeeeer Pp;

+ applying productions to every node until they

fulfill every characteristic set forth in the

description. So, we must apply PUSH-TEST after
each production that is able to alter a node.

* In order to empty out the stack ST apply PUSH-

TEST just before reaching Z. The schemes are

shown in Figure 3 and the correctness of these

considerations are explained next.

H1.3. Correctness

Next, we demonstrate that these last conditions are
necessary and sufficient to construct every possible
graph and only that kind of graph (those graphs that
are defined through Procedure DEFINE).

Thus, we are looking for the way in which every
characteristic defined in Proc. DEFINE is stated in a
EAPGG. More formally, we want to construct an
EAPGG in such a way that the language generated is
the set of graphs of Proc. DEFINE. The next
proposition establishes the skeleton of a grammar G
generating the language L in such a way that L is the
set of attributed graphs fulfilling the properties of
Proc. DEFINE. Let us call DL that language and GDL
its grammar. This proposition is similar, but more
general than, that of [7], except that here we impose
conditions over a stack ST.

Proposition. Given an EAPGG with the CP verifying

a) every production can be used at any node

b) every graph generated by CP fulfills Procedure

DEFINE

¢) The stack ST of CP is empty when node Z is

reached
then this EAPGG is a GDL, i.e., generates the
language DL.

ACM SIGSOFT

Proof. An EAPGG is a GDL if it is able 10 construct
every DL graph, and if every graph that can be
constructed is an DL. This is true because

- if the stack ST is empty then every node of the

diagram has been treated

- if every diagram fulfills the properties stated

through Proc. DEFINE, it is a correct diagram

- if every production can be used at any node we

are able 1o construct every desired diagram.

So, the task thereafter is to transfer 1o a control
program CP the structures collecting the
characteristics a), b) and c). Part a) is achieved by
allowing the application of Py,....., P, Z after O,) ST
Pn; b) is fulfilled by applying productions to every
node until they fulfill Proc. DEFINE. So, we must
apply PUSH-TEST after each production that is able to
alter a node. In order to empty out the stack ST
(condition ¢)) apply PUSH-TEST just before reaching
Z. The schemes are shown in Figure 3. In [7] the
previous productions used were taken into account, and
that constrained the next productions to apply. In order
to generalize the ideas, the stack contains nodes instead
of productions.

At this moment it only remains to define the set of
productions to apply for each type of node. The
matrix TB is constructed in the following manner (its
skeleton is given in Figure 3 e)):

a) to select among the list of symbols, those which
have a lower limit of adjacents distinct of 0 (zero).

b) 1o select among the set of productions, those
which alter that limit, including the node deletion
production.

When the set of productions and CP have been
built, it only remains to define the interface and to
flow through the steps that follow: a) start with node
O; b) apply productions following the indications of
the CP until node Z is reached.

IV. EXAMPLE

In this section we are going to demonstrate how to
proceed with this method when a programmer needs a
software for icon manipulation. The example is a
simple diagram, but containing every characteristic
described.

Given four geometric figures: Circle -C-,
rectangle -L-, rthombUs -U-, Arrow -A- with the
following

« adjacencies: C-A, C-L, A-C, L-C, L-U, L-L, U-L,
* with the following limit in the number of adjacents
-adj-: 2 <adj(C) < 4; 1< adi(A) < 3;
0 < adj(L) < eo; < adj(U) < e,
(meaning, for example, that a symbol C (circle) can
not have less than 2 and no more than 3),
+ with the following forbidden interactions:
rectangle-rhombus
we will obtain a program for manipulating those icons
through 1) diagram definition, 2) rules of the

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 49

grammar definition, and 3) control program and TB
definition.

PUSH-TEST
push n

N T pmpty? e P1,..Pn, Z

° no
pop ST

adj(n) < lower ?
yes

spply TB(type(n))

a)
Y Y P1, . PnZ
Pl, .., Pn
N

P1...Pk-1,Pk+1,..... Pn, Z

b)
c)
symboll Pi,....Pk
PUSH-TEST Q symbol2 Pjoeeriaens Pl
d)
symboln
e) Matrix TB

Figure 3. Subschemas of the control program: a) PUSH-
TEST; b) initial node; c) intermediate node of the CP; d) last
node of the CP; e) table TB

IV.1. Diagram definition. (Procedure DEFINE)

Step 1: Define the list of symbols in question: {C, U,

A, L)

Step 2: Definition of relations -R- among them
CRA,CRL ARC,LRC,LRU,
LRL,URL.

Step 3: Definition of the number of adjacents -adj-.
For all node n of type "circle", neC, 2< adj(n) <4;
similarly ne A, 1 <adj(n) <3;

ne L, O< adj(n) <es;
ne U, O< adj(n) < oo;
Step 4: Definition of forbidden combinations:
LRUURL.

IV.2. Rules of the grammar.

Left graphs and right graphs of the productions are
shown in Figure 1. The left graph is replaced by the
right graph within the host graph if the production is
applicable.

ACM SIGSOFT

We obtain 10 productions which allow the
graphical operations of addition and deletion: 4 for
adding each one of those different symbols, 4 for
connecting a symbol already added to another one, 1
for deleting a symbol and 1 for deleting of a
connection. Predicates (IT;) express in a logical manner
the restrictions in order to apply the corresponding
production P;, and have the following form. Here
type(1) and type (2) refer to the types of the nodes
involved in a production, as it is marked in Figure 1.
To avoid unnecessary details we are going to condense
the characteristics of Step 4 by "Steps".

+ Addition of a node

I1;: (type(1)=C A (type(2)= A v type(2)= L) A

(adj(1) < 3) A Stepq

This means that in order for Pl to be applicable,
[T, must be "true", i.e., the type of node 1 must be C
and (A) the type of node 2 can be A or (v) L, and (A)
the number of adjacents of node 1 must be less than 3;
also it will fulfill the specifications of Steps.

1, (type(1)=A A type(2)=C A adj(1) <2) A

Step4

I1,: (type(1)=L A (type(2)= C v type(2)=L v

type(2)= U))a Steps

T,: (type(1)=U A type(2)= L) A Steps
. Additi 2 relati

Is: (type(1)=C adj(1)<3) A ((type(2)=A A
adj(2)<2) v type(2)=L)
g (type(1)=A A adj(1) <2) A (type(2)=C A
adj(2) < 3)
II5:(type(1)=L A (type(2)=C A adj(2)<3) v
(type(2)=L) v (type(2)=U)
Ig: (type(1)=U A type(2)=L)
» Deletion of a relation (Pj0) and deletion of a node
(Py).
[Ty and Ilyo: true.
We can always delete a node or a relation.

IV.3. Control program.
Its skeleton is given by
a) Productions which need PUSH-TEST
P;....P7, Pg and Pyp; after PUSH-TEST completed,
apply one of Py....Pyo, Z.
b) Productions which don't need PUSH-TEST
Pg : case of Pg
-Y: P}...pm.
- N: Py...P, Pg, PIO-
¢) Matrix TB
1) types of nodes involved in productions which
can modify its lower limits: C, A
2) for each symbol listed in 1) (C, A) obtain the
productions in which the adjacents are modified (Fig.
4 b). Steps a) and b) let us to depict the Control
Program Matrix of Fig 4 a)
« 'PT" indicates 'apply PUSH-TEST between P;
(row) and Py (column)'
« 'YN' indicates 'apply Py after P; either Yes or No
in P’
« 'Y indicates 'apply Py after P; only under Yes in

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 50

Py
* square empty: transition not possible

1 2 3 45 6-7 8 9 10 2

—

PT|PT| PT| PT| PT| PT| PT| PT| PT{ PT{ PT
PT|{PT|PT|PT|{PT|PT|{PT|PT|{PT|PT|PT
PT{PTIPT{PT|PT|PT|PT|{PT|PT{PTIPT
PT{PT|PT|PT|PT|PT|PT|PT|PT|PT|PT
PT|PT|PT|PT|PT|PT|PT|PT|PT|PT|PT
PT{PT|PT|PT|PT|{PT|PT|PT|PT|PT|PT

pT| PT{PT|PT{PT|PT|PT|PT|PT|PT|PT
YNYN | YNl YNIYN | YN YN v | YNF YN

DS - L B G IR S)

PT| PT| PT| PT| PT| PT{ PT| PT| PT| PT| PT
PT{ PT| PT| PT| PT| PT| PT| PT| PT| PT| PT
YIYIY Y Y LY YLYY]Y

—
O o v =™

a)

C| P1,Ps, P6, P7, P9
A| P2, PS5, P6, P9
b)

Figure 4. Matrices of the control program and table TB of the
example

a)

c)

Figure 5. An example. See text for productions used.

IV.4. The grammar in use.

The CP and TB are shown in Figures 4 a) and b).
In Figure S a) the initial graph S is a node type C and
the control is in node O. Proceeding as CP indicates,
we obtain Figure 5 b) from the initial graph S (C) -
between parenthesis the type of node involved-,
app]ylng Pl(A)' PZ(C)v Pl(A)v P5v PI(L)V P3(U)7 Pl(L),
P, P4(L) and P3(L). Figure 5 c) is derived from
Figure 5 b) applying P1o(L), P10o(C), P1o(A), P1o(A),
Pi(L), P47, Py(L) and P7. This is "a correct way",
obviously there are other possible paths, and matrices
TB and CP will assist at each step.

ACM SIGSOFT

IV.5. A real example of this method

An effective use of this method has been done in
the definition of a modeling and simulation technique
(8. The environment to be developed consisted of
considering the modeling phase as the activity of
graphic joining of symbols, 50 as to avoid the text
editing phase. The structural correctness had to be
ensured, and an EAPGG was designed for that
purpose. In [9] the process was explained as a general
framework for the development of methodologies. For
the construction of the corresponding icon
manipulation program the steps described in Section
1T have been followed, giving these results:

* 5 classes of productions (considerations about how

to draw directed arcs between the icons were also

taken into account)

* icon (symbol) definition: a total of 12 icons were

defined

+ definition of relations R among the icons;

considering specific cases of the methodology, this

led to 37 productions (and, consequently, 37 IT;)
 definition of the adjacents and forbidden
interactions: we established the adequate
combinations between operands and operators

Since in the I1; are described, in a logical form,
the applicability characteristics, it was feasible to give
a message about the failure of a production (a wrong
connection).

The framework chosen to implement these ideas
has been the object-oriented system in the Symbolics
3640 machine, according to the scheme presented in
the book [4, chap. 7). In this way the symbols and arcs
are objects, and the I1; are functions to apply on the
elected nodes (through the mouse gestures or menu).

This method was integrated into the development
process of a visual programming language. In that task
we included the stage of designing the language, testing
and implementing it. The purpose was to build a
graphical software for modeling and simulation in a
specific way, in such a manner that no knowledge of
computer programming was required, and the system
was able to provide some explanations and aids in the
process of modeling process. Some restrictions come
from the fact that the icons only are intended to
represent mathematical expressions, and thus the
semantical level does not cover the requirements of
general-purpose languages.

V. CONCLUSION

The present scheme can be applied to the
implementation of some specification methods for
visual representations, provided they can be expressed
as a set of symbols and combination rules -a
recopilation of specification techniques can be found in
Berztiss [3]-.

What we think is important is how the steps are
structured and formalised so that other tools could be
constructed in the same way, since it is configurated a

SOFTWARE ENGINEERING NOTES vol 16 no 3

Jul 1991 Page 51

specific environment for developing syntax-directed
editors by APGG. Although the design of a
programmed graph-grammar is fast compared to an
ad-hoc programming of the graphical tool for a
method, there is no aid to assist in such design. In this
way we think we provide a process for considering the
APGGs as a generally reusable software engineering
technique, as was quoted in [12, p. 225).

In this article a quick way of developing programs
for icon manipulation has been demonstrated. The
application of these ideas carries on the rapid
prototyping of icon manipulation programs, resulting
in reliable software. Direct extensions can come from
the consideration of more complex transformations
and an increase in the number and type of the
attributes.

REFERENCES

{11 M.B. Albizuri-Romero, "GRASE - A Graphical Syntax-
Directed Editor for Structured Programming”, SIGPLAN
Notices, Vol. 19, n. 2, pp. 28-37, Feb. 1984

(2] F. Arefi et al. "Automatically Generating Visual Syntax-
Directed Editors", Comm. of the ACM, March 1990, Vol.
33, n. 3, pp. 349-360

[3] A. Berztiss, "Formal Specification Methods and
Visualization”, Chap. 4 of S.K. Chang (ed.), Principles of
Visual Programming Languages, Prentice-Hall, 1990

4] H. Bromley and R. Lamson, "LISP LORE: A Guide 1o
Programming the Lisp Machine”, 2nd ed., Kluwer
Academic, 1987

[5]1 H. Bunke, "Atributed Programmed Graph Grammars and
Their Application to Schematic Diagram Interpretation”,
IEEE Trans. on Pat. Anal. and Mach. Intel. Vol. 4, n. 6,
Nov. 1982, pp. 574-582

[6] H. Bunke, "Programmed Graph Grammars", Lect. Not. in
Comp. Sci., Vol. 73, pp.155-166, Springer-Verlag 1979

[7] 1. Dolado et al., "Formal Manipulation of Forrester
Diagrams by Graph Grammars”, [EEE Trans. on Syst.,
Man and Cyb., Vol. 18, n. 6, pp. 981-996

[8] J.J. Dolado, “An Interface for Qualitative Simulation of
System Dynamics Models" (in Spanish), unpublished Ph. D.
dissertation, 1989, University of the Basque Country, Spain

[9] J.J. Dolado, "A Framework for the Automated Development
of Graphical Mathematical Software for Systems Modeling”,
Proc. of the 1989 Int. Conf. of the IEEE Syst. Man and
Cyb. Soc., pp . 872-874

(10] M. Edel, "The Tinkertoy Graphical Programming
Environment", IEEE Trans. on Soft. Engin., Vol. 14, No.8&,
pp. 1110-1115, Aug. 1988

[11] H. Géuler, "Attributed Graph Grammars for Graphics”, in
Graph-grammars and their Application to Compuser Science,
Lect. Not. in Comp. Sci., Vol.153, pp.130-142, Springer-
Verlag 1983

[12] H. Géttler, "Graph Grammars and Diagram Editing", in
Graph-grammars and their Application to Computer Science,
Lect. Not. in Comp. Scie., Vol. 291, pp. 216-231, 1987,
Springer-Verlag

{13] K. Halewood and M.R. WoodWard, "NSEDIT: a Syntax-
Directed Editor and Testing Tool based on Nassi-
Shneiderman Charts", Software - Practice and Experience,
18 (10), 987-998 (1988)

[14] B.A. Myers, "Taxonomies of Visual Programming and
Program Visualization”, Journal of Visual Languages and
Computing, Vol. 1, n. 1, March 1990, pp 97-123.

[15] N.C. Shu, "Visual Programming", Van Nostrand Reinhold,
1988

