
Software Engineering from an Engineering Perspective:
SWEBOK as a Study Object

 Alain Abrana,b, Kenza Meridjib, Javier Doladoa
a Universidad del País Vasco/Euskal Herriko Unibertsitatea

b Ecole de technologie supérieure - Université du Québec

Abstract

Software engineering, as a discipline, is not

yet as mature as other engineering disciplines and

it lacks criteria to assess, from an engineering

perspective, the current content of its body of

knowledge as embedded in the SWEBOK Guide.

What is then the engineering knowledge that

should be embedded within software engineering?

Vincenti, in his book ‘What engineers know and

how they know it’ has proposed a taxonomy of

engineering knowledge types. To investigate

software engineering from an engineering

perspective, these Vincenti’s categories of

engineering knowledge are used to identify

relevant engineering criteria and their presence in

SWEBOK.

Keywords – Software Engineering,

SWEBOK, ISO 19759, Vincenti, Engineering

Knowledge Types

1. Introducción

"Engineering is a problem-solving

activity…dealing mainly with practical

problems" (Vincenti [6]).

1.1. Overview

Software engineering (SE) is defined by the IEEE

as: “The application of a systematic, disciplined,

quantitative approach to the development,

operation and maintenance of software, the

application of engineering to software’ (IEEE

610.12) [3]. Of course, software engineering when

compared to mechanical and electrical

engineering is still an emerging engineering

discipline not as mature as other classical

engineering disciplines.

Much of the research work in software

engineering has focused to date on developing

methods, techniques and tools; much less research

work has been carried out on:

exploring the engineering foundations of software

engineering, including identifying the software

engineering fundamental principles (FP), and next

investigating on to apply them in research and

practice.

Developing an international consensus on the

software engineering body of knowledge and next

ensuring a comprehensive coverage from an

engineering perspective.

1.2. SE body of knowledge

 Achieving consensus by the profession on a core

body of knowledge is a key milestone in all

disciplines, and has been identified by the IEEE

Computer Society as crucial for the evolution of

software engineering towards professional status.

The Guide to the Software Engineering Body of

Knowledge (SWEBOK Guide) [2,4]. The content

of each knowledge area in the 2004 version of

SWEBOK Guide was developed by domain

experts and extensively reviewed by an

international community of peers. This Delphi-

type approach, while very extensive and paralleled

by national reviews at the ISO level, did not

specifically address the engineering perspective,

nor did it provide a structured technique to ensure

the completeness and full coverage of

fundamental engineering topics. Therefore, it did

not provide sufficient evidence that it had

adequately tackled the identification and

documentation of the knowledge expected to be

present in an engineering discipline.

 For the next update of the SWEBOK Guide

research work has been initiated to analyze the

content of the SWEBOK Guide in a structured

way in order to understand to which extent it does

indeed include knowledge types typical of

engineering disciplines, and to identify

engineering knowledge could be missing. A

challenge of course consists in figure out the

criteria to be verified from an engineering

perspective since, in the traditional engineering

disciplines, such criteria have not been explicitly

described in the generic engineering literature.

 This paper presents an approach to identify

engineering criteria to support such research

needs. This paper is organized as follows: Section

2 introduces Vincenti’s engineering viewpoint,

and section 3 presents a set of models developed

to facilitate the use of Vincenti’s concepts for the

analysis of an engineering discipline. Section 4

comments on a mapping of Vincenti’s engineering

design concept to the SWEBOK Guide software

engineering design concept and on the Quality

knowledge area. Section 5 presents a summary

and future research directions.

2. Vincenti’s Engineering Viewpoint

2.1. Overview and context

Vincenti, in his book [6], What engineers know

and how they know it, proposed a taxonomy of

engineering knowledge based on the historical

analysis of five case studies in aeronautical

engineering covering a roughly fifty-year period.

He identified different types of engineering

knowledge and classified them in six categories:

1 - Fundamental design concepts,

2 - Criteria and specifications,

3 - Theoretical tools,

4 - Quantitative data,

5 - Practical considerations, and

6 - Design instrumentalities.

 Furthermore, Vincenti stated that this

classification is not specific to the aeronautical

engineering domain, but can be transferred to

other engineering domains. However, he did not

provide documented evidence of this applicability

and generalization to other engineering

disciplines, and no author could be identified as

having attempted to do so either.
Vincenti provides a categorization of engineering

design knowledge and the activities that generate

it. However, the divisions are not entirely

exclusive; some items of knowledge can contain

the knowledge of more than one category. From

Vincenti’s definitions of each engineering

knowledge-type category, a number of

characteristics were identified; the goals of each

category have also been identified, and these are

listed in Table 1.

2.2. Related work

Maiebaum [5] was one of the first to identify the

potential usefulness of Vincenti work for software

engineering. However, since this classification of

engineering knowledge had not been used to

analyze other engineering disciplines, Abran &

Meridji [1] modeled the embedded knowledge

types descriptions for a partial analysis of the

SWEBOK Guide. In particular, they investigated

the engineering design concepts since at first

glance there seemed to be a disconnect between

the SWEBOK Guide design concept and

Vincenti’s description of engineering design. This

is discussed in the next section.

3. Modeling of engineering knowledge

3.1. Overview

 In [1] it was observed that Vincenti’s categories

are not mutually exclusive: it is therefore

important to understand the relationships between

them. Their initial modeling of Vincenti’s

categories of engineering knowledge is presented

in Figure 1. This figure illustrates that, in seeking

a design solution, designers move up and down

within categories, as well as back and forth from

one category to another.

Table 1. Vincenti: Engineering knowledge categories and goals

Figure 1. Vincenti’s classification of engineering knowledge

Engineering

Knowledge Category

Goals

Fundamental design

concepts

Designers embarking on any normal design bring with them fundamental

concepts about the device in question.

Criteria and
specification

To design a device embodying a given operational principle and normal

configuration, the designer must have, at some point, specific requirements in

terms of hardware.

Theoretical tools To carry out their design function, engineers use a wide range of theoretical

tools. These include intellectual concepts as well as mathematical methods.

Quantitative data Even with fundamental concepts and technical specifications at hand,

mathematical tools are of little use without data for the physical properties or

other quantities required in the formulas. Other kinds of data may also be needed

to lay out details of the device or to specify manufacturing processes for

production.

Practical

considerations

To complement the theoretical tools and quantitative data, which are not

sufficient. Designers also need less sharply defined considerations derived from

experience.

Design

instrumentalities

Besides the analytical tools, quantitative data and practical considerations

required for their tasks, designers need to know how to carry out those tasks.

How to employ procedures productively constitutes an essential part of design

knowledge.

 Figure 2: Relationships between theoretical tools & quantitative data

Normal
configuration

Operational
principle

Normal
technology or

design

Figure 3: Relationships between normal configuration, operational principles & normal design

Requirement
Specification

Design TestingConstruction Maintanance

Design

Engineering cycle

Sofware development
life cycle

Figure 4. Design according to Vincenti vs. design in the software engineering life cycle

It was also noted that three categories (theoretical

tools, quantitative data and design

instrumentalities) are related in the following

manner: theoretical tools guide and structure the

data, while quantitative data suggest and push the

development of tools for their presentation and

application – see Figure 2. Furthermore, both

theoretical tools and quantitative data serve as

input for design instrumentalities, while

appropriate theoretical tools and quantitative data

are needed for technical specifications. This

section presents some of their models to illustrate

the relationships across these engineering

concepts.

3.2. Fundamental design concepts

 The goal of ‘fundamental design concepts’,

according to Vincenti, is as follows: “Designers

setting out on any normal design bring with them

fundamental concepts about the device in

question,” which means the definition of

fundamental concepts related to the device by the

designer. Fundamental design elements are

composed of four elements; operational

principles, normal configuration, normal

technology and concepts in people’s minds. At

first, these concepts exist only in the designer’s

mind:

– Operational principles define the essential

fundamental concept of a device. “How its

characteristic parts… fulfill their special functions

in combination to [sic] an overall operation which

archives the purpose.” The operational principles

must be known by the designers first and

constitute the basic components for the design,

whereas operational principles are abstract, and

the design moves from abstract concepts to

precise concepts.

– Normal configuration is “the general shape and

arrangement that are commonly agreed to best

embody the operational principle.”

– Normal technology is “the improvement of the

accepted tradition or its application under new or

more stringent conditions.” Design, in Vincenti,

“denotes both the content of a set of plans (as in

the design for a new airplane) and the process by

which those plans are produced.” There are two

types of design: normal design and radical

design. The latter is a kind of design that is

unknown to the designer, and where the designer

is not familiar with the device itself. The designer

does not know how the device should be arranged,

or even how it works. The former is a traditional

design, where the designer knows how the device

works. The designer also knows the traditional

features of the device. This type of design is also

the design involved in normal technology, which

was mentioned earlier. In conclusion, “normal

design is evolutionary rather than revolutionary.”

Finally, a normal configuration and operational

principles together provide a framework for

normal design – Figure 3. In Vincenti, a normal

technology, or design, is part of a normal

configuration and of a related operational

principle.

3.3. Criteria and specifications

 The goal for ‘criteria and specifications’ can be

expressed as follows: “To design a device

embodying a given operational principle and

normal configuration, the designer must have, at

some point, specific requirements in terms of

hardware.” The designer designs a device meeting

specific requirements which include a given

operational principle as well as a normal

configuration. At first, the design problem must be

well defined. Then, the designer translates general

quantitative goals into specific quantitative goals:

the designer assigns values or limits to the

characteristics of the device which are crucial for

engineering design. This allows the designer to

provide the details and dimensions of the device

that will be given to the builder. Furthermore, the

output at the problem definition level is used, in

turn, as input to the remaining design activities

that follow. These specifications are more

important where safety is involved, as in the case

of aeronautical devices. The criteria on which the

specifications are based become part of the

accumulating body of knowledge about how

things are done in engineering.

3.4. Theoretical tools

 Theoretical tools are used by engineers to carry

out their design. The goal of the ‘theoretical tools’

category is expressed by Vincenti as follows: “To

carry out their design function, engineers use a

wide range of theoretical tools. These include

intellectual concepts as well as mathematical

methods”. Intellectual concepts (such as design

concepts, mathematical methods and theories) are

tools for making design calculations. Both design

concepts and methods are part of science.

 In the first class of theoretical tools are

mathematical methods and theories composed of

formulas, either simple or complex, which are

useful for quantitative analysis and design. This

scientific knowledge must be reformulated to

make it applicable to engineering. The

engineering activity requires that thoughts be

conceived in people’s minds.

 In the second class of theoretical tools are

intellectual concepts, which represent the

language expressing those thoughts in people’s

minds. They are employed first in the quantitative

conceptualization and reasoning that engineers

have to perform before they carry out the

quantitative analysis and design calculations, and

then again while they are carrying them out.

3.5. Quantitative data

 The goal of ‘quantitative data’ is to lay down

“the physical properties or other quantities

required in the formulas. Other kinds of data may

also be needed to lay out details of the device or

to specify manufacturing processes for

production.” Besides fundamental concepts and

technical specifications, the designers also need

quantitative data to lay out details of the device.

These data can be obtained empirically, or in

some cases they can be obtained theoretically.

They can be represented in tables or graphs.

 These data are divided into two types of

knowledge: prescriptive and descriptive.

� Descriptive knowledge is “knowledge of how

things are.” It includes physical constants,

properties of substances and physical

processes. In some situations, it refers to

operational conditions in the physical world.

Descriptive data can also include

measurement of performance.

� Prescriptive knowledge is “knowledge of how

things should be to attain a desired end.”

An example might be: “In order to

accomplish this or organize this, arrange

things this way.”

 Operational principles, normal configuration

and technical specifications are prescriptive

knowledge, because they prescribe how a device

should satisfy its objective.

3.6. Practical considerations

 According to Vincenti, the goal of ‘practical

considerations’ is “to complement the role of

theoretical tools and quantitative data which are

not sufficient. Designers also need for their work

less sharply defined considerations derived from

experience.” This kind of knowledge is

prescriptive in the way that it shows the designers

how to proceed with the design to achieve it.

Vincenti refers to practical considerations as

constituting non codifiable knowledge derived

from experience, unlike theoretical tools and

quantitative data which are very precise and

codifiable because these are derived from

intentional research. This category of engineering

knowledge is needed by designers as a

complement to theoretical tools and quantitative

data. These practical considerations are learned

on the job, rather than at school or from books.

They are not to be formalized or programmed.

They are derived from design, as well as from

production and operation. The practical

consideration derived from production is not easy

to define and cannot be codified, and a prototype

is highly recommended to check the designer’s

work. An example of a practical consideration

from operation is the judgment that comes from

the feedback resulting from use.

3.7. Design instrumentalities

The goal of ‘design instrumentalities’ in the

engineering design process required for the

engineer’s tasks is “to know how to carry out

those tasks. How to employ procedure

productively constitutes an essential part of

design knowledge.” Having the analytical tools,

quantitative data and practical considerations at

hand, designers also need procedural knowledge

to carry out their tasks, as well as to know how to

employ these procedures.

Design instrumentalities contain instrumentalities

of the process, the procedures, judgment and ways

of thinking. The latter are less tangible than

procedures and more tangible than judgment; an

example of ways of thinking is ‘thinking by

analogy’. Judgment is needed to seek out design

solutions and make design decisions.

4. Analysis of the SWEBOK using

engineering knowledge types concepts

4.1. The engineering design process in Vincenti

According to Vincenti, the engineering “design”

concept “denotes both the content of a set of plans

(as in the design for a new airplane) and the

process by which those plans are produced.” In

Vincenti’s view, design is an iterative and

complex process which consists of plans for the

production of a single entity, such as an airplane

(device), how these plans are produced, and,

finally, the release of these plans for production.

 Vincenti mentions that there are two types of

design in engineering, normal and radical. In the

former, the designer knows how the device works,

how it should be arranged and what its features

are. In the latter, the device is new to the engineer

who is encountering it for the first time.

Therefore, the engineer does not know how it

works or how it should be organized.

 He also mentions that design is a multilevel and

hierarchical process. The designer starts by taking

the problem as input. The design hierarchies start

from the project definition level, located at the

upper level of the hierarchy where problems are

abstracted and unstructured. At the overall design

level, the layout and the proportions of the device

are set to meet the project definition. At level 3,

the project is divided into its major components.

At level 4, each component is subdivided. At level

5, the subcomponents from level 4 are further

divided into specific problems. At the lower

levels, problems are well defined and structured.

The design process is iterative, both up and down

and horizontally throughout the hierarchy.

4.2. The engineering process and the Design

concept in the SWEBOK Guide

The SWEBOK Guide is composed of ten

knowledge areas, each represented by one chapter

in the SWEBOK Guide. The Software

Requirements KA (KA) is composed of four

phases of software requirements: elicitation,

analysis, specification and validation. The

elicitation phase is the process of deriving

requirements through observation of existing

systems. Requirements specification is the activity

of transforming the requirements gathered during

the analysis activity into a precise set of

requirements. Software Requirements

Specifications describe the software system to be

delivered. In the requirements validation phase,

the requirements are checked for realism,

consistency and completeness.

 Software design is defined in [2,4] as both “the

process of defining the architecture, components,

interfaces, and other characteristics of a system or

component” and “the result of [that] process.”

Software design in the software engineering life

cycle is an activity in which software

requirements are taken as input to the software

design phase for analysis. “Software requirements

express the needs and constraints placed on a

software product that contribute to the solution of

some real-world problem.”

 The result will be the description of the software

architecture, its decomposition into different

components and the description of the interfaces

between those components. Also described will be

the internal structure of each component and the

related program.

4.3. Design KA: mapping between Vincenti

and the SWEBOK Guide

The analysis of the term ‘design’ in both Vincenti

and the SWEBOK Guide is presented in Table 4:

it can be observed that it is defined significantly

differently in the two documents, that is, design in

engineering according to Vincenti is not limited to

design as described in the SWEBOK Guide: in

Vincenti, it goes far beyond the scope of the

SWEBOK, that is: it is composed of the whole of

the software engineering life cycle, as illustrated

in Figure 8, whereas all the activities of software

life cycle, like the requirements phase, the design

phase, the construction phase and the testing

phase) map to a single phase in the engineering

cycle, that is, design. These activities do not

necessarily take place in the same order: for

instance, testing in engineering starts right at the

beginning, at the problem definition level, and

goes on until the final release of the plans for

production, while in the software engineering life

cycle, as defined generically in the SWEBOK

Guide, testing starts after the construction phase;

on the other hand, the set of V&V concepts are

spread out throughout the lifecycle in SWEBOK.

 The detailed mapping between the different

design levels in engineering and in the software

engineering life cycle is presented in Table 2.

4.4. Identification of engineering concepts in

the SWEBOK Software Quality KA

An analysis of the engineering content within the

SWEBOK Guide using one of its ten KAs as a

case study, that is, Software Quality is presented

[1]. This analysis is based on the models of

engineering knowledge described earlier. These

models give us a very descriptive analysis of the

various key elements contained in each of the

corresponding engineering knowledge areas. This

allows to make an appropriate mapping between

the different categories of the engineering

knowledge area and software quality. It helps in

identifying the engineering elements contained in

this topic, as well as the missing ones. As a result,

it looks into the software quality area from an

engineering perspective. Table 3 describes the

mapping between the corresponding

characteristics for the classification of engineering

knowledge and the related software quality topics.

This analysis can provide useful insights into

possible strengths and weaknesses of the software

quality topic: it helps categorize the knowledge

contained in the Software Quality KA of the

SWEBOK Guide: for instance, it covers all

categories of engineering knowledge from an

engineering viewpoint, but this does not mean that

it is complete and inclusive.

5. Summary

Software engineering, as a discipline, is certainly

not yet as mature as other engineering disciplines

and it lacks well recognized fundamental

principles, as well as criteria to assess, from an

engineering perspective, the proposals put forward

as statement of fundamental principles as well as

the current content of its body of knowledge as

embedded in the SWEBOK Guide. In this paper

we have looked into an approach to identified

engineering criteria that should be embedded

within software engineering. In particular, we

have looked at Vincenti at the taxonomy of

engineering knowledge types proposed by

Vincenti.

 In particular, various models of the

characteristics of the Vincenti’s knowledge type

have been illustrated. Next these concepts have

been used to gain some insights into the some of

the engineering concepts currently present and

documented in the quality knowledge area of the

SWEBOK Guide, but however labeled differently.

The work presented here has involved

investigating this engineering perspective, first by

analyzing the Vincenti classification of

engineering knowledge, and second by comparing

the design concept in Vincenti vs. the design

concept in the SWEBOK Guide.

 The result of this analysis was to show that the

design issue in Vincenti is not limited to the

design issue in the SWEBOK Guide: Design in

engineering according to Vincenti is not limited to

design as described in the SWEBOK Guide: it

goes beyond that, in that it is composed of the

whole of the software engineering life cycle.

 Finally, the SWEBOK Software Quality KA

was selected as a case study and analyzed using

the Vincenti classification as a tool to analyze this

KA from an engineering perspective. This

analysis was carried out to identify some of the

strengths and weaknesses of the breakdown of

topics for the Software Quality KA. It has shown

that all the categories of engineering knowledge

described by Vincenti are present in this KA of

the SWEBOK; that is, it addresses the full

coverage of all related engineering-type

knowledge. This does not mean, however, that it

is all-inclusive and complete, but only that the

coverage extends to all categories of engineering

knowledge from an engineering viewpoint.

The next stage of this R&D project will focus on

investigating the application of Vincenti’s

engineering knowledge to the analysis of

proposed software engineering principles.

Acknowledgements

This research project has been funded partially by

the European Community’s Sixth Framework

Programme – Marie Curie International Incoming

Fellowship under contract MIF1-CT-2006-

039212.

Table 2. Mapping of the design process in engineering vs. the software engineering life cycle

Table 3: Quality concepts in the SWEBOK Guide using Vincenti’s classification

Engineering

Knowledge

Category

Corresponding Characteristics SWEBOK – quality related concepts

Fundamental

design

concepts

• About the design

• Designers must know the operational principle of the

device

• How the device works

• Normal configuration

• Normal design

• Other features may be (opened?)

• Planning the software quality process

• Quality characteristics of the software (QI),

(QE), (QIU)

• Software quality models

• Quality assurance process

• Verification process

• Validation process

• Review process

• Audit process

Criteria and

specification

• Specific requirement of an operational principle

• General qualitative goals

• Specific quantitative goals laid out in concrete technical

terms

• The design problem must be “well defined”.

• Unknown or partially understood criteria

• Assignment of values to appropriate criteria

• This task takes place at the project definition level.

• Quality objective to be specified

• Characteristics of quality tools

• Software characteristics

• Criteria for assessing the characteristics

Theoretical

Tools

• Mathematical methods and theories for making design

calculation

• Intellectual concepts for thinking about design

• Precise and codifiable

• Verification process model

• Formal methods

• Testing

• Theory measurement

• Verification/proving properties

• TQM (Total Quality Management)

Levels Description of the design process in Vincenti

engineering perspective

Corresponding set of concepts in

SWEBOK

1 Project Definition Requirements

2 Overall design – component layout of the airplane

to meet the project definition.

Specification

3 Major component design – division of project into

wing design, fuselage design, landing gear design,

electrical system design, etc.

Architecture of the system

4 Subdivision of areas of component design from

level 3 according to the engineering discipline

required (e.g. aerodynamic wing design, structural

wing design, mechanical wing design)

Detailed design

5 Further division of the level 4 categories into

highly specific problems

Construction

Quantitative

 data

• Specify manufacturing process for production

• Display the detail for the device

• Data essential for design

• Obtained empirically

• Calculated theoretically

• Represented in tables or graphs

• Descriptive knowledge

• Prescriptive knowledge

• Precise and codifiable

• Quality measurement

• Experimental data

• Empirical study

• E.g. the process of requirement inspection

• Value and cost of quality

Practical
Considera-

tions

• Theoretical tools and quantitative data are not sufficient.
Designers also need considerations derived from

experience.

• It is are difficult to find them documented.

• They are also derived from production & operation.

• This knowledge is difficult to define.

• Its defies codification

• The practical consideration derived from operation is

judgment.

• Rules of thumb.

• Application quality
 requirements

• Defect characterization

Design

Instrumenta-

lities

• Knowing how

• Procedural knowledge

• Ways of thinking

• Judgment skills

• Quality assurance procedures

• Quality verification procedures

• Quality validation procedures

• SQM process tasks & techniques

• Management techniques

• Measurement techniques

• Project planning and tracking

• Quality assurance process

• Verification process

• Validation process

• Review process

• Audit process

References

[1] Abran, A., Meridji, K., ‘Analysis of Software

Engineering from An Engineering

Perspective’, European Journal for the

Informatics Professional ,vol. 7, No. 1,

February , 2006 , pp. 46-52 . www.upgrade-

cepis.org Upgrade: ISSN 1684-5285

Novática: ISSN 0211-2124

[2] Abran, A., Moore, J., Bourque, P., Dupuis, R.,

Tripp, L. (2005), Guide to the Software

Engineering Body of Knowledge – SWEBOK,

IEEE Computer Society Press, Los Alamitos,

URL: http://www.swebok.org

[3] IEEE 610.12-1990 (1990), IEEE Standard

Glossary of Software Engineering

Terminology, Institute of Electrical and

Electronics Engineers ISBN: 155937067X.

84 pages.

[4] ISO/IEC TR 19759-2005 (2005), Guide to the

Software Engineering Body of Knowledge

(SWEBOK), International Organization for

Standardization - ISO, Geneva, 2005

[5] Maieubaum, T., ‘Mathematical foundations of

software engineering: a roadmap’, 22nd

International Conference on The future of

Software Engineering, June 4 - 11, 2000,

Limerick Ireland, Pages 161-172.

[6] Vincenti, W. G. (1990). What engineers know

and how they know it. Baltimore, London: The

Johns Hopkins University Press.

