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Abstract The semantic constructions and results for definite programs do not extend
when dealing with negation. The main problem is related to a well-known problem
in the area of algebraic specification: if we fix a constraint domain as a given
model, its free extension by means of a set of Horn clauses defining a set of new
predicates is semicomputable. However, if the language of the extension is richer
than Horn clauses its free extension (if it exists) is not necessarily semicomputable.
In this paper we present a framework that allows us to deal with these problems
in a novel way. This framework is based on two main ideas: a reformulation of
the notion of constraint domain and a functorial presentation of our semantics. In
particular, the semantics of a logic program P is defined in terms of three functors:
(OPP,ALGP,LOGP) that apply to constraint domains and provide the operational,
the least fixpoint and the logical semantics of P, respectively. To be more concrete,
the idea is that the application of OPP to a specific constraint solver provides the
operational semantics of P that uses this solver; the application of ALGP to a specific
domain provides the least fixpoint of P over this domain; and, the application of
LOGP to a theory of constraints provides the logic theory associated to P. In this
context, we prove that these three functors are in some sense equivalent.
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1 Introduction

Constraint logic programming was introduced in [9] as a powerful and conceptually
simple extension of logic programming. Following that seminal paper, the semantics
of definite (constraint) logic programs has been studied in detail (see, e.g. [10, 11]).
As it is standard in logic programming, three semantic definitions are provided for
constraint logic programs. The logical semantics provides the declarative meaning
of a program. This means that, according to the logical semantics, a (constraint)
logic program is seen just as a set of axioms (or, equivalently, as a specification of
a class of models). The operational semantics provides the procedural interpretation
of programs, i.e. how we can execute a logic program and what kind of answer we
can get. Finally, the algebraic semantics bridges the gap between the operational and
the logical semantics by defining the meaning of a program in terms of a model
of the program that can be effectively defined. In this context, a main result is
the equivalence (in some well-defined sense) of the three semantic definitions. In
particular, proving the soundness and completeness of the operational semantics with
respect to the logical and algebraic semantics.

In “standard” logic programming the constructions and results for definite pro-
grams (programs without negation) extend to normal programs (programs including
negation in the tails of the clauses), although this extension is not immediate
[5, 6, 15, 20]. However, when dealing with constraint logic programs, it has been
impossible up to now to extend the constructions from definite programs to normal
programs in such a way that the equivalence of the three semantics can be proved.
The main problem is related to a well-known problem in the area of algebraic
specification: if we fix a constraint domain as a given model, its free extension by
means of a set of Horn clauses defining a set of new predicates is semicomputable.
Nevertheless, if the language of the extension is richer than Horn clauses its free
extension (if it exists) is not necessarily semicomputable [8]. Now, when working
without negation we are in the former case, but when working with negation we are
in the latter case. In particular, this implies that the results about the soundness and
completeness of the operational semantics with respect to the logical and algebraic
semantics of a definite constraint logic program do not extend to the case of programs
with negation, except when we impose some restrictions to these programs.

The only approach that we know that has dealt with this problem is [20]. In
that paper, Stuckey presents one of the first operational semantics which is proven
complete for programs that include (constructive) negation. Although we use a
different operational semantics, that paper has had an important influence in our
work on negation. The results in [20] were very important when applied to the
case of standard (non-constrained) logic programs because they provided some good
insights about constructive negation. However, we think that the general version (i.e.,
logic programs over an arbitrary constraint domain) is not so interesting. The reason
is that the completeness results are obtained only for programs over admissible
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constraints and this restriction on the constraints that can be used in a program is
not properly justified.

In our opinion, the problem when dealing with negation is not in the class
of constraints considered, but rather, in the notion of constraint domain used. In
particular, we argue that the notion of constraint domain used in the context of
definite programs is not adequate when dealing with negation. Instead, we propose
and justify a small reformulation of the notion of constraint domain. To be precise,
we propose that a domain should be defined in terms of a class of elementarily
equivalent models and not in terms of a single model. With this variation we are
able to show the equivalence of the logical, operational, and fixpoint semantics of
programs with negation without needing to restrict the class of constraints.

The logical semantics that we have used is the standard Clark–Kunen three-valued
completion of programs (see, e.g. [20]). The fixpoint semantics that we are using
is a variation of other well-known fixpoint semantics used to deal with negation
[5, 6, 15, 20]. Finally, the operational semantics that we are using is an extension
of a semantics called BCN that we have defined in previous work [17] for the
case of programs without constraints. The main reason for using this semantics
and not Stuckey’s semantics is that our semantics, is in our opinion, simpler. This
implies having simpler proofs for our results. In particular, we do not claim that our
semantics is better than Stuckey’s (nor that it is worse). A proper comparison of these
two semantics and of others like [5, 6] would need experimental work. We have a
prototype implementation of BCN [1], but we do not know if the other approaches
have been implemented. Anyhow, the pragmatic virtues of the various operational
approaches to constructive negation are not a relevant issue in this paper.

In addition, our semantics is functorial. We consider that a constraint logic
program is a program that is parameterized by the given constraint domain. Then, we
think that the semantics of a program should be some kind of mapping. However, we
also believe that working in a categorical setting provides some additional advantages
that are shown in the paper.

The paper is organized as follows. In the following section we give a short
introduction to the semantics of (definite) constraint logic programs. In Section 3, we
discuss the inadequacy of the standard notion of constraint domain when dealing with
negation and propose a new one. In Section 4 we study the semantics of programs
when defined over a given arbitrary constraint domain. Then, in the following section
we define several categories for defining the various semantic domains involved and
define the functorial semantics of logic programs. Finally, in Section 6 we prove the
equivalence of the logical, fixpoint and operational semantics.

A preliminary and shorter version of this paper was presented in [16]. In order to
enhance readability, the proofs of our results can be found in an Appendix.

2 Preliminaries

2.1 Basic Notions and Notation

A signature � consists of a pair of sets (FS�, PS�) of function and predicates
symbols, respectively, with some associated arity. T�(X) denotes the set of all
first-order �-terms over variables from X, and T� denotes the set of all ground
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terms. A literal is either an atom p(t1, . . . , tn) (namely a positive literal) or a negated
atom ¬p(t1, . . . , tn) (namely a negative literal). The set Form� is formed by all
first-order �-formulas written (from atoms) using connectives ¬,∧,∨, →,↔ and
quantifiers ∀, ∃. We denote by free(ϕ) the set of all free variables occurring in ϕ.
ϕ(x) specifies that free(ϕ)⊆x. Sent� is the set of all ϕ∈Form� such that free(ϕ)=∅,
called �-sentences. By ϕ∀�z (resp. ϕ∃�z) we denote the formula ∀x1 . . .∀xn(ϕ)

(resp. ∃x1 . . . ∃xn(ϕ)), where x1 . . . xn are the variables in free(ϕ) � z. In particular,
the universal (resp. existential) closure, that is ϕ∀�∅ (resp. ϕ∃�∅) is denoted by ϕ∀
(resp. ϕ∃).

To define the semantics of normal logic programs and their completion, it
becomes necessary to use a concrete three-valued extension of the classical two-
valued interpretation of logical symbols. The connectives ¬, ∧,∨ and quantifiers
(∀, ∃) are interpreted as in Kleene’s logic [12]. However, ↔ is interpreted as
the identity of truth-values (hence, ↔ is two-valued). Moreover, to make ϕ ↔ ψ

logically equivalent to (ϕ → ψ) ∧ (ψ → ϕ), Przymusinski’s interpretation [18] of →
is required. It is also two-valued and gives the value f exactly in the following three
cases: t → f, t → u and u → f. Equality is two-valued also. Following [3], it is
easy to see that the above detailed three-valued logic satisfies (as classical first-order
logic does) all of the basic metalogical properties, in particular completeness and
compactness.

A three-valued �-structure, A, consists of a universe of values A, and an inter-
pretation of every function symbol by a total function (of adequate arity), and of
every predicate symbol by a total function on the set of the three boolean values
{t,f,u} (i.e., a partial relation). Hence, terms cannot be undefined, but atoms can
be interpreted as u. Classical (two-valued) first-order �-structures can be seen as a
special case of three-valued ones, where every predicate symbol is interpreted by a
total relation. Mod� denotes the set of all three-valued �-structures.

A �-structure A ∈ Mod� is a model of (or satisfies) a sentence ϕ if, and only if,
A(ϕ)=t. This is also denoted by A |=ϕ. We will denote by A |=σ ϕ that A(σ (ϕ))=t,
where σ is a valuation σ : free(ϕ) → A assigning values in A to the free variables
in ϕ. A satisfies a formula ϕ, denoted A |=ϕ, if, and only if, A |=σ ϕ for every valuation
σ , and A satisfies a set of formulas �, denoted A |= �, if A satisfies every ϕ ∈ �.

Given a set � of �-sentences Mod�(�) is the subclass of Mod� formed by the
models of �. Logical consequence � |= ϕ means that A |= ϕ holds for all A ∈
Mod�(�). We say that two �-structures A and B are elementarily equivalent, denoted
A � B if A(ϕ) = B(ϕ) for every first-order �-sentence ϕ. We denote by EQ(A) the
set of all �-structures that are elementarily equivalent to A.

A �-theory is a set of �-sentences closed under logical consequence. A theory
can be presented semantically or axiomatically. A semantic presentation is a class
C of �-structures. Then, the theory semantically presented by C is the set of all
�-sentences which are satisfied by C:

Th(C) = {ϕ ∈ Sent� | for all A ∈ C A(ϕ) = t}

An axiomatic presentation is a decidable set of axioms Ax ⊆ Sent� . Then, the theory
axiomatically presented by Ax is the set of all logical consequences of Ax:

Th(Ax) = {ϕ ∈ Sent� | Ax |= ϕ}
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A �-theory T is said to be complete if, and only if, either ϕ ∈ T or ¬ϕ ∈ T holds for
every �-sentence ϕ.

Example 1 Given a signature �, the free-equality theory FEA(�) is complete and
can be presented by the following axioms:

(1) ∀x(x = x)

(2) ∀x∀y(x = y ↔ f (x) = f (y)) for each f ∈ FS�

(3) ∀x∀y(x = y → (p(x) ↔ p(y))) for each p ∈ PS� (in part. =)
(4) ∀x∀y¬( f (x) = g(y)) for each pair f, g ∈ FS� such that f �≡ g
(5) ∀x¬(x = t) for each t ∈ T�(X) and x ∈ X such that x ∈ var(t) and x �≡ t.
(6) ∀x(

∨
f∈FS�

∃y(x = f (y))) if � is finite.

2.2 Constraint Domains

A constraint logic program can be seen as a program where some function and pred-
icate symbols have a predefined meaning on a given domain, called the constraint
domain. To be more precise, a constraint domain determines the interpretation of
the given predefined symbols. In particular, according to the standard approach for
defining the class of CLP(X ) programs [10, 11], a constraint domain X consists of
five parts:

X = (�X ,LX , AxX ,DX , solvX )

where �X = (FSX , PSX ) is the constraint signature, i.e., the set of symbols that
are considered to be predefined; LX is the constraint language, i.e., the class of
�X -formulas that can be used in programs; DX is the domain of computation, i.e.,
a model defining the semantics of the symbols in �X ; AxX is an axiomatization of
the domain, i.e., a decidable set of �X -sentences such that DX |= AxX ; and, finally,
solvX is a constraint solver, i.e., an oracle that answers queries about constraints and
that is used for defining the operational semantics of programs. In general, constraint
solvers are expected to solve constraints, i.e., given a constraint c, one would expect
that the solver will provide the values that satisfy the constraint or that it returns an
equivalent constraint in solved form. However, in our case, we just need the solver to
answer (un)satisfiability queries. We consider that, given a constraint c, solvX (c) may
return F, meaning that c is not satisfiable or it may answer T, meaning that c is valid
in the constraint domain, i.e., that ¬c is unsatisfiable. The solver may also answer U

meaning that either the solver does not know the right answer or that the constraint
is neither valid nor unsatisfiable.

In addition, a constraint domain X must satisfy:

– T, F, t1 = t2 ∈ LX (hence the equality symbol = belongs to PSX ) and LX is closed
under variable renaming, existential quantification and conjunction. Moreover,
the equality symbol = is interpreted as the equality in DX , and AxX includes the
equality axioms for =.

– The solver does not take variable names into account, that is, for all renamings
ρ, solvX (c) = solvX (ρ(c))
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– AxX ,DX and solvX agree in the sense that:

1. For all c ∈ LX ∩ Sent�X : solvX (c) = T ⇒ AxX |= c.
2. For all c ∈ LX ∩ Sent�X : solvX (c) = F ⇒ AxX |= ¬c.

Moreover, solvX must be well-behaved, i.e., for any constraints c1 and c2:

1. solvX (c1) = solvX (c2) if |= c1 ↔ c2.
2. If solvX (c1) = F and |= c1 ← c∃�free(c1)

2 then solvX (c2) = F.

In what follows, a constraint domain X = (�X ,LX , AxX ,DX , solvX ) will be
called a (�X ,LX )-constraint domain.

2.3 Constraint Logic Programs

A constraint logic program over a (�X ,LX )-constraint domain X can be seen as a
generalization of a definite logic program. In particular, a constraint logic program
consists of rules p : − q1, . . . , qn, where each qi is either an atom or a constraint in
LX and where atoms have the form q(t1, . . . , tn) where q is a user-defined predicate
and t1, . . . , tn are terms over �X . A constraint logic program rule

p(t1, . . . , tn) : − q1, . . . , qn

can be written, equivalently, in flat form

p(X1, . . . , Xn) : − q1, . . . , qn, X1 = t1, . . . Xn = tn

where X1, . . . , Xn are fresh new variables. In what follows we will assume that
constraint logic programs consist only of flat rules. We will also assume that the rules
are written as follows:

p : − q1, . . . , qn�c1, . . . , cm

where the q1, . . . , qn are atoms and the c1, . . . , cm are constraints. Moreover we will
also assume that all clauses defining the same predicate p have exactly the same head
p(X1, . . . , Xm).

The semantics of a (�X ,LX )-logic program P can also be seen as a generalization
of the semantics of a (non-constrained) logic program. In particular, in [10, 11], the
meaning of P is given in terms of the usual three kinds of semantics.

The operational semantics is defined in terms of finite or infinite derivations

S1 � S2 � . . . � Sn . . .

where the states Si in these derivations are tuples Gi�Ci, where Gi is a goal (i.e., a
sequence of atoms) and Ci is a sequence of constraints (actually a constraint, since
constraints are closed under conjunction). In particular, from a state S = G�C we
can derive the state S′ = G′�C′ if there is an atom p(t1, . . . , tn) in G, and a rule
p(X1, . . . , Xn) : − G0�C0, where X1, . . . , Xn are fresh new variables not occurring
in G�C, such that G′ = 〈G0, (G\p(t1, . . . , tn))〉 and C′ = 〈C, C0, X1 = t1, . . . Xn = tn〉
is satisfiable. Then, given a derivation S1 � S2 � . . . � Sn, with Sn = Gn�Cn, we
say that Cn is an answer to the query S1 = G1�C1 if Gn is the empty goal.

The logical semantics of P is defined as the theory presented by P ∪ AxX .
Finally its algebraic semantics, M(P,X ), is defined as the least model of P extend-

ing DX , in the sense that this model agrees with DX in the corresponding universe
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of values and in the interpretation of the symbols in �X . It may be noted that �-
structures extending DX can be seen as subsets of BaseP(DX ), where BaseP(DX ) is
the set of all atoms of the form p(α1, . . . , αn), where p is a user-defined predicate and
α1, . . . , αn are values in DX .

As in the standard case, the algebraic semantics of P can be defined as the
least fixpoint of the immediate consequence operator TX

P : 2BaseP(DX ) → 2BaseP(DX )

defined as follows:

TX
P (I) = {σ(p) | σ : free(p) → DX is a valuation,

(p :− a�c) ∈ P, I |=σ a and DX |=σ c}
In [11] it is proved that the above three semantics are equivalent in the sense that:

– The operational semantics is sound with respect to the logical semantics. That is,
if a goal G has answer c then

P ∪ AxX |= c → G

– The operational semantics is also sound with respect to the algebraic semantics.
That is, if a goal G has answer c then

M(P,X ) |= c → G

– The operational semantics is complete with respect to the logical semantics. That
is, if

P ∪ AxX |= c → G

then G has answers c1, . . . , cn such that

AxX |= c ↔ c1 ∨ · · · ∨ cn

– The operational semantics is complete with respect to the algebraic semantics.
That is, if

M(P,X ) |=σ G

where σ : free(G) → DX is a valuation, then G has an answer c such that

DX |=σ c

2.4 A Functorial Semantics for Constraint Logic Programs

The semantic definitions sketched in the previous subsection are, in our opinion, not
fully satisfactory. On one hand, a constraint logic program can be seen as a logic
program parameterized by the constraint domain. Then, its semantics should also be
parameterized by the domain. This is not explicit in the semantics sketched above.
On the other hand, we think that the formulation of some of the previous equivalence
results could be found to be, in some sense, not fully satisfactory. Let us consider,
for instance, the last result, i.e., the completeness of the operational semantics with
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respect to the algebraic semantics. In our opinion, a fully satisfactory result would
have said something like:

i f M(P,X ) |=σ G where σ : free(G) → DX is a valuation, then G has an

answer c such that solvX (c) �= F

However this property will not hold unless the constraint solver solvX is also
complete with respect to the computation domain. A similar situation would occur
with the result stating the completeness of the operational semantics with respect to
the logical semantics. In that case we would need that solvX is complete with respect
to the domain theory.

In our opinion, each of the three semantics (logical, algebraic and operational
semantics) of a constraint logic program should be some kind of mapping. Moreover,
we can envision that the parameters of the logical definitions would be constraint
theories. Similarly, the parameters for algebraic definitions would be computation
domains. Finally, the parameters for the operational definitions would be constraint
solvers.

In this context, proving the soundness and completeness of one semantics with
respect to another would mean comparing the corresponding mappings. In particu-
lar, a given semantics would be sound and complete with respect to another if the
two semantic mappings are in some sense equivalent. Or, in more detail, if the two
mappings when applied to the same (or equivalent) argument return an equivalent
result. On the other hand, these mappings are better studied if the given domains
and codomains are not just sets or classes but categories, which means taking care
of their underlying structure. As a consequence, these mappings would be defined as
functors and not just as plain set-theoretic functions, which means that they must be
structure-preserving mappings.

In Section 5 the above ideas are fully developed for the case of constraint normal
logic programs. Then, the case of constraint logic programs can be seen as a partic-
ular case.

3 Domain Constraints for Constraint Normal Logic Programs

In this section, we provide a notion of constraint domain for constraint normal logic
programming. The idea, as discussed in the introduction, is that this notion, together
with a proper adaptation of the semantic constructions used for (unconstrained)
normal logic programs, will provide an adequate semantic definition for constraint
normal logic programs. In particular, the idea is that the logical semantics of a
program should be given in terms of the (three-valued) Clark–Kunen completion
of the program, the operational semantics in terms of some form of constructive
negation [5, 6, 20], and the algebraic semantics in terms of some form of fixpoint
construction (as, for example, in [6, 15, 20]).

The main problem is that a straightforward extension (as it may be just the
inclusion of negated atoms in the constraint languages) of the notion of constraint
domain introduced in Section 2.2 will not work, as the following example shows.
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Example 2 Let P be the CLP(N ) program:

q(z) : − �z = 0

q(v) : − q(x)�v = x + 1

and assume that its logical semantics is given by its completion:

∀z(q(z) ↔ (z = 0 ∨ ∃x(q(x) ∧ v = x + 1))).

This means, obviously, that q(n) should hold for every n. Actually, the model
defined by the algebraic semantics seen in Section 2.2 would satisfy ∀zq(z).

Now consider that P is extended by the following definitions:

r : − ¬q(x)

s : − ¬r

whose completion is:

(r ↔ ∃x(¬q(x))) ∧ (s ↔ ¬r).

Now, the operational semantics, and also the ω-iteration of the Fitting’s operator
[7], would correspond to a three-valued structure extending N , where both r and s
are undefined and where, as before, q(n) holds for every n. Unfortunately, such a
structure would not be a model of the completion of the program since this structure
satisfies ∀zq(z) but it does not satisfy either ¬r or s.

The problem with the example above is that, if the algebraic semantics is defined
by means of the ω-iteration of an immediate consequence operator, then, in many
cases, the resulting structure would not be a model of the completion of the program.
Otherwise, if we define the algebraic semantics in terms of some least (with respect to
some order relation) model of the completion extending N , then, in many cases, the
operational semantics would not be complete with respect to that model. Actually,
this model could be non (semi-)computable [2, 8].

The situation could be considered similar to what happens in the case of (non-
constrained) normal logic programs, where the least fixpoint of Fitting’s operator
may not agree with the operational semantics of a given program. However, the
situation is worse in the current case. On one hand, in the non-constrained case
one may define other immediate consequence operators (e.g. [6, 15]) whose least
fixpoint is equivalent to the operational semantics of a given program and provides a
model of the three-valued completion of the program. Unfortunately these operators
would not be adequate in the constrained case. For instance, in the example above
they would build models which are not extensions of N . On the other hand, if when
defining the logical semantics of a program we restrict our attention to the structures
extending N (i.e., if we consider that the class of models of a program P is the
class of all three-valued structures satisfying Comp(P) and extending N ) then we
cannot expect the operational semantics to be complete with respect to the logical
consequences of this class of models.

In our opinion, the problem is related to the following observation. Let us
suppose, in the example above, that the computation domain would have been
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any other algebra which is elementarily equivalent to the algebra of the natural
numbers, instead of N itself. Then, no difference should have been noticed, since
both algebras satisfy exactly the same constraints, i.e., we may consider that two
structures that are elementarily equivalent should be considered indistinguishable
as domains of computation for a given constraint domain. As a consequence, we
may consider that the semantics of a program over two indistinguishable constraint
domains should also be indistinguishable. However, if X = (�,L, Ax, D, solv) and
X ′ = (�,L, Ax, D′, solv) are two constraint domains such that D and D′ are ele-
mentarily equivalent and P is a (�,L)-program, then M(P,X ) and M(P,X ′) are not
necessarily elementarily equivalent. In particular if we consider the program P of
Example 2 and we consider as constraint domain a non-standard model of the natural
numbers N ′, then we would have that M(P,N ) |= ∀zq(z) but M(P,N ′) �|= ∀zq(z).

In this sense, we think that this problem is caused by considering that the domain
of computation, DX , of a constraint domain is a single structure. In the case of
programs without negation this apparently works fine and it seems quite reasonable
from an intuitive point of view. For instance, if we are writing programs over the
natural numbers, it seems reasonable to think that the computation domain is the
algebra of natural numbers. However, when dealing with negation, we think that
the computation domain of a constraint domain should be defined in terms of the
class of all the structures which are elementarily equivalent to a given one. To be
precise, we reformulate the notion of constraint domain as follows:

Definition 3 A constraint domain X is a 5-tuple:

X = (�X ,LX , AxX , DomX , solvX )

where �X = (FSX , PSX ) is the constraint signature, LX is the constraint language,
DomX = EQ(DX ) is the domain of computation, i.e., the class of all �X -structures
which are elementarily equivalent to a given structure DX , AxX is a decidable set of
�X -sentences such that DX |= AxX , and solvX is a constraint solver, such that:

– T, F, t1 = t2 ∈ LX (hence the equality symbol = belongs to PSX ) and LX is closed
under variable renaming, existential quantification, conjunction and negation.
Moreover, the equality symbol = is interpreted as the equality in DomX and
AxX includes the equality axioms for =.

– The solver does not take variable names into account, that is, for all variable
renamings ρ, solvX (c) = solvX (ρ(c))

– AxX , DomX and solvX agree in the sense that:

1. For all c ∈ LX ∩ Sent� : solvX (c) = T ⇒ AxX |= c.
2. For all c ∈ LX ∩ Sent� : solvX (c) = F ⇒ AxX |= ¬c.

In addition, we assume that solvX is well-behaved, i.e., that for any constraints c1

and c2:

1. solvX (c1) = solvX (c2) if |= c1 ↔ c2.
2. If solvX (c1) = F and |= c1 ← c∃�free(c1)

2 then solvX (c2) = F.
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As before, a constraint domain X = (�X ,LX , AxX , DomX , solvX ) is called a
(�X ,LX )-constraint domain. Then, in this context, normal logic programs can be
defined as follows:

Definition 4 Given a signature � = (PS�, FS�), a normal constraint logic �-
program over a constraint domain over a (�X ,LX )-constraint domain X , where
FSX = FS� and PSX ⊂ PS� is a finite set of clauses of the form:

a :− 
1, . . . , 
m�c1, . . . , cn

where a and the 
i, i ∈ {1, . . . , m}, are a flat atom and flat literals, respectively, whose
predicate symbols belong to PS� \ PSX and the c j, j ∈ {1, . . . , n} are constraints that
belong to LX . In addition, we assume that all clauses defining the same predicate p
have exactly the same head p(X1, . . . , Xm).

4 Categories for Constraint Domains and Program Interpretations

As introduced in Section 2.4, one basic idea in this work is to formulate the
constructions associated to the definition of the operational, least fixpoint and logical
semantics of constraint normal logic programs in functorial terms. However, compar-
ing these semantic functors is not straightforward since, intuitively, their domains and
codomains are different categories. In particular, we can see the logical semantics of
a (�X ,LX )-constraint logic program P as a mapping (a functor), denoted by LOGP,
whose arguments are logical theories and whose results are also logical theories.
The algebraic semantics of P, denoted ALGP, can be seen as a functor that takes
as arguments logical structures and returns as results logical structures. Finally, the
operational semantics of P, denoted OPP can be considered to take as arguments
constraint solvers and return as results (for instance) interpretations of computed
answers.

Now, comparing the algebraic and the logical semantics is not too difficult, since
we can consider logical theories not as sets of formulas but, equivalently, as classes of
logical structures. In this way, the domains and codomains of LOGP and ALGP would
be, in both cases, (classes of) logical structures. Of course, we could also associate
classes of models to solvers, but giving this semantics to solvers would not be
adequate. In particular, this would be equivalent to closing the solver (the associated
set of non unsatisfiable constraints) up to logical consequence. The problem is
that the class of all models that satisfy a given set of formulas (constraints) would
also satisfy all its logical consequences. However, solvers may not show a logical
behaviour (even if they are well-behaved according to Section 2.2). A solver may say
that certain constraints are unsatisfiable but may be unable to say that some other
constraint is unsatisfiable, even if its unsatisfiability is a logical consequence of the
unsatisfiability of the former constraints.

We take actually the dual approach: we will represent all the semantic domains
involved in terms of sets of formulas. This is a quite standard approach in the
area of Logic Programming where, for instance, (finitely generated) models are
often represented as Herbrand structures (i.e., as classes of ground atoms) rather
than as algebraic structures. One could criticize this approach in the framework of
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constraint logic programming, since a class does not faithfully represents a single
model (the constraint domain of computation DX ) but a class of models. However,
we have argued previously that, when dealing with negation, a constraint domain of
computation should not be a single model, but the class DomX of models which are
elementarily equivalent to DX . In this sense, one may note that a class of elemen-
tarily equivalent models is uniquely represented by a complete theory. However,
since we are dealing with three-valued logic, we are going to represent model classes,
theories and solvers as pairs of sets of sentences, rather than just as single sets. This
poses a (minor) additional problem. Our notion of logical consequence is defined
for two-valued logic and sets of sentences, but here we are dealing with three-valued
logic and pairs of sets of sentences. In this context, the extension is quite obvious.
Given a set of axioms Ax, the theory axiomatically presented by Ax consists of the
sets of formulas:

Th(Ax)+ = {ϕ ∈ Sent� | Ax |= ϕ}
Th(Ax)− = {ϕ ∈ Sent� | Ax |= ¬ϕ}

In what follows, we present the categorical setting required for our purposes.
Being more precise, first of all, we need to define the categories associated to solvers,
computation domains and theories (axiomatizable domains). Then, we will define the
category which properly represents the semantics of programs. Finally, we will define
the three functors that respectively represent the operational, logical and algebraic
semantics of a constraint normal logic program.

Definition 5 Given a signature �X , a �X -pre-theory S is a pair of sets of �X -
sentences (S+,S−).

Remarks and Definition 6

1. Given a solver solvX of a given language LX of �X -constraints, we will denote
by SsolvX = (S+

solvX
,S−

solvX
) the pre-theory associated to solvX , where

S+
solvX

= {c ∈ LX | solvX (c) = T}
S−

solvX
= {c ∈ LX | solvX (c) = F}

2. Similarly, given a set of axioms AxX of a given language LX of �X -constraints,
we will denote by SAxX the theory associated to AxX .

3. Finally, given a computation domain DomX of a given language LX of �X -
constraints, we will denote by SDomX = (S+

DomX
,S−

DomX
) the pair of sets such that

S+
DomX

is the set of sentences satisfied by DomX and S−
DomX

is the set of sentences
which are false in DomX . Note that, since constraint domains are typically two-
valued, S+

DomX
would typically be a complete theory and, therefore, S−

DomX
is the

complement of S+
DomX

.

Now, according to the above ideas, we will define categories to represent con-
straint solvers, computation domains and domain axiomatizations. Also, following
similar ideas we are going to define a category of semantic domains for programs. In
this case, we will define the semantics in terms of sets of formulas. However, we will
restrict ourselves to sets of successful and failed answers, respectively represented by
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the truth value of sentences of the form (c→
)∀ and (c→¬
)∀, where c ∈ LX and 


is a conjunction of �-literals.

Definition 7 Given a signature �X we can define the following categories:

1. The category of �X -pre-theories, PreTh�X (or just PreTh if �X is clear from the
context) is defined as follows:

– Its class of objects is the class of �X -pre-theories.
– For each pair of objects S and S ′ there is a morphism from S to S ′, noted

just by S �c S ′, if S+ ⊆ S ′+ and S− ⊆ S ′−.

2. Th�X (or just Th) is the full subcategory of PreTh�X whose objects are theories
(that is, closed under logical consequence).

3. CompTh�X (or just CompTh) is the full subcategory of Th�X whose objects are
complete theories.

4. Given a constraint language LX and a signature � extending �X , ProgInt�(�X ,LX )

(or just ProgInt if �,�X and LX are clear from the context) is the category
such that:

– Its objects are sets of sentences (c → 
)∀ or (c → ¬
)∀, where c ∈ LX and 


is a conjunction of �-literals.
– For each pair of objects A and A′ there is a morphism from A to A′, noted

just by A � A′ if A ⊆ A′.

As pointed out before, this categorical formulation allows us to speak about rela-
tions among solvers, domains and theories by establishing morphisms among them in
the common category PreTh, in such a way that the morphism between two objects
represents the relation “agrees with” (or completeness if they are seen in the reverse
sense). To be more precise, given a constraint (domain) parameter X = (�X ,LX ,

AxX , DomX , solvX ), we can reformulate the conditions (in Definition 3) required
among solvX , DomX and AxX as:

SsolvX �c SAxX �c SDomX

in PreTh. That is, since DomX must be a model of AxX , there is a morphism
from SAxX to SDomX . Moreover, since solvX must agree with AxX , there is a
morphism from SsolvX to SAxX . Then, by transitivity, solvX agrees with DomX , so
there is a morphism from SsolvX to SDomX . In addition, we can also reformulate other
conditions in these terms:

– solvX is AxX -complete (respectively, DomX -complete) if, and only if, SAxX �c

SsolvX (respectively, SDomX �c SsolvX ).
– AxX completely axiomatizes DomX if, and only if, SDomX �c SAxX , so, as

expected SAxX = SDomX .

5 Functorial Semantic Constructions for Constraint Normal Logic Programs

We present the formulation of the constructions associated to definitions of seman-
tics of constraint normal logic programs in functorial terms. Specifically, we will
define three functors OPP, ALGP and LOGP representing, for a given program P,
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its operational, its algebraic (or least fixpoint), and its logical semantics, respectively.
For this purpose, we will introduce the corresponding semantic constructions they
are based on.

Then, given a (�X ,LX )-program P, the semantics of P can be defined as

[[P]] = (OPP,ALGP,LOGP)

As we pointed out before, this formulation is parametric on the domain constraint.
As we will show in Section 6, this allows us to separate the study of the properties
satisfied by these three semantic constructions, from the classic comparisons of three
kinds of semantics of programs over a specific constraint domain. Moreover, once the
equivalence of semantic constructions is (as intended) obtained, the classical sound-
ness and completeness results that can be obtained depending on the relations among
solvers, theories and domains, are just consequences of the functorial properties.

5.1 Logical Semantics

As it is well-known, the standard logical meaning of a �-program P is its (general-
ized) Clark’s completion CompX (P) = AxX ∪ P∗, where P∗ includes a sentence

∀z(q(z) ↔ ((G1 ∧ c1)
∃�z ∨ · · · ∨ (Gk ∧ ck)

∃�z))

for each q ∈ PS� \ PSX , and where {(q(z) : − G1�c1), . . . , (q(z) : − Gk�ck)} is the
set1 of all the clauses in P with head predicate q. In what follows, this set will be
denoted by DefP(q). Intuitively, in this semantics we are considering that DefP(q) is
a complete definition of the predicate q. A weaker logical meaning for the program
P is obtained by defining its semantics as AxX ∪ P∀, where P∀, is the set including a
sentence

∀z(q(z) ← ((G1 ∧ c1)
∃�z ∨ · · · ∨ (Gk ∧ ck)

∃�z))

for each q ∈ PS� \ PSX , and where DefP(q) is assumed to consist of the same clauses
as above.

Therefore, in general, we can define the parameterized logical semantics of
programs as follows:

Definition 8 (Functorial logical semantics) Let P be a �-program. We can define the
functor LOGP : Th → ProgInt such that:

a) LOGP assigns objects S in its source category Th to objects in ProgInt, in the
following way

LOGP(S) = {(c → 
)∀ | c∃ �∈ S− ∧ P∗ ∪ S |= (c → 
)∀}
∪{(c → ¬
)∀ | c∃ �∈ S− ∧ P∗ ∪ S |= (c → ¬
)∀}

1If there are no clauses in P with head predicate q, i.e., the set is empty, then the above sentence is
simplified to ∀z(q(z) ↔ F.
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b) To each pair of objects S and S ′ such that S �c S ′ in the source category Th,
LOGP assigns the morphism LOGP(S) � LOGP(S ′) in ProgInt.

It is easy to see that LOGP is a functor as a straightforward consequence of the
fact that morphisms are partial orders and the monotonicity of the logic.

5.2 Operational Semantics

In this subsection, we will define an functor OPP based on the operational mechanism
called BCN introduced in [17] and refined in [1]. For this purpose, we generalize
BCN in such a way it parametrically uses any object S ∈ PreTh as an oracle that
evaluates (un)satisfability constraint sentences.

Definition 9 (Functorial semantics) Let P be a �-program. We can define the
functor OPP : PreTh → ProgInt such that:

a) OPP assigns objects S in its corresponding source category PreTh to objects in
ProgInt, in the following way

OPP(S) = {(c → 
)∀ | c∃ �∈ S− and there is a BCN(P,S) − derivation for

�T with computed answer d such that (c → d)∀ ∈ S+} ∪

{(c → ¬
)∀ | 
�c is a BCN(P,S) − failed goal}

b) To each pair of objects S and S ′ such that S �c S ′ the corresponding source
category PreTh, OPP assigns OPP(S ′) � OPP(S) in ProgInt. That is, OPP is
contravariant.

The contravariance of OPP is a consequence of the fact that the BCN-derivation
process only makes unsatisfiability queries to prune derivations. That is, as we will
see in what follows, the oracle S is just used to check conditions of the form c �∈ S− to
proceed with derivations. This means that when S− is larger the derivation process
prunes more derivation sequences. Therefore, it is quite easy to see that if S �c S ′ in
PreTh, then OPP(S ′) � OPP(S) in ProgInt.

The BCN operational semantics is based on two operators originally introduced
by Shepherdson [19] to characterize Clark–Kunen’s semantics in terms of satisfaction
of (equality) constraints. Such operators exploit the definition of literals in the
completion of programs and associate a constraint formula to each query. As a
consequence, the answers are computed, on one hand, by a symbolic manipulation
process that obtains the associated constraint(s) of the given query and, on the
other hand, by a constraint checking process that deals with such constraint(s). In
particular, the original version [17] of the BCN operational semantics works with
programs restricted to the constraint domain of terms with equality. In that case,
BCN uses the equality theory FEA, defined by Clark [4] (or any equation solver) as
a solver. Here, we generalize this semantics to arbitrary constraint domains.
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Definition 10 For any program P, the operators T P
k and F P

k associate a constraint to
each query, as follows:

Let DefP(q)={q(z) : − 
i�ci | 1 ≤ i ≤ m}

T P
0 (q(z)) = F T P

k+1(q(z)) =
m∨

i=1

∃yi(ci ∧ T P
k (
i))

F P
0 (q(z)) = F F P

k+1(q(z)) =
m∧

i=1

∀yi(¬ci ∨ F P
k (
i))

For all k ∈ IN:

T P
k (T) = T F P

k (T) = F

T P
k (¬q(z)) = F P

k (q(z)) F P
k (¬q(z)) = T P

k (q(z))

T P
k

⎛

⎝
n∧

j=1


 j

⎞

⎠ =
n∧

j=1

T P
k (
 j) F P

k

⎛

⎝
n∧

j=1


 j

⎞

⎠ =
n∨

j=1

F P
k (
 j)

For any c ∈ LX , for any k ∈ IN:

T P
k (c) = c F P

k (c) = ¬c

Definition 11 Let P be a program and S ∈ PreTh. A BCN(P,S)-derivation step is
obtained by applying the following derivation rule:

(R) 
1, 
2�d is BCN(P,S)-derived from 
1, 
(x), 
2�c if there exists
k > 0 such that d = (T P

k (
(x)) ∧ c) and d∃ �∈ S−.

Definition 12 Let P be a program and S ∈ PreTh.

1. A BCN(P,S)-derivation from the query L is a sequence of BCN(P,S)-
derivation steps of the form

L �(P,S) . . . �(P,S) L′

Then, L
n�(P,S)L′ means that the query L′ is BCN(P,S)-derived from the query

L in n BCN(P,S)-derivation steps.
2. A finite BCN(P,S)-derivation L

n�(P,S)L′ is a successful BCN(P,S)-derivation if
L′ = �c. In this case, c∃\free(L) is the corresponding BCN(P,S)-computed answer.

3. A query L = 
�c is a BCN(P,S)-failed query if (c → F P
k (
))∀ ∈ S+ for some

k > 0 such that F P
k (
)∀ �∈ S−.

Let S ∈ PreTh, we say that S is well-behaved (as in the sense of 2.2) if for any
constraints c1 and c2:

1. ((c1 ∈S+∧c2 ∈S+) ∨ (c1 ∈S−∧c2 ∈S−) ∨ (c1 �∈S {+,−}∧c2 �∈S {+,−})) if |=c1 ↔ c2.
2. If c1 ∈ S− and |= c1 ← c∃�free(c1)

2 then c2 ∈ S−.
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A selection rule is a function selecting a literal in a query and, whenever S is
well-behaved, BCN(P,S) is independent of the selection rule used. To prove this
assertion we follow the strategy used in [11, 14], so we first prove the next lemma.

Lemma 13 (Switching Lemma) Let P be a program and S ∈ PreTh be well-behaved.
Let L be a query, 
1, 
2 be literals in L and let L �(P,S) L1 �(P,S) L′ be a non-failed
derivation in which 
1 has been selected in L and 
2 in L1. Then there is a derivation
L �(P,S) L2 �(P,S) L′′ in which 
2 has been selected in L and 
1 in L2, and L′ and L′′
are identical up to reordering of their constraint component.

Theorem 14 (Independence of the selection rule) Let P be a program and S ∈
PreTh be well-behaved. Let L be a query and suppose that there exists a successful
BCN(P,S)-derivation from L with computed answer c. Then, using any selection rule
R there exists another successful BCN(P,S)-derivation from L of the same length with
an answer which is a reordering of c.

Next, we establish the basis for relating the BCN(P,S) operational semantics
to the logical semantics of a particular class of constraint logic programs. The
propositions below provide the basis for proving soundness and completeness of the
semantics.

Proposition 15 Let � = (FSX , PSX ∪ PS) be an extension of a given signature of
constraints �X = (FSX , PSX ) by a set of predicates PS, and let P be a �-program.
Then, for every �X -theory S ∈ Th�X ,

P∗ ∪ S |= (
T P

k

(


) → 


)∀

for every conjunction of �-literals 
 and each k in IN.

Proposition 16 (Monotonicity of T P
k and F P

k ) Let � = (FSX , PSX ∪ PS) be an ex-
tension of a given signature of constraints �X = (FSX , PSX ) by a set of predicates
PS, and let P be a �-program. Then, for every �X -theory S ∈ Th�X , and every
�-literal 
:

1. S |= (T P
k (
(x)) → T P

k+1(
(x)))∀

2. S |= (F P
k (
(x)) → F P

k+1(
(x)))∀

5.3 Algebraic Semantics

Finally, we introduce the functor ALGP which assigns to each complete theory
representing a computation domain (see Section 3) the algebraic semantics of the
given program. The definition is based on a new least fixpoint construction that
effectively computes the (intended) algebraic interpretation of programs. Again, all
definitions are parametric in the sense that it can use any object from the category
CompTh to ask for the satisfaction of constraints.



P. Lucio et al.

Definition 17 (Functorial least fixpoint semantics) Let P be a �-program. We can
define the functor ALGP : CompTh → ProgInt such that:

a) ALGP assigns objects S in its source category CompTh to objects in ProgInt, in
the following way

ALGP(S) =
{
(c → 
)∀ | c∃ �∈ S− ∧ T Mod(S)

P ↑ω((c → 
)∀) = t
}

∪
{
(c → ¬
)∀ | c∃ �∈ S− ∧ T Mod(S)

P ↑ω((c → ¬
)∀) = t
}

b) To each pair of objects S and S ′ such that S �c S ′ in the source category
CompTh, ALGP assigns the morphism ALGP(S) � ALGP(S ′) in ProgInt.

ALGP is a functor as a straightforward consequence of the fact that morphisms are
partial orders and of the monotonicity of the operator T Mod(S)

P as we will see in what
follows.

Notice that, since S is a complete theory, Mod(S) is a class of elementary
equivalence. Let us consider for the rest of this section, that DomX is that class, i.e.
DomX = Mod(S). Accordingly, (see also what we argued in Section 3), we consider
a domain for computing immediate consequences (Dom�/≡, �) defined as follows:

Let Dom� be the class of three-valued �-interpretations which are extensions of
models in DomX . Then, as it is done in [20] to extend [13] to the general constraint
case, we consider the Fitting’s ordering on Dom� interpreted in the following sense:
For all partial interpretations A,B ∈ Dom� , for each �X -constraint c(x) and each
�-literal 
(x):

A � B i f f A((c → 
)∀) = t ⇒ B((c → 
)∀) = t

It is quite easy to see that (Dom�, �) is a preorder. Therefore, we consider the
equivalence relation ≡ induced by � (A ≡ B if, and only if, A � B and B � A), and
the induced partial order

[A], [B] ∈ Dom�/≡: [A] � [B] i f f A � B

to build a cpo (Dom�/≡, �) with a bottom class [⊥�] such that for each A ∈ [⊥�]
we have that A((c → 
)∀) �= t for all �X -constraint c(x) and all �-literal 
(x). That
is, the set of goals of the form (c → 
)∀ satisfied by the models in [⊥�] is empty.

Proposition 18 (Dom�/≡, �) is a cpo with respect to �, and the equivalence class
[⊥�] is its bottom element.

Remark 19

1. The relation ≡ builds classes of models which are indistinguishable with respect
to satisfaction of goal formulas.

2. Moreover, it is easy to see that all the models in a ≡-class are elementarily
equivalent in its restrictions to �X .
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Definition 20 (Immediate consequence operator T DomX
P ) Let P be a �-program,

then the immediate consequence operator T DomX
P : Dom�/≡→ Dom�/≡ is defined

for each [A] ∈ Dom�/≡, as

T DomX
P ([A]) =

[
�

DX
P (A)

]

where DX is any distinguished domain model in the class DomX , A is any model in
[A], and [�DX

P (A)] is the ≡-class of models such that for each �X -constraint c(x) and
each �-atom p(x),

1. �
DX
P (A)((c → p)∀) = t if, and only if, there are (renamed versions of) clauses

{p(x) :− 
i
1, . . . , 


i
ni

�di | 1 ≤ i ≤ m} ⊆ DefP(p) and DX -satisfiable constraints
{ci

j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni} such that

– A((ci
j → 
i

j)
∀) = t

– DX ((c → ∨
1≤i≤m ∃yi(

∧
1≤ j≤ni

ci
j ∧ di))

∀) = t

2. �
DX
P (A)((c → ¬p)∀) = t if, and only if, for each (renamed version of a) clause

in {p(x) :− 
i
1, . . . , 


i
ni

�di | 1 ≤ i ≤ m} = DefP(p(x)) there is a Ji ⊆ {1, . . . ni} and
DX -satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such that

– A((ci
j → ¬
i

j)
∀) = t

– DX ((c → ∧
1≤i≤m ∀yi(

∨
j∈Ji

ci
j ∨ ¬di))

∀) = t

where, for each i ∈ {1, . . . , m}, yi are the free variables in {
i
1, . . . , 


i
ni
, di} not in x.

Remark 21

1. In the definition of the operator �
DX
P , we could choose any other model in

DomX , instead of DX , since all of them are elementarily equivalent, and the
domain is just used for constraint satisfaction checking. Similarly, A could be
any other model in [A] since it is used for checking satisfaction of sentences of
the form (c → 
)∀.

2. Moreover, models in a ≡-class [�DX
P (A)] are elementarily equivalent in its

restrictions to �X . In fact, [�DX
P (A)] |�X = DomX since all classes in Dom�

are (conservative) predicative extensions of DomX and the operator T DomX
P

does not compute new consequences from LX . However, neither [A] nor
T DomX

P ([A]) = [�DX
P (A)] are classes of elementary equivalence in general.

In what follows we will prove that T DomX
P is continuous in the cpo Dom�/≡. As

a consequence, it has an effectively computable least fixpoint:

lfp
(
T DomX

P

)
= T DomX

P ↑ω =
⊔[

�
DX
P ↑n

]

However, in order to justify the introduction of our new operator T DomX
P , it is

important to notice that

⊔[
�

DX
P ↑n

]
�=

[
�

DX
P ↑ω

]
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as we will show in Example 22. In fact, the operator �
DX
P can be considered a variant

of the Stuckey’s immediate consequence operator in [20], so, it inherits its drawbacks.
On one hand, �

DX
P is monotonic but not continuous. On the other hand, it will

have different behavior depending on the constraint domain in DomX that may be
predicatively extended. As argued in Section 3, the key to solve these problems is
to use the whole class DomX as domain of computation instead of a single model.
In fact, the key technical point is using its predicative extension, Dom� , in defining
the target and the source, Dom�/≡, of T DomX

P , as the following example aims to
illustrate.

Example 22 Consider the CNLP(N )-program from Example 2:

q(z) : − �z = 0

q(v) : − q(x)�v = x + 1

r : − ¬q(x)

First, let us look at the behaviour of the operator �:

– �N
P ↑ω would be the model extending N where r is undefined and all the

sentences
{
(z = n → q(z))∀ | n ≥ 0

}

are true, so, the sentence ∀z.q(z) will be evaluated as true in �N
P ↑ω. This is not a

fixpoint since we can iterate once more, to obtain a different model �N
P ↑(ω + 1)

where ¬r is true.
– In contrast, if we consider any non-standard model M elementarily equivalent

to N , the sentence ∀z.q(z) will be evaluated as undefined in �M
P ↑ω, so, no more

consequences will be obtained if we iterate once more.

Now we can compare with the behaviour of T :
Similar to the first case, T EQ(N )

P ↑ω is the class of ≡-equivalent models extending
EQ(N ), where r is undefined and all the sentences

{
(z = n → q(z))∀ | n ≥ 0

}

are true. But now, this is a fixpoint in contrast to what happens with any other
operator working over just one standard model. In particular, it is not difficult to
see that the sentence ∀z.q(z) is never satisfied (by models) in [�N

P ↑k] for any k. This
is because we are considering also non standard models (as the predicative extension
of the above M) at each iteration. Therefore, as a consequence of the definition
of

⊔
, we have that ∀z.q(z) is not satisfied in

T EQ(N )

P ↑ω =
⊔[

�N
P ↑k

]

That is, ¬r is not a consequence that can be added (or satisfied) if the iteration
proceeds forward.

Theorem 23 T DomX
P is continuous in the cpo (Dom�/≡, �), so it has a least fixpoint

T DomX
P ↑ω.
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Finally, as a consequence of the continuity of T DomX
P , we can extend a result from

Stuckey [20] related to the satisfaction of the logical consequences of the completion
in any ordinal iteration of �

DX
P , until the ω iteration of T DomX

P , that is, until its least
fixpoint:

Theorem 24 (Extended Theorem of Stuckey)
Let Th(DomX ) be the complete theory of DomX . For each �-goal 
�c:

1. P∗ ∪ Th(DomX ) |=3 (c → 
)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A((c → 
)∀) = t

2. P∗ ∪ Th(DomX ) |=3 (c → ¬
)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A((c → ¬
)∀) = t

6 Equivalence of Semantics

We show that our functorial formulation allows us to separate the study of the
properties satisfied by these three semantic constructions, from the classic compar-
isons of three kinds of semantics of programs over a specific constraint domain.
Moreover, once the equivalence of semantic constructions is (as intended) obtained,
the classical soundness and completeness results that can be obtained depending
on the relations among solvers, theories and domains, are just consequences of the
functorial properties.

First, we prove that the semantic constructions represented by the functors OPP,
ALGP and LOGP are equivalent in the sense that for each object S in the common
subcategory CompTh, OPP(S), ALGP(S), and LOGP(S) are the same object in
ProgInt.

Then, we will show the completeness of the operational semantics with respect
to the algebraic and logical semantics just as a consequence of the fact that functors
preserve the relations from its domains into its codomains.

Theorem 25 Let P be a �-program. For each object S in CompTh,

OPP(S) = ALGP(S) = LOGP(S)

in ProgInt.

Finally, we present the usual completeness results of the operational semantics
that can be obtained when the domains, theories and solvers are not equivalent. As
we pointed out before, these results can be obtained just as a consequence of working
with functors.

Corollary 26 (Completeness of the operational semantics) For any program P, OPP

is complete with respect to ALGP and with respect to LOGP. That is, for each con-
straint domain (�X ,LX , AxX , DomX , solvX ):

– ALGP(SDomX ) �c OPP(SsolvX )

– LOGP(SAxX ) �c OPP(SsolvX )
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7 Concluding Remarks

In this paper we have studied the semantics of constraint normal logic programs
from a new perspective. On the one hand, we have defined constraint domains,
not in terms of a single model, but in terms of a class of elementarily equivalent
models. This has allowed us to prove the equivalence of the logical, algebraic and
operational semantics of normal programs. Actually, we have seen that if one follows
the standard approach (i.e., defining constraint domains in terms of a single model)
this kind of equivalence proof is not possible.

On the other hand, we have defined the semantics of a program, not set-
theoretically, but functorially. We believe that this agrees better with the intuition
that constraint logic programs are parameterized by the given constraint domain.
Moreover, the functorial definition of the semantics has allowed us to prove the
soundness and completeness of the semantics in a simple and more adequate manner.
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Appendix

Proof of Lemma 13 (Switching Lemma) Let L be 
1, 
1, 
2, 
2, 
3�c. Then, L1 =

1, 
2, 
2, 
3�c∧T P

k (
1), k>0, and (c∧T P
k (
1))

∃ �∈S− , and, L′ =
1, 
2, 
3�c∧T P
k (
1)∧

T P
k′ (
2), k > 0, k′ > 0 and (c ∧ T P

k (
1) ∧ T P
k′ (
2))

∃ �∈ S−.
Now, to construct the derivation L �(P,S) L2 �(P,S) L′′ in which 
2 is select first in

L1 we choose L2 = 
1, 
1, 
2, 
3�c ∧ T P
k′ (
2) and L′′ = 
1, 
2, 
3�c ∧ T P

k′ (
2) ∧ T P
k (
1).

Since (c ∧ T P
k (
1) ∧ T P

k′ (
2))
∃ �∈ S− we know that, by the well-behavedness prop-

erty of S , it happens (c ∧ T P
k′ (
2))

∃ �∈ S− and (c ∧ T P
k′ (
2) ∧ T P

k (
1))
∃ �∈ S−. Hence,

L �(P,S) L2 �(P,S) L′′ is a valid BCN(P,S)-derivation. ��
Proof of Theorem 14 (Independence of the selection rule) The proof follows by
induction on the length, n, of the BCN(P,S)-derivation. The base step, n = 0,
trivially holds. Assume that the statement holds for n′ < n. Now, to prove the
inductive step, consider the BCN(P,S)-derivation

L �(P,S) L1 �(P,S) . . . �(P,S) Ln−1 �(P,S) �c

Since this is a successful derivation, each literal in L is selected at some point of the
derivation. Let us consider the literal 
 in L and suppose that it is selected in Li.
By applying Lemma 13 i times we can reorder the above derivation to obtain the
following one L �(P,S) L′

1 �(P,S) . . . �(P,S) L′
n−1 �(P,S) �c′, such that 
 is selected

in L and c′ is a reordering of c. Assume that the selection rule R selects literal

 when considering the singleton derivation L. From the induction hypothesis,

there is another BCN(P,S)-derivation L′
1

n−1� (P, §)�c′′, using the selection rule R′,
where R′ selects literals as they are selected by the rule R when considering the

derivation L �(P,S) L′
1

n−1� (P, §)�c′′. So, c′′ is a reordering of c′ and hence of c. Thus,
L �(P,S) L′

1 �(P,S) . . . �(P,S) L′
n−1 �(P,S) �c′′ is the BCN(P,S)-derivation we were

looking for. ��
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Proof of Proposition 15 Actually we are going to prove that for each k ∈ IN

P∗ ∪ S |= (
T P

k (
) → 

)∀

since it is easy to see that the general case is a straightforward consequence of
Definition 10.

The proof follows by induction on k and it merely relies on standard syntactical
properties of first-order logic. For the base case, k = 0, the proposition trivially holds.
Assume that the statement holds for k′ < k. Now we have to prove it for k. There are
two situations: either T P

k (
) is satisfiable or is not. The proof for the latter case is
analogous to the base step. Assume T P

k (
) is satisfiable. There are two cases:

1. 
 = p(x). Then, applying twice the definition of T P
k , the first time for atoms and

the second time for the conjunction of literals, we obtain the following:

T P
k (p(x)) =

m∨

i=1

∃yi
(

ci ∧ T P
k−1

(



i
))

=
m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k−1

(

i

j

)
⎞

⎠

Now, from the induction hypothesis we have that, for all i ∈ {1, . . . , m} and for
all j ∈ {1, . . . , ni}:

P∗ ∪ S |= (T P
k−1(


i
j) → 
i

j)
∀

Then, it follows logically that,

P∗ ∪ S |=
⎛

⎝
m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k−1

(

i

j

)
⎞

⎠ →
m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1


i
j

⎞

⎠

⎞

⎠

∀

And, again, applying the definition of T P
k we obtain the following:

P∗ ∪ S |=
⎛

⎝T P
k (p) →

m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1


i
j

⎞

⎠

⎞

⎠

∀

(1)

In addition, by the completion of predicate p(x), we have that,

P∗ ∪ S |=
⎛

⎝
m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1


i
j

⎞

⎠ → p(x)

⎞

⎠

∀

(2)

Hence, by Eqs. 1 and 2, we can conclude that

P∗ ∪ S |=
(

T P
k (p(x)) → p(x)

)∀
, k > 0

The proof for the second case is quite similar to the previous one.
2. 
 = ¬p(x). Then, T P

k (¬p(x)) = F P
k (p(x)), and applying the definition of F P

k we
obtain the following:

F P
k (p(x)) =

m∧

i=1

∀yi
(
¬ci ∨ F P

k−1

(



i
))

=
m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k−1

(

i

j

)
⎞

⎠
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Now, using the induction hypothesis we have that, for all i ∈ {1, . . . , m} and for
all j ∈ {1, . . . , ni}:

P∗ ∪ S |=
(

F P
k−1

(

i

j

)
→ ¬
i

j

)∀

Therefore, it follows logically that,

P∗ ∪ S |=
⎛

⎝
m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k−1

(

i

j

)
⎞

⎠ →
m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

¬
i
j

⎞

⎠

⎞

⎠

∀

Again, applying the definition of F P
k , we have that,

P∗ ∪ S |=
⎛

⎝F P
k (p(x)) →

m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

¬
i
j

⎞

⎠

⎞

⎠

∀

(3)

Finally, as in the previous case, we use the completion of the predicate p(x) to
obtain:

P∗ ∪ S |=
⎛

⎝
m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

¬
i
j

⎞

⎠ → ¬p(x)

⎞

⎠

∀

(4)

Hence, by Eqs. 3 and 4, we can conclude that

P∗ ∪ S |= (
F P

k (p(x)) → ¬p(x)
)∀

, ��
Proof of Proposition 16 (Monotonicity of T P

k and F P
k ) The proof follows by induction

on k. The base case, k = 0, trivially holds. Assume the statement holds for k′ < k. To
prove the inductive step we have two cases:

1. If 
(x) = p(x) then by the definition of T P
k we have that

T P
k (p(x)) =

m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k−1

(

i

j

)
⎞

⎠

and

T P
k+1(p(x)) =

m∨

i=1

∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k

(

i

j

)
⎞

⎠

Now, from the inductive hypothesis it follows that, for all i ∈ {1, . . . , m} and for
all j ∈ {1, . . . , ni}:

S |=
(

T P
k−1

(

i

j

)
→ T P

k

(

i

j

))∀
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Thus, it follows logically that,

S |=
⎛

⎝∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k−1

(

i

j

)
⎞

⎠ → ∃yi

⎛

⎝ci ∧
ni∧

j=1

T P
k

(

i

j

)
⎞

⎠

⎞

⎠

∀

And hence, applying the definition of T P
k we obtain the following:

S |= (
T P

k (p(x)) → T P
k+1(p(x))

)∀

2. If 
(x) = ¬p(x) then by the definition of F P
k we have that

F P
k (p(x)) =

m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k−1


i
j)

⎞

⎠

and

F P
k+1(p(x)) =

m∧

i=1

∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k 
i

j)

⎞

⎠

Now, from the inductive hypothesis it follows that, for all i ∈ {1, . . . , m} and for
all j ∈ {1, . . . , ni}:

S |=
(

F P
k−1

(

i

j

)
→ F P

k

(

i

j

))∀

Thus, it follows that,

S |=
⎛

⎝∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k−1

(

i

j

)
⎞

⎠ → ∀yi

⎛

⎝¬ci ∨
ni∨

j=1

F P
k

(

i

j

)
⎞

⎠

⎞

⎠

∀

And hence, applying the definition of F P
k we obtain the following:

S |= (
F P

k (p(x)) → F P
k+1(p(x))

)∀ ��

Proof of Proposition 18 (CPO) To prove that (Dom�/≡, �) is a cpo, we show that
each increasing chain {[Ai]}i∈I ⊆ Dom�/≡

[A1] � . . . � [An] � . . .

has a least upper bound
⊔[An]. Let [A] be such that A((c → 
)∀) = t iff, for some

n, An((c → 
)∀) = t. Then, it is almost trivial to see that

– For each n, [An] � [A]
– For any other [B] such that [An] � [B] for each n, [A] � [B].
Finally, it is trivial to see that [⊥�] � [A] for all [A] ∈ Dom�/≡. ��
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Proof of Theorem 23 (Continuity of T DomX
P ) First of all, T DomX

P is monotonic, that
is, for all [A] and [B] in Dom�/≡

[A] � [B] ⇒ T DomX
P ([A]) � T DomX

P ([B])
as a consequence of the fact that �

DX
P is monotonic:

[A] � [B] ⇒ A � B ⇒ �
DX
P (A) � �

DX
P (B) ⇒

[
�

DX
P (A)

]
�

[
�

DX
P (B)

]

Then, being T DomX
P monotonic, to prove that it is continuous it is enough to prove

that is finitary. That is: For each increasing chain {[An]}n∈I, [A1] � . . . � [An] � . . .

T DomX
P

(⊔
[An]

)
�

⊔
T DomX

P ([An])

Let [A] = ⊔[An] and [B] = T DomX
P (

⊔[An]) = [�DX
P (A)]. Let us assume

B((c → 
)∀) = t. We have two cases:

(a) If 
 = p(x) then, by the definition of the operator �
DX
P , we know there are

(renamed versions of) clauses {p(x) :− 
i
1, . . . , 


i
ni

�di | 1 ≤ i ≤ m} in P and
DX -satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni} such that

• A((ci
j → 
i

j)
∀) = t

• A((c → ∨
1≤i≤m ∃yi(

∧
1≤ j≤ni

ci
j ∧ di))

∀) = t

In such a situation, by definition of
⊔

, we know that for each 1 ≤ i ≤ m and
1 ≤ j ≤ ni there is an [Ak] ∈ {[An] | n ∈ I} such that Ak((ci

j → 
i
j)

∀) = t. Then,
since (Dom�/≡, �) is a cpo, we know that each finite sub-chain has a least
upper bound in {[An]}n∈I . Let it be [As]. In addition, since all models in D� are
elementarily equivalent we can state that

• As((ci
j → 
i

j)
∀) = t

• As((c → ∨
1≤i≤m ∃yi(

∧
1≤ j≤ni

ci
j ∧ di))

∀) = t

Therefore, �
DX
P (As)((c → p(x))∀) = t so for all models C ∈ [�DX

P (As)] we
have that C((c → p(x))∀) = t. Thus, by definition of

⊔
, this implies that for

all C ′ ∈ ⊔[�DX
P (An)] = ⊔T DomX

P ([An]) we have that C ′(c → p(x)))∀ = t.
(b) The proof for 
 = ¬p(x) proceeds in the same way. That is, by the definition

of the operator �
DX
P , we know that for each (renamed version of a) clause in

{p(x) :− 
i
1, . . . , 


i
ni

�di | 1 ≤ i ≤ m} = DefP(p(x))) there is a Ji ⊆ {1, . . . ni} and
DX -satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such that

• A((ci
j → ¬
 j)

∀) = t

• A((c → ∧
1≤i≤m ∀yi(

∨
j∈Ji

ci
j ∨ ¬di))

∀) = t

Again, by definition of
⊔

, we know that for each j ∈ J there is an [Aj] ∈ {[An] |
n ∈ I} such that Aj((cj → ¬
j)

∀) = t. Then, as a consequence of (Dom�/≡, �)

being a cpo, and all models in D� being elementarily equivalent, there is a class
[As] in the chain such that

• As((ci
j → ¬
 j)

∀) = t

• As((c → ∧
1≤i≤m ∀yi(

∨
j∈Ji

ci
j ∨ ¬di))

∀) = t
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Therefore �
DX
P (As)((c → ¬p(x))∀) = t so, for all models C ∈ [�DX

P (As)] we
have that C((c → ¬p(x))∀) = t. And, finally, by definition of

⊔
, this im-

plies that for all C ′ ∈ ⊔[�DX
P (An)] = ⊔T DomX

P ([An]) we have that C ′(c →
¬p(x)))∀ = t. ��

Proof of Theorem 24 (Extended Theorem of Stuckey) We prove that 1 and 2 hold
for a goal 
�c. Then, the general case for 
�c easily follows from the logical definition
of the truth-value of (c → 
)∀ and (c → ¬
)∀.
Stuckey’s result states that P∗ ∪ Th(DomX ) |=3 (c → 
)∀ if, and only if,

�
DX
P ↑ k((c → 
)∀) = t

for some finite k. So, by definition of T DomX
P , this is equivalent to

∀A ∈ T DomX
P ↑ k : A((c → 
)∀) = t

for some finite k. And, by definition of
⊔

, to

∀A ∈
⊔

T DomX
P ↑ k : A((c → 
)∀) = t ��

Proof of Theorem 25 (Equivalence of Semantics) First of all, we have that
LOGP(S) = ALGP(S) as a direct consequence of Theorem 24 (Extension of
Stuckey’s theorem).
In the following, we will prove that

– ALGP(S) ⊆ OPP(S) and
– OPP(S) ⊆ LOGP(S)

1. To prove that ALGP(S) ⊆ OPP(S), we use induction on the number of iterations
of T Mod(S)

P . We just consider goals such that 
 = p(x) and 
 = ¬p(x), since the
general case follows from the properties of operators T P

k and F P
k and the fact

that BCN is independent of the selection rule.
The base case n = 0 is trivial since T Mod(S)

P ↑0 = [⊥�] and [⊥�]((c → 
)∀) �= t
for all �X -constraint c(x) and all �-literal 
(x).
Assume that for all k ≤ n, T Mod(S)

P ↑k((c → 
)∀) = t implies (c → 
)∀ ∈ OPP(S).

a. If 
 = p(x) then, by the definition of T Mod(S)

P , we know there are (renamed
versions of) clauses {p(x) :− 
i

1, . . . , 

i
ni

�di | 1 ≤ i ≤ m} in P and Mod(S)-

satisfiable constraints {ci
j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni} such that T Mod(S)

P ↑
n((ci

j → 
i
j)

∀) = t and for every model M ∈ Mod(S)

M

⎛

⎝

⎛

⎝c →
m∨

i=1

∃yi

⎛

⎝
ni∧

j=1

ci
j ∧ di

⎞

⎠

⎞

⎠

∀⎞

⎠ = t

or equivalently, (c → ∨m
i=1 ∃yi(

∧ni
j=1 ci

j ∧ di))
∀ ∈ S , since all models in

Mod(S) are elementarily equivalent as a consequence of S being a complete
theory.
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Then, by inductive hypothesis we have that (ci
j → 
i

j)
∀ ∈ OPP(S) for all 1 ≤

i ≤ m and 1 ≤ j ≤ ni. Thus, we know the existence of successful BCN(P,S)-
derivations for every 1 ≤ i ≤ m and 1 ≤ j ≤ ni:


i
j�di �(P,S) �T P

ki
j

(

i

j

)
∧ di

such that (T P
ki

j
(
i

j)) ∧ di)
∃ ∈ S and (ci

j → T P
ki

j
(
i

j))
∀ ∈ S .

Let k > 0 be the greatest number in {ki
j | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ ni}. Then, as

a consequence of the monotonicity of the operator T P− , we know
⎛

⎝
ni∧

j=1

T P
k

(

i

j

)
⎞

⎠ ∧ di)
∃ ∈ S

And, since T P
k (

∧ni
j=1 
i

j) = ∧ni
j=1 T P

k (
i
j) and (

∧ni
j=1 ci

j → T P
k (

∧ni
j=1 
i

j))
∀ ∈ S

we have that
⎛

⎝c →
m∨

i=1

∃yi

⎛

⎝T P
k

⎛

⎝
ni∧

j=1


i
j

⎞

⎠ ∧ di

⎞

⎠

⎞

⎠

∀

∈ S

That is, T P
k+1(p(x))∃ ∈ S and (c → T P

k+1(p(x)))∀ ∈ S .
Therefore, we can guarantee the existence of a successful BCN(P,S)-
derivation:

p(x)�t �(P,S) �T P
k+1(p(x))

so that (c → p(x))∀ ∈ OPP(S).
b. The proof for 
 = ¬p(x) proceeds in the same way. That is, by the definition

of the operator T Mod(S)

P , we know that for every (renamed version of a)
clause in {p(x) :− 
i

1, . . . , 

i
ni

�di | 1 ≤ i ≤ m} = DefP(p(x))) there is a Ji ⊆
{1, . . . ni} and Mod(S)-satisfiable constraints {ci

j | 1 ≤ i ≤ m ∧ j ∈ Ji} such
that:

• T Mod(S)

P ↑n((ci
j → ¬
 j)

∀) = t

• (c → ∧
1≤i≤m ∀yi(

∨
j∈Ji

ci
j ∨ ¬di))

∀ ∈ S
Again, by inductive hypothesis we have that for all 1 ≤ i ≤ m and j ∈ Ji,
(ci

j → ¬
i
j)

∀ ∈ OPP(S) so, for some ri
j > 0

(
ci

j → F P
ri

j

(

i

j

))∀ ∈ S

Let r > 0 be the greatest number in {ri
j | 1 ≤ i ≤ m ∧ j ∈ Ji}. Then, as a

consequence of the monotonicity of the operator F P− , we know (
∨

j∈Ji
ci

j →
F P

r (
i
j))

∃ ∈ S . And, since F P
r (

∨
j∈Ji


i
j) = ∨

j∈Ji
F P

r (
i
j) and (

∨
j∈Ji

ci
j →

F P
r (

∨
j∈Ji


i
j))

∀ ∈ S we have that

(c → F P
r+1(p(x)))∀ ∈ S

Therefore, we can guarantee that p(x)�c is a BCN(P,S)-failure, so (c →
¬p(x))∀ ∈ OPP(S).
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2. Finally, we prove that OPP(S) ⊆ LOGP(S). Again we have two cases:

a. Suppose that (c → ¬
)∀ ∈ OPP(S) so, 
�c is a BCN(P,S)-failed goal.
Hence, (c → F P

k (
))∀ ∈ S , for some k > 0. Therefore, by Proposition 15, we
can conclude that P∗ ∪ S |= (c → ¬
)∀.

b. Suppose now that (c → 
)∀ ∈ OPP(S). Again we will prove the case 
 = p(x)

since the general case will follow from the properties of T P
k and the fact

that BCN is independent of the selection rule. So we assume p(x)�c has a
BCN(P,S)-derivation

p(x)�t �(P,S) �T P
k (p(x))

such that (c → T P
k (p(x)))∀ ∈ S . Then, again as a consequence of Proposition

15, we can conclude that P∗ ∪ S |= (c → p(x))∀. ��
Proof of Corollary 26 (Completeness of the operational semantics) Given a program
P, and given a constraint domain (�X ,LX , AxX , DomX , solvX ) we have:

– Since SsolvX �c SDomX , the contravariance of OPP implies that OPP(SDomX ) �c

OPP(SsolvX ). Then, according to the previous theorem, OPP(SDomX ) =
ALGP(SDomX ). Therefore, ALGP(SDomX ) �c OPP(SsolvX ).

– Similarly, since OPP(SDomX )�cOPP(SsolvX ) and OPP(SDomX )=LOGP(SDomX ),
we have LOGP(SAxX ) �c OPP(SsolvX ) ��
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