Data Analysis in Software Engineering

Javier Dolado U. País Vasco/Euskal Herriko Unibertsitatea

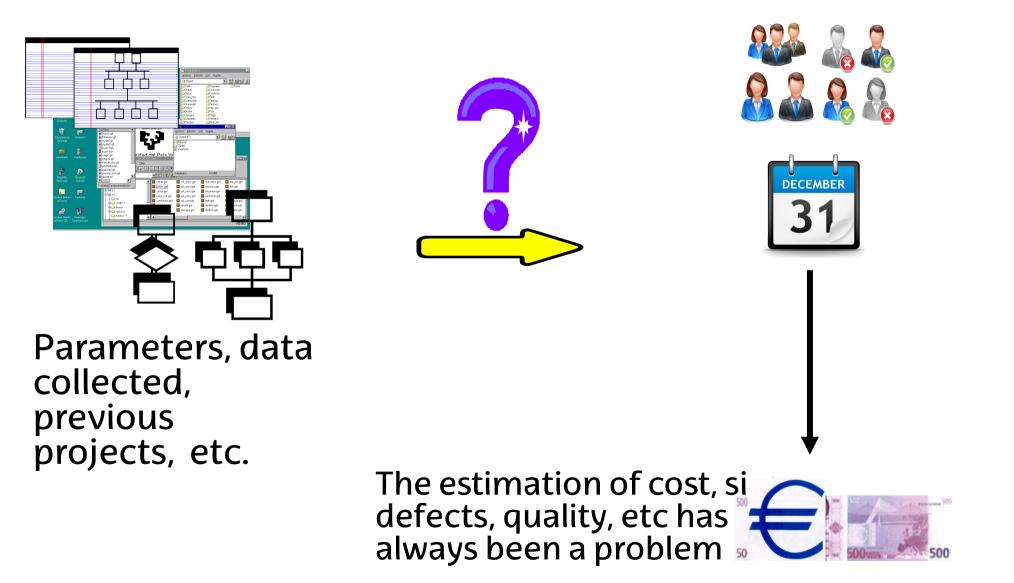
Universidad de Oviedo

La Universidad de Asturias

Daniel Rodríguez Universidad de Alcalá

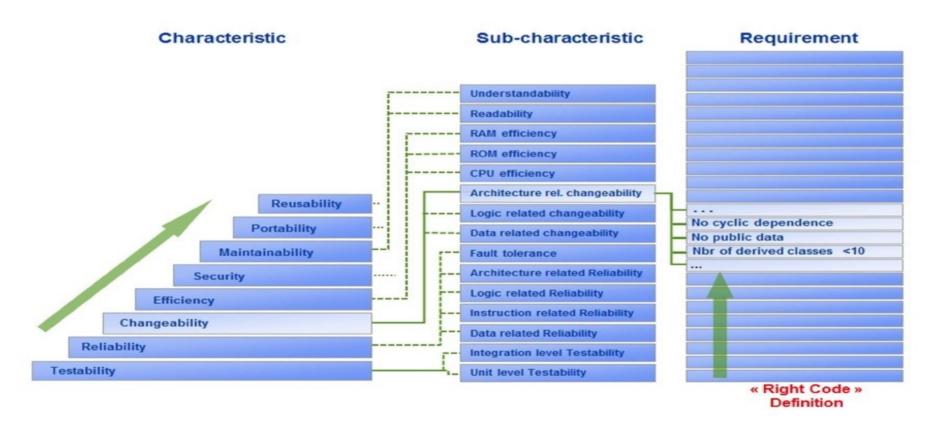
Javier Tuya Universidad de Oviedo

Outline


- Problems of Software Engineering, Data Analysis and Data Mining
 - Sofware Cost Estimation, Software Size Estimation
 - Process measurement and estimation
 - Software Quality/Testing
- Methods
 - Supervised or Predictive:
 - Regression, Genetic Programming, Decision trees, k-NN, etc.
 - Unsupervised:
 - Clustering, Assocition rules
 - Others: Semisupervised learning, text mining, SNA, etc.
 - Experimentation and Hypothesis Tests (comparison of methods)
- Tools
- Results and Discussion

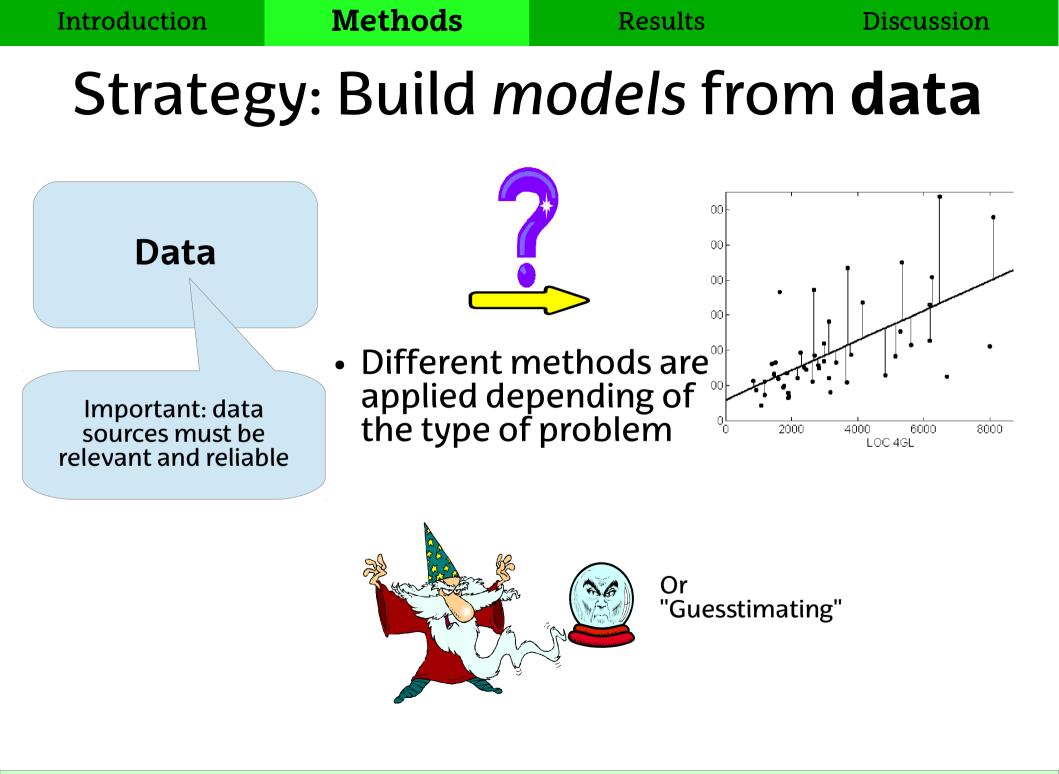
Methods

Results


Discussion

Problem: Prediction

Problem: Quality


- Technical Debt:
 - work to be done before a can be considered properly finished
 - SQALE method

Letouzey J.L., Ilkiewicz, M., Managing Technical Debt with the SQALE Method, IEEE Software, 29(6),2012,pp 44-51

Problem: Defect Prediction/testing

- Defect Prediction:
 - Which modules/classes/components are errorprone?
- Testing
 - Integration testing
 - Which test should we run?
 - In which order?

Where data comes from

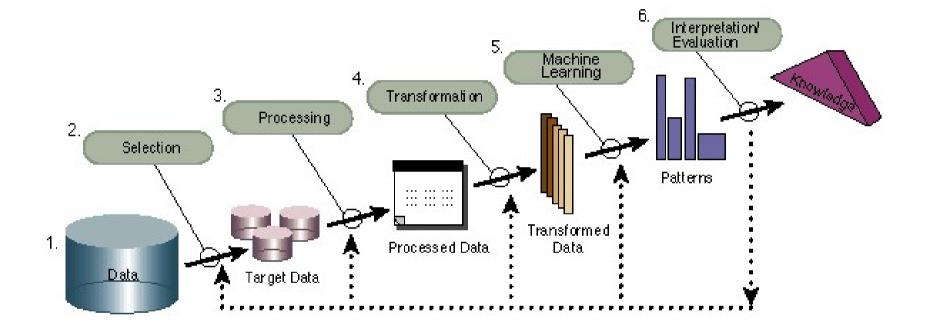
Results

Methods

Introduction

Discussion

Introduction	M	lethods	Res	ults	Discussion
V	Nher	e dat	a com	es fr	om
		▼ C ^e 8 ▼ eclipse dashboard	Q.☆ 自 ↓ ☆ ☞ - Ξ	Metrics Grii	moire
	8 Subprojects		All history -		
98,086 commits 2,679 dev	commits	46 tickets 7 SonarQube - C	3.691 mail messages ioogle Chrome		Daniel
2,679	han 2012 Jan 2013 Jan 2014	Sonarqube Dashboards Viss Helicopter View	nemo.sonarqube.org	iuality Gates More 🔻	Q ☆ № =
Core RegulaCasual Last 365 days: 51,545 51,545 248 582 1,857	Last 30 days: Last 7 days: 209 2,797 O -68% -41%	SQALE Rating	Technical Debt Ratio	ALL PROJECTS Size: Lines of code Co	olor: SQALE Rating
• +40%	✓ -41 /0	A	4.9%Technical DebtLines Of Code38,944d12,677K	SJDK 7	Clang S S S S S S S S Clang TYPO closur PHP Op Aga Ap
Code 1500 Submitters 1000	Reviews merged	ALL PROJECTS Debt Issues 38,944d 1,768	● Blocker 20,515 3,434 ● Critical 67,373	S MySQL	CPyt PD C pD L pD


ALL PROJECTS	1					ALL PROJECTS							
SQALE Rating	1		Technical De	bt Ratio		Size: Lines of code	Cole	or: SQALE Rating					
A			4.9% Technical Debt 38,944d	Lines Of Code 12,677K		JDK 7	8	S Clang	୍ଷ TYPO	Si Closur	PHP	Op.	S5
ALL PROJECTS	1						es.	ା PostgreSQL	CPyt	23 53	PD	c	JO
Debt	Issues		Blocker	20,515		MySQL			Drupal	5	ा स		
38,944d	1,768	,434	 Critical Major 	67,373 805,906				୍ଧ Apache HBase	Jetspee	5	- 85		
			 Minor Info 	788,331 86,309		Microsoft Roslyn .NE	83 at	S	Wicket S	2 2 2			
Global Security I	ssue Tags							Only the first 100	componen	ts are disp	layed		
error-handling sans-top25-risky owasp-top10 owasp-a3	52,163 1,045 229 51	multi-threadin sans-top25 owasp-a2	g <u>5,410</u> 742 114	denial-of-service owasp-a6 sans-top25-porous	2,677 695 89	ALL PROJECTS		Lines of code: 8,825	740	Duplicated			
	51					0000001 3, 2012		Unit tests: 449,648	,715	Dupicated	ines. 1,	508,00	
FORGES			 Apache Others Sourcefor OW2 Codehau 			2010 201	1	2012	2013	2	014	A	201

OP841

SonarQube

2015

Knowlege Discovery in Dbs (KDD)

An Overview of the Steps That Compose the KDD Process

(Fayyad et al., 96)

Methods: Classification

Supervised learning which aims to discover knowledge for

classification or prediction (predictive)

Decision trees such as C4.5 (Quilan) or ID3. Rule induction

Lazy techniques k-nearest neighbour (k-NN), CBR RegresionNumeric prediction:

Regression Techniques, SVM, NN

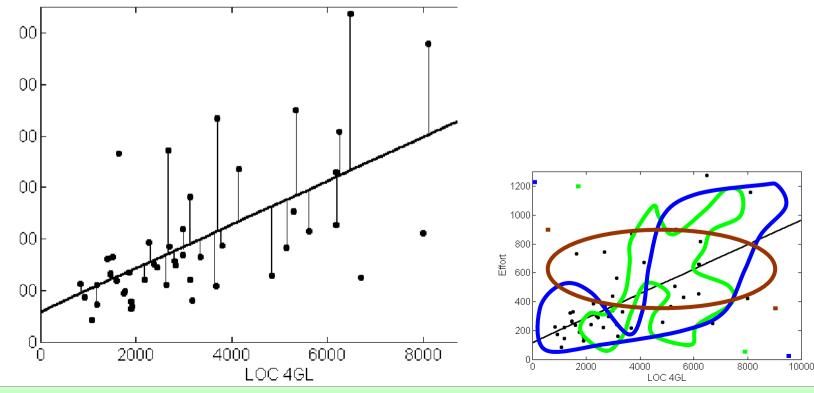
Neural Networks

Statistical Techniques: Bayesian networks classifiers Meta-techniques

 Unsupervised learning which refers to the induction to extract interesting knowledge from data (descriptive)

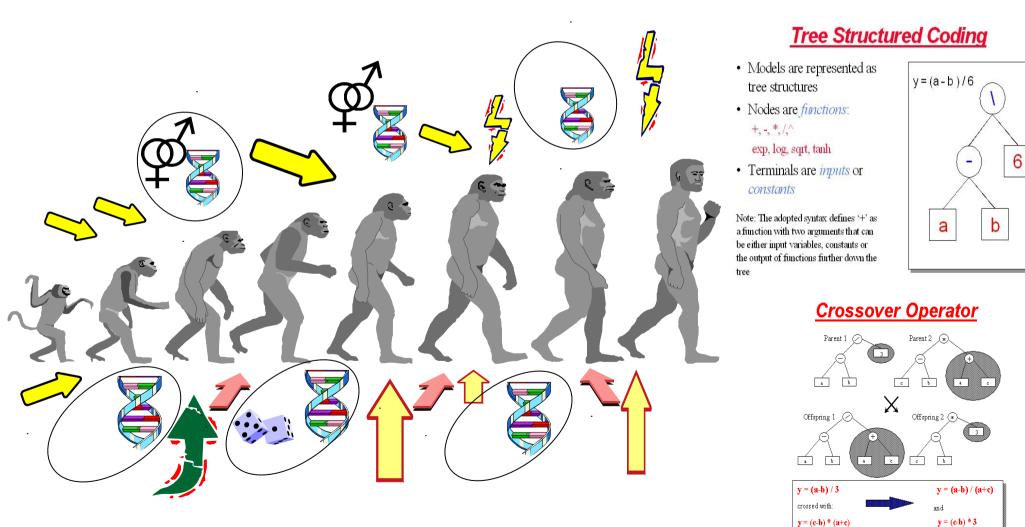
Clustering (k-means, EM) Association Rules (Apriori)

- Other approaches:
 - Time Series Analysis
 - Simulation

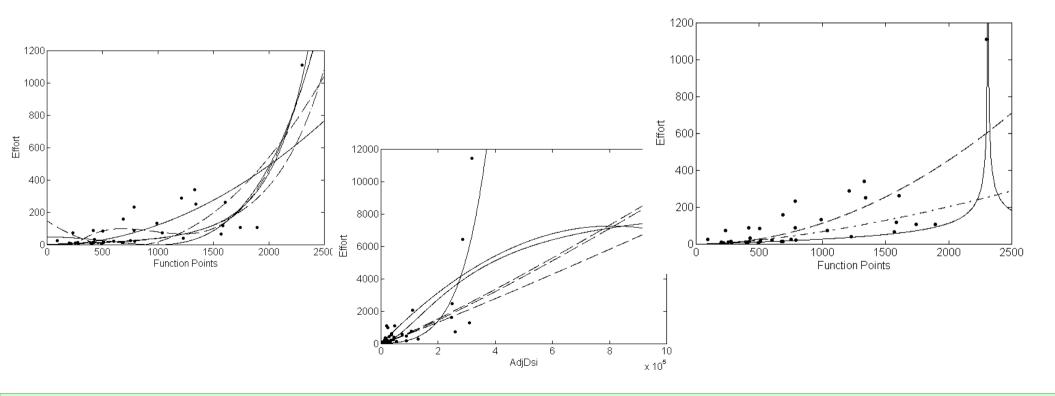

Semisupervised learning, Subgroup Discovery, etc.

A ₁	•••	A _n	С
a _{1,1}	•••	a _{1,n}	C ₁
•••	•••	•••	•••
a _{m,1}		a _{m,1}	C _m

A ₁	•••	A _n
<i>a</i> _{1,1}	•••	a _{1,n}
•••	•••	•••
a _{m,1}		a _{m,1}

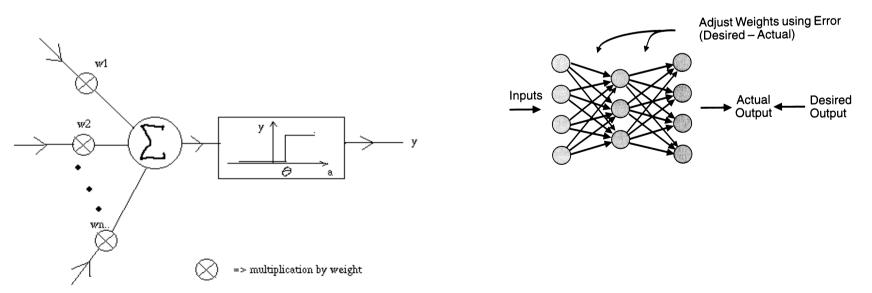

Examples : Regression and Curve Estimation

- Probably, the most used method for estimation.
- It is simple and it obtains results as good as other more complex methods

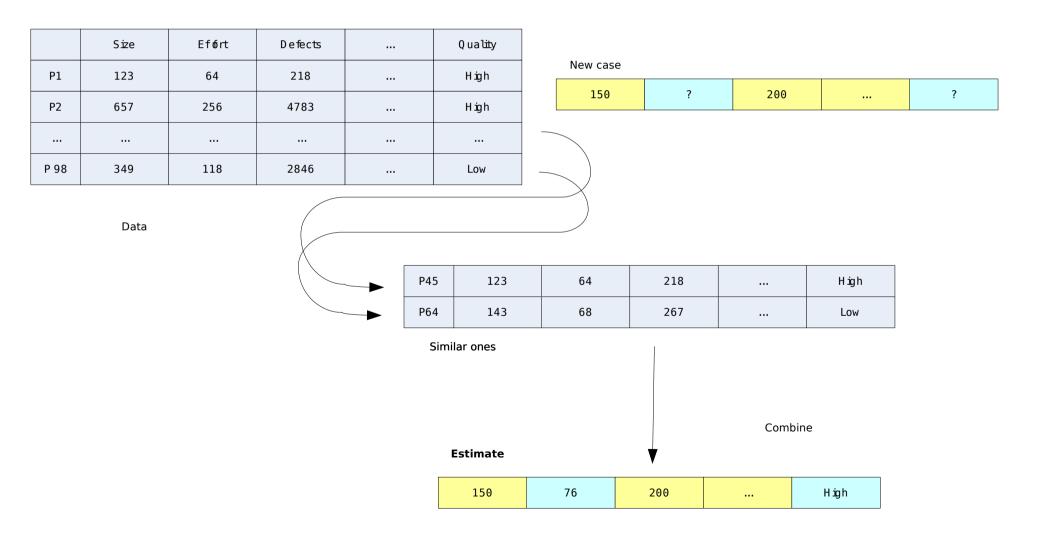


Example: Genetic Programming

Tries to mimic one of the methods of evolution

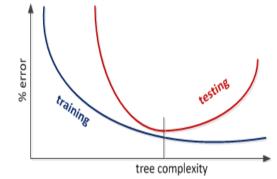


- Genetic programming allows us to adjust almost any equation. GP gives always good results, with the proper adjustment of parameters.
- We can always find a "good model"



Example: Neural Networks

- All methods are based on a specific paradigm and purpose, therefore their application must be carefully examined
- Neural networks provide "moderate good predictions"


Example: k-NN

Evaluation of methods

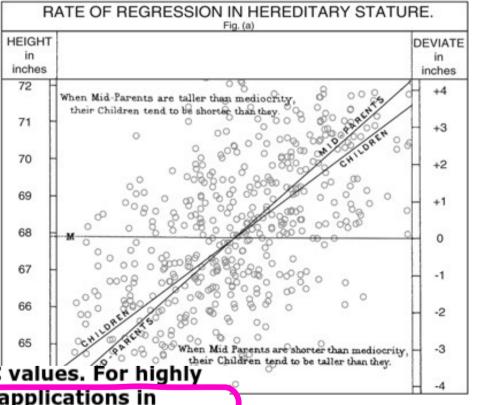
- Dividing into training and testing datasets
 - Holdout, Cross Validation, LOO
- Need to be careful with
 - Overfitting vs underfitting
 - Imbalance, overlaping, etc.
- Many evaluation measures
 - Continuous (numeric) classes (MRE, RSME, etc)
 - Discrete classes (many based on the confusion matrix)

		Pred		
		Positive	Negative	
ual	Positive	TP True Positive	FN False Negative (Type II error)	TPrate=TP/(TP+FN) (Sensitivity, Recall)
Actua	Negative	FP False Positive (Type I error)	TN True Negative	TNrate=TN/(FP+TN) (Specificity)
		PPV=TP/(TP+FP) Positive Predictive Value (Confidence, Precision)	NPV=TN/(FN+TN) Negative Predicted Value	Accuracy= TP+FP/(TP+TN+FP+FN)

Introduction	Metho	ds	Rea	sults	Discussion					
In software cost estimation there are two methods that perform reasonably well										
GP MIEratio	IBk MIEratio									
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 LMS MIEratio	0.0 0.5 1.0 LR MiEratio 01 80 90 90 90 90 90 90 90 90 90 90 90 90 90									
-0.2 0.0 0.2 0.4 0.6 0.8 M5P_MIEratio 9 9 9 9 9 9 9 9 9 9 9 9 9	0 1 2 3 4 MLP_MIEratio	5								
0.0 0.5 1.0 1.5 2.0 	0 1 2 ee_MIEratio	3	Qtle. 2.5%-97.5%	HPD low-upper	M-Hast. 2.5%-97.5%					
	4 6 8	GP Bk MS LR M5P MLP RTree	$\begin{array}{c} 0.021 \hbox{-} 0.725 \\ 0.096 \hbox{-} 0.859 \\ 0.088 \hbox{-} 0.566 \\ 0.162 \hbox{-} 3.582 \\ 0.124 \hbox{-} 1.727 \\ 0.171 \hbox{-} 2.161 \\ 0.169 \hbox{-} 6.56 \end{array}$	$\begin{array}{c} 0.015 \hbox{-} 0.751 \\ 0.073 \hbox{-} 0.943 \\ 0.056 \hbox{-} 0.581 \\ 0.103 \hbox{-} 4.397 \\ 0.102 \hbox{-} 2.048 \\ 0.168 \hbox{-} 2.662 \\ 0.096 \hbox{-} 6.841 \end{array}$	$\begin{array}{c} 0.273\text{-}1.417\\ 0.317\text{-}0.733\\ 0.239\text{-}0.493\\ 0.569\text{-}1.962\\ 0.33\text{-}0.831\\ 0.44\text{-}1.216\\ 0.78\text{-}4.506\end{array}$					

Table 3: This table shows different probabilistic intervals for each one of the 7 methods ($\alpha = 0.05$) for the data of the MIE ratios. Scale is 0- ∞ . Lower values are better.

Don't underestimate the value of simple methods...


Article

European Journal of Human Genetics (2009) **17,** 1070–1075; doi:10.1038/ejhg.2009.5; published online 18 February 2009

Predicting human height by Victorian genomic methods

Yurii S Aulchenko^{1,2,7}, Maksim V Struchalin^{1,3,7}, Nadez M Belonogova^{2,4}, Tatiana I Axenovich², Michael N Wee Albert Hofman¹, Andre G Uitterlinden⁶, Manfred Kayse Ben A Oostra¹, Cornelia M van Duijn¹, A Cecile J W Janssens¹ and Pavel M Borodin^{2,4}

Sir Francis Galton, 1886

genomic profile should explain to reach certain AUC values. For highly beritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed. In terms of both discriminative accuracy and costs. For less neritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that

- Results
- We've applied many statistical methods to different Soft Eng problems including, cost, time, defects and others.
- We have applied Equivalence Hypothesis Testing to several software engineering experiments
- A big problem: Show me the data!
 - Public data is not always relevant to our specific domain
 - It is much better to collect the data within the organization
- There is no "best method"
 - No free lunch theorem
 - They need to be understood and tuned
 - Bayesian Networks can be applied in the sw testing area

Discussion

- Many methods available that are easy to apply, however...
 - their way of working (theory) needs to be understood
 - they need to be tuned! (many parameters)
- Many tools available:
 - For Software Engineering (data collection and metrics).
 - For machine learning:
 - Open source: R, Weka, Python (scikit learn, ScyPy),
 - Closed: Matlab, mathematica...
- Data from public sources cannot be applied to other settings in a straightforward way
 - It's almost unavoidable to use 'within-company' data

Acknowledgements

PROJECTS

"Testing of data persistence and user perspective under new paradigms"

"Gamificación y prototipado de procesos para la detección temprana de oportunidades en la producción del software"

PRESI TIN2013-46928-C3-1-R, TIN2013-46928-C3-2-R

Ministerio de Economía y Competitividad