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ABSTRACT

In this paper, we present a new proposal for an efficient
implementation of constructive negation. In our approach
the answers for a literal are bottom-up computed by solv-
ing equality constraints, instead of by handling frontiers of
subsidiary computation trees. The required equality con-
straints are given by Shepherdson’s operators which are, in
a sense, similar to bottom-up immediate consequence op-
erators. However, in order to make the procedure efficient
two main techniques are applied. First, we restrict our con-
straints to a class of success-answers (resp. fail-answers)
which are easy to manipulate and to solve (or to prove their
unsatisfiability). And, second, we take advantage of the
monotonic nature of Shepherdson’s operators to make the
procedure incremental and to avoid recalculations that are
typical in frontiers-based methods. Then, goal computation
is made in the usual top-down CLP scheme of collecting the
answers for the selected literal into the constraint of the goal.
The procedural mechanism for constructive negation is de-
signed not only to generate every correct answer of a goal,
but also to detect failure. That is, in spite of the bottom-up
nature of the calculation of literal answers, goal computa-
tion is not necessarily infinite. The operational semantics
that makes use of these ideas, called BCN, is sound and
complete with respect to three-valued program completion
for the whole class of normal logic programs. A prototype
implementation of this approach has been developed and the
experimental results are very promising.
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1. INTRODUCTION

The idea of constructive negation was introduced by Chan
in [5] and extended, by Chan (in [6]) and by Drabent (in
[10]), to a complete and sound operational semantics for
the whole class of normal logic programs. Fages (in [11])
and Stuckey (in [22]) provided generalizations of construc-
tive negation to the framework of Constraint Logic Pro-
gramming (CLP for short, see [13] for a survey). From the
operational point of view, these approaches are based on
subsidiary computation trees and frontiers. That is, when
a negative literal = A is selected, a subsidiary computation
tree for its positive counterpart A is activated. A frontier is
aset {G1,...,Gn} of goals containing exactly one goal from
each non-failed branch of the computation tree. Since —A
is equivalent to the frontier negation —=(G1 V ---V Gy), the
problem is how to transform this formula into a suitable one
for proceeding with the original derivation. Chan (in [6])
and Stuckey (in [22]) transform the frontier negation into
a disjunction of complex-goals, which are goals of the form
VZ(c V B) where ¢ is a constraint and B is a disjunction of
complex-goals and literals. However, Drabent’s and Fages’s
proposals (resp. [10] and [11]) keep the notion of normal
goal. They do not negate the whole frontier, but only the
constraints (not the literals) involved in the frontier goals,
producing the so-called fail-answers. In the following, we
will present an example that explains how these approaches
work.

Let P be the following program:

p(a)-
P(f(X,Y)) : — p(X), = p(¥). (1)
P(£(X,Y)) : — = p(X), p(¥).
over the signature {a\0,f\2} and assume that we want to
solve the query

—p(Z)

Figure 1 represents the subsidiary computation tree for p(Z)
and figure 2 represents the pre-computation tree for this
query according to the complex-goals approach. In partic-
ular, the successor of node (1) (i.e. node (2)) in figure 2
comes from the negation of the first-level frontier of node
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Figure 1: Subsidiary tree
«— —p(Z) (1)
— = (p(X1),=p(¥Y1)) ,~(=p(X1),p(Y1)) O z#a, z==£(xX1,Y1) (2)
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e, - (=p(X1),p(Y1)) ]
e, z#a, 7Z=f(xX1,Yl), X1= f(X2,Y2)
——(=p(x1),p(v1)) O
Z#a, z=f(a,a), (5) RN RS
Xl=a, Yl=a - o
«—0Oz=£f(a,a)

Figure 2: A complex-goal pre-computation tree

(a) in figure 1 (i.e. nodes (b), (c) and (d)). In general, we
could have (non-deterministically) chosen a different fron-
tier in the subsidiary tree, but in this case, we have made
the simplest choice consisting of the immediate successors
of (a).

The computation of the successors of node (2) in figure 2 is
a little bit more involved. First, we have to choose a complex
subgoal of (2). In this case we have chosen =(p(X1), —p(Y1)).
Then, if this subgoal is negative, we have to compute a fron-
tier for its positive counterpart. This frontier may consist of
nodes (e), ((f) and (g) in fig. 1, if we select for resolution
the literal p(X1). Next, we have to compute the successors
of (2) by substituting the chosen subgoal by the negation
of that frontier. However, the result is not yet a complex-
goal since it includes some (inner) disjunctions. Then, using
repeatedly the transformational rule:

—3XIY¥(c A G) — —3X3Y(c) V IXIY(c A -G)

together with distribution and quantifier elimination we can
arrive to a disjunction of eight complex-goals. However, six
of them can be discarded since they can be shown to be

unsatisfiable because they include the constraint:
—(Z = a) A ~3IX3V(Z = £(X,Y))

Therefore, the two remaining complex goals (nodes (3) and
(4)) are the successors of (2). This process would continue
until arriving to goals consisting only of equality constraints.

It may be noticed that, along the computation, goals be-
come more and more complex, especially by nested negation
(see (4) for instance). This is particularly the case in pro-
grams including recursion through negated goals. Two side
effects of this increasing complexity are, on one hand, that
the kind of computations needed to compute new goals be-
comes also increasingly involved. On the other, the most ob-
vious implementation of this computation process involves
the continuous repetition of the same transformation steps.
However, avoiding this repetition may be a very difficult
task.

It may also be noticed that this computation process in-
volves two kinds of nondeterminism. On one hand, the se-
lection of the subgoal to be solved is, as usual, nondeter-
ministic. On the other, the frontiers to be used in a given



computation, according to [22], can also be chosen nonde-
terministically. However, defining the frontiers in terms of
the immediate successors in the subsidiary tree, as done in
the example above, seems to be a reasonable choice.

Figure 3: A fail-answers pre-computation tree

In the case of the fail-answers approach, things work dif-
ferently. In this approach, each subsidiary computation step
intends to get either: (i) a success, or (ii) a frontier such
that the negation of the associated constraints is satisfiable.
In the former case, the negation of the produced success is
used to restrict the goal of the main computation. In the
latter case, it obtains an answer for the selected literal of the
main computation. For instance, in the previous example,
the success (b) of Figure 1 gives rise to the first child in the
main computation tree of Figure 3. Then, since the nega-
tion of the constraints of the first level frontier (nodes (b),
(c) and (d)) is unsatisfiable, we cannot obtain any answer
from that frontier and we have to compute another one.
As a consequence, the computation of the subsidiary tree
would continue. This computation can stop when arriving
at the frontier consisting of nodes (b), (k), (f), (g), (m),
(i) and (j). In this frontier, the conjunction of the negation
of the associated constraints is satisfiable and equivalent to
the answer Z=f (a,a).

It may be noticed that goals (e) and (h) require a sub-
subsidiary computation tree. It may also be noticed that
this approach, especially the approach of [11], is more amen-
able for practical implementation than the complex-goals
approach, since one can avoid manipulating these goals.
However, it is still a problem how to avoid the repetition
of the same computations, especially in the case where the
predicate definitions involves recursion through negated
atoms.

In this paper, we propose a new approach for constructive
negation. Our proposal is based on the bottom-up compu-
tation of the set of answers for a given literal, by applying
Shepherdson’s operators (cf. [21]). We perform once, at
compilation time, the schemes for computing the successive
iterations of these operators. Using these schemes, we avoid
the above mentioned repetitions of symbolic transformations
and satisfiability checks. Exploiting the monotonicity of the
operators, the answers for a literal are incrementally ob-
tained from its scheme. Besides, the form of the schemes
and their solving method are based on a particular class of
equality constraints which can be easier handled than gen-
eral equality constraints.

The ” compile-time” nature of our schemes makes our pro-
posal closer to the so-called intensional negation that was in-
troduced in [1]. It was extended, in [4], to the CLP setting.
To solve a negative literal, our schemes work similarly (but
not identically) to the negative programs which are obtained
(in [1, 4]) by transformation. In [1], the presence of univer-
sal quantification in goals prevents to achieve a complete

goal computation mechanism. This problem is carried out
in [4] where a complete operational semantics is provided,
although the transformed programs have complex-goals as
clause bodies. This compilative complex-goals approach al-
lows a more incremental goal computation process than the
previous complex-goal approach. However, the problems of
increasingly involved goal computation process (caused by
nesting of complex-goals) and repeated calculations still re-
main.

Let us give a preliminary explanation of our approach
through the previous program (1). Shepherdson’s operators
give the following bottom-up scheme for the definition of
the success-answers of the literal —p(Z) (or equivalently, the
fail-answers of p(Z)):

Fi(p(Z2))= £ (£ denotes falsehood)
Fepr(p(Z)) = 3X13Y1( Z = £(X1,Y1) A
(Fr(p(X1)) V Tk (p(Y1))) A
(Tk(p(X1)) vV Fi(p(Y1))) )

The computation of this scheme requires the same compu-
tational effort than the negation of the first level frontier
for p(z). However, using this scheme, as a consequence of
the monotonicity of the operators, we avoid the above men-
tioned repetitions of symbolic transformations and satisfi-
ability checks. That is, the success-answers of —p(Z) are
bottom-up obtained incrementally from the scheme as fol-
lows (we show the next two iterations):

Fy(p(z)) = 3K13IY1(Z = £(X1, Y1) A
(fVvYl=a)A(X1=aV£L))
= Z=1(a,a)
F3(p(z)) = 3X131(Z = £(X1,Y1) A

(X1 =f(a,a) VY1 =a)A
X1 =aVYl=1=(aa)))
= Z=1f(a,a)VZ=1£(f(a,a),f(a,a))

Our proposal keeps the notion of normal goal. Universal
quantification affecting literals is restricted to the schemes
and it is exclusively caused by clauses with (at least) one
variable in its body that does not occur in its head. The
incremental resolution of these schemes allows us to provide
a complete goal computation mechanism. The procedural
mechanism for computing a CLP normal goal combines the
bottom-up calculated answers for each individual literal into
the global constraint (of the goal), in order to obtain the
goal answers. For generating all correct answers, it suffices
to keep iteration-counters for each literal and a fair selection
rule. Nevertheless, a goal can fail after the computation of
zero o more answers. To support failure we use a computa-
tion rule that works as follows (informally):

If the selected literal has no new success-answer, then
every solution of the goal-constraint could be a fail-
answer of the literal. In this case, the goal is a failure
leaf. Otherwise, the goal-constraint is restricted to the
non fail-answers of the selected literal at the current
iteration.

By means of this rule (technically (C2) in Def. 4), our pro-
cedural mechanism is able to finish computations (whenever
termination is semantically expected) under the proviso of
fairness. Our completeness result only assumes the classical
notion of fairness in the selection of the literal, which is the



unique nondeterminism in computations. It is difficult to
talk over computation termination of the above explained
proposals. For the fail-answers proposals (cf. [10, 11]) this
is due to their non-deterministic formulation. In the case
of complex-goals (cf. [6, 22, 4]), the rule Vz(c V B) —
VZ(c) V VZ(c V B) that is used to extract information from
complex-goals, often gives raise to superfluous infinite com-
putation of Vz(c Vv B).

In order to show how failure detection works, let us add
two clauses to program (1):

q(X) : = r(X).

r(f(a,a)).

Then, the goal ——p(Z), ~q(Z) has exactly one success-answer
Z = £(a,a) and, after it, the computation fails. A BCN-
computation tree is shown in Figure 4. The literal —p(Z)

«— —p(z),—q(z)0 (1)
—-apl(Z),~q(z)0 z#a (2)
—=p(z)0 z=f(a,a) (3) —-p(z),—~q(z)0
‘ z#a, 7Z#f(a,a) (4)
— DZ:f(a,a) (5) FAIL

Figure 4: BCN-computation tree

has no success at the first iteration. Then, Z = a is the only
fail-answer of =p(Z) at the first iteration. Hence, the goal (1)
does not fail, but it is restricted by Z # a to give the goal
(2). Next, selecting —q(Z), there are neither success- nor
fail-answers at the first iteration. Hence the goal remains
unchanged and both iteration-counters are incremented. To
simplify we have supposed that the same literal is selected
again. At the second iteration Z = £(a,a) is a success, then
the branch is split into the goals (3) and (4). The lat-
ter branch is for trying with higher-iterations success of
—p(Z). The answer (5) comes from Fa(p(Z)) = Z = £(a, a).
The goal (4) fails because —p(Z) has not new success at
the second iteration, but each answer of the goal-constraint
Z # a A Z # £(a, a) is a second-iteration fail-answer of —p(Z).

We have implemented a prototype that is available in
http://wuw.sc.ehu.es/jiwlucap/BCN.html. The experi-
mental results are very encouraging.

Outline of the paper. Section 2 contains preliminary defi-
nitions and notation. Section 3 is devoted to the constraint
solving method that we use in the bottom-up computation
of literal answers. That includes the notion of answer, the
basic operations for constraint handling and the incremental
solving of schemes. In section 4 we introduce the procedu-
ral mechanism for constructive negation, together with the
soundness and completeness results. In Section 5 we sum-
marize some conclusions and experimental results.

2. PRELIMINARIES

We deal with the usual syntactic objects of first-order lan-
guages. These are function and predicate symbols (in partic-
ular, the equality symbol =), terms and formulas. Terms are
variables, constants and function symbols applied to terms.

Formulas are the logical constants t and £, predicate sym-
bols applied to terms, and composed formulas with connec-
tives 7, V, A, —, <> and quantifiers V, 3. To avoid confusion,
we use the symbol = for the metalanguage equality.

A bar is used to denote tuples, or finite sequences, of
objects, like T as abbreviation of the n-tuple of variables
r1,...,%n. Concatenation of tuples is denoted by the infix
- operator, i.e. T-y represents the concatenation of T and 7.

We classify (possibly negated) atoms into (dis)equations
and literals depending on the predicate symbol they use:
the equality for the former and any uninterpreted predicate
symbol for the latter. If ¢1,t2 are terms, then 1 = t2 is called
an equation and t1 # t2 (as abbreviation of —(t1 = t2))
is called a disequation. If T and T are n-tuples of terms
then T = 7 abbreviates t1 = t{ A+ Atn, =t and L # T
abbreviates t1 # t1 V -+ Vt, # t,,. A literalis an atom p(¥)
(called positive literal) or its negation —p(%) (called negative
literal), where p is an n-ary predicate symbol (different from
equality) and  an n-tuple of terms. By a flat literal, we mean
that £ is an n-tuple of variables.

An equality constraint is an arbitrary first-order formula
such that equality (=) is the only predicate symbol occurring
in atoms.

Let a be a syntactic object (term, equality constraint,
formula, literal, etc), free(a) is the set of all variables oc-
curring free in o. We write o(T) to denote that free(a) C 7.
Let ¢ be a formula, in particular an equality constraint, and
Qe {3,V}, then ©% denotes the existential /universal quan-
tification of ¢ in all its free-variables.

A substitution o is a mapping from a finite set of variables,
called its domain, into the set of terms. It is assumed that o
behaves as the identity for the variables outside its domain.
The most general unifier of a set of terms {s1,...,sn}, de-
noted mgu(si, ..., sn), is an idempotent substitution o such
that o(s;) = o(s;) for all i,5 € 1..n and for any other sub-
stitution @ with the same property, # = ¢’-o holds for some
substitution ¢’. For tuples, mgu(3',...,5™) is an abbrevia-
tion of 1+ -+ - on where o; = mgu(s;,...s™) foralli € 1..n.

A basic constraint, denoted by b(Z, W), is a conjunction of
equations of the form T = ¢(w), where T and w are disjoint
tuples of pairwise distinct variables. In the sequel b(_,_)
is used as a metavariable for basic constraints — over an
specific pair of variable tuples, when necessary. B

A goal is an expression of the form «/¢ oc where £ is a
conjunction of positive and negative flat literals and c is an
equality constraint. A basic goalis a constrained goal «£ 0b
where b is a basic constraint. As usual in CLP, the symbols
comma (,) and box (O) are syntactic variants of conjunc-
tion, respectively used to separate literals and constraints.
Whenever b is t or £ is empty or t, they are omitted in goals.

A normal clause is an expression p(Z) : — £(7) 0 b(T-7, D)
where the flat atom p(T) is called its head, the basic goal
:—£(7) 0 b(TY, W) is called its body, and the disjoint tuples of
variables T, 7, W are related in the basic constraint b(Z-7, W),
since it has the form T = ¥(W) A7 = T (D).

Programs are finite sets of normal clauses. Every program
P is built from symbols of a signature ¥ = (FSs, PSyx)) of
function and predicate symbols, respectively, and variables
from X. We use the term X-program whenever the signature
is relevant.

Given a program P and a predicate symbol p, the set
defp(p(T)) consists of all the clauses in P with head pred-
icate p. For simplicity, we assume that all clauses with the



same head predicate (namely p) use the same head variables
(namely Z) and different body variables. It is easy to see
that every classical’ normal logic program can be rewritten
as one of our programs.

EXAMPLE 1. The classical normal {a\0, £\1}-program:

P(£(X)) : — p(X), ~ q(£(X)).
q(a): —q(a).
q(X) : — r(X).

).
p(X): — p(¥1), - q(¥a) 0K = £(W), Ys = W, Ya = £(W).
a(X): —q(Y1)oX=a,¥Y1 = a.

qX): ——r(Y2) oX =W, Y2 =W.

r(X): —o0X=f(a). [ |

To define the semantics of a X-program P, Clark [7] pro-
posed to complete the definition of the predicates in P. The
predicate completion formula of a predicate p € PSs such
that defr(p(z)) = {p(@) : ~ T(7") 0b'@-7, @) |i € L.m}
is the sentence:

< Vw6 @y, w) AT @)

In particular, for m = 0 (or defp(p(T)) = () the above
disjunction becomes f. Hence, the formula is equivalent to
VZ(—p(T)). The Clark’s completion of a program P, namely
Comp(P), consists of the free equality theory > FET(X) to-
gether with the set P* of the predicate completion formulas
for every p€ PSs;. Then, the standard declarative meaning
of normal logic programs is Comp(P) interpreted in three-
valued logic (cf. [14]).

The theoretical foundations of our proposal comes from
a result of Shepherdson ([21]) characterizing Clark-Kunen’s
completion semantics in terms of satisfaction of equality con-
straints. In Definition 1 we recall the bottom-up operators
that were introduced by Shepherdson ([21]). These opera-
tors provide a bottom-up scheme for computing the success-
and fail-answers of a given flat literal.

DEFINITION 1. The operators T, and Fi are inductively
defined, with respect to a X-program P, as follows:

e For any atom p(T) such that pe PSs and
defr(p(z)) = {p(@) :~ T(F) 0b (@7, @) i € 1..m} -
Ten (@) =\ 37 (0 @75 AT (7))
vy w' (b (@ 7w v F(T (@)))

e Forany ke IN:
(' AT =

1 -2

Tu(C)YANT(C)  Ti(—p(E)) = Fr(p(T))
Fu@ AT) = Fu(@)V Fe(@)  Fu(-p(@) = T (p(T))
Te(t) =t Fr(t) =£ u

'We say ”classical” to distinguish Logic Programming (LP)
concepts (goal, program, etc) from CLP concepts

2also known as Clark’s equational theory (cf.[7]) or the first-
order theory of finite trees.

A key result for our work is the following Theorem 1,
which is a simple consequence of Theorem 6 and Lemma 4.1
in [21].

THEOREM 1. Let P be a X-program, ¢ a conjunction of
literals and c, d constraints, then the following two facts hold:

(i) Comp(P) [=s (¢ — (£ A )Y if and only if FET(Z) |=
(c = (Tu(€) A d))Y for some ke IN

(i) Comp(P) =3 (c — (~€V d))” if and only if FET(X) |=
(c — (Fe(0) vV d))" for some ke N ®

In partlcular Comp(P) =3 (Ti(f) — €)¥ and Comp(P) =3
(Fr(f) — —£)” hold for every k€ IN. Roughly speaking, we
call a k-success (resp. k-failure) of a literal, to any answer
(resp. failure-answer) belonging to the k—iteration of some
immediate consequence operator over such literal. Differ-
ent immediate consequence operators, providing bottom-up
semantics for normal logic programs, have been proposed
(cf. [3, 12, 14, 15, 22]). Intuitively, the equality constraint
T (£) represents the k-success of ¢, whereas Fy({) gives the
k-failures of £. As a result, the operators T and F' are mono-
tonic and coherent, in the following sense:

ProPOSITION 1. (Monotonicity and Coherence) Let
P be X-program and £(T) a flat literal, then for alln€ IN:

() FET(S) |= (T (6@) — Tona (6@)))7
(i) FET(Y) = (Fu(t(®)) = Fa (U=
(i) FET(X) | (Tn(((@)) — ~F((()
(iv) FET(Y) [= (Fa(b(T)) — ~Tk(£(T)

)
)"
)Y for all ke IN

)Y for all ke IN

)
)

Proof. The four items follow — by an easy induction on n
— from Definition 1. |

3. BOTTOM-UP COMPUTATION OF LIT-
ERAL ANSWERS

The crucial aspect for practical implementation is how to
compute literal answers, using Shepherdson’s operators, in
an efficient incremental manner. The CLP goal-derivation
process has to combine the answers for a selected literal with
the answers for the remaining literals of the goal. Hence,
the choice of a notion of answer affects the class of equality
constraints to be handled along the computations. The de-
cidability of FET(X) has been proved by different methods
(cf. [9, 16], for instance). It is known that the decidability
of FET(X) is a non-elementary problem (cf. [23]). How-
ever, our proposal deals with a particular class of equality
constraints, called answers, that could be more efficiently
solved than general equality constraints. As a consequence,
our constraint solving method is different from general de-
cision methods (cf. [9]) which usually combine quantifier
elimination with a set of transformational rules. Instead,
we only need procedures for combining answers (by conjunc-
tion, negation or instantiation) and to check answer satisfia-
bility. In addition, answers should be user friendly, in order
to be displayed as goal answers. In this section, we introduce
the notion of answer and the basic operations for handling
constraints along computations. Finally, we introduce the
schemes for T and F' and show how to solve them efficiently.



3.1 Constraints Handling

Our notion of answer is based on the following class of
equations and disequations.

DEFINITION 2. An (dis)equation is called collapsing when-
ever (at least) one of its terms is a variable. [ ]

The following transformation rules are used to obtain col-
lapsing (dis)equations. Any equation can be transformed
into an equivalent conjunction of collapsing equations (in
particular, £), by repeatedly applying of the following three
rules:

(E1) f(t1,..-stn) = f(S1,...,8n) — t1 = 81 A+ At = 8n
(E3) x =t +—— £ if x occurs in ¢.

Similarly, any disequation can be transformed into a dis-
junction of collapsing disequations (in part., t) by the rules:
(DY) f(t1,. - stn) # f(S1y-.-,8n) > t1 £ 81V -Vin = 8
(D2) f(t177tn)5£g(31773n) '__)Elffig

(D3) © # t — t if x occurs in ¢.

In order to deal with universal quantification, we use the
transformation rule (U D) in Figure 5. The rule (UD) is cor-

Vo(Z # t(w, ) V (W, D)) —
Vo' (T # U(w,7")) VI (T = {(w,7") A VT o(W, 7))

where 7' = free(t) NT and 7°

Figure 5: Transformation Rule (UD)

rect (w.r.t. the theory FETs of any signature X) provided
that each variable x; is either a fresh variable or a w; that
does not occur in the term ¢;.

DEFINITION 3. An answer for the variables T is either a
constant (t, £) or a formula Fw(a(T,w)) where a(T,w) is a
conjunction of both

e collapsing equations of the form x; = t(w), and

e universally quantified collapsing disequations of the form
Vo(w; # s(w, D)), where the term s is not a single vari-
able in v and w; does not occur in s.

where each x; occurs at most once. |

An example of answer for x1, x2, T3 is:

FwiFwa( 1 =wi1 A x2 =w2 A x3 = g(wr) A

w1 #a N w1 # w2 A Yo(wr # f(v,ws)))

which is represented, in Prolog-like notation, by
x1 = A, x2 =B, X3:g(—A)a A#a A# B, —A#f(*cv—B)
where traditional Prolog-variables of the form _(char) repre-
sent existential variables, whereas new variables of the form
x(char) are associated to universal variables. It is obvi-
ous that every answer can be represented in this Prolog-like
notation. Notice that, for any answer, the scope of each
universal variable is one single disequation and there is no
restriction about repetition of existential, neither universal,
variables.

Answers are solved forms in the sense that their satisfia-
bility is easily decidable. In the case of infinite signatures,
an answer (different from £) is always satisfiable. In fact, a

similar (but less user friendly) kind of solved form is used in
[8], where only infinite signatures are considered. However,
for finite signatures, an answer can be unsatisfiable. For ex-
ample, Jw(z =wAw # a Aw # gla) A Vo (w # g(g(v1))))
is unsatisfiable for the signature {a/0, g/1}.

PROPOSITION 2. Answer satisfiability can be checked with-
out transforming the input answer. Moreover, with respect
to an nfinite signature, any answer (different from £) is
satisfiable.

Proof. The equational part of an answer is always sat-
isfiable. Our satisfiability test only looks up the disequa-
tional part of the input answer. It must decide if there
exists some possible assignment to the variables w satisfy-
ing all the disequations. The initial domain of each wjy,
called Dom(w;) is determined by the signature. We can
represent it using the anonymous variable ”_”. For exam-
ple, over the signature ¥ = {a/0, g/1, f/2}, the initial do-
main of any w; € w is given by Dom(w;) = {a, g(-), f(-,-)}
The checking is made in two steps. In the first step, it
only takes into account the disequations (of the input an-
swer) whose right-hand term has neither existential vari-
ables nor repetitions of universal variables. These are of the
form Vo(w; # s(U)) where every v; € T occurs (at most)
once in s(v). We refine the initial domain Dom(w;) for
each wj, in order to eliminate the values that not satisfy
these disequations. To do that we use the unfolding tech-
nique. For example, with the above initial domain for w;
and the disequation Yv(wy # f(a,v)), the domain is refined
to Dom(w1) = {a, g(-), f(f(5-),-), f(g(-),-)}. Notice also
that wy # a is in the class of the considered disequations.
Hence, if it belongs to the input answers, then Dom(w1)
becomes {g(-), f(f(5,-),-), f(g(-),-)}. Once all these dise-
quations has been applied, each Dom(w;) can be empty,
finite (a non-empty set of ground terms) or infinite (when
it contains at least one anonymous variable). Obviously, if
Dom(wj;) is empty for some wj, then the answer is unsatis-
fiable and the test is finished. Otherwise, it is easy to realize
that every disequation such that

e it has not been treated yet (in the first step), and

e it involves at least one variable with infinite domain

is satisfiable with independence of the possible assignments
to its variables with finite domain. Therefore, if Dom(wj;)
is infinite for all wj, then the answer is satisfiable and the
checking is stopped. Otherwise, the set

Fin(w) = {w;i|Dom(w;) is finite (and non-empty)}

is a non-empty subset of w . In the second step, we only
deal with the variables in Fin(w) and the disequations of
the form

Vo(w; # s(T, w1y, ..., w;,))

where {w;,w1,,...,ws } C Fin(w). Therefore, the problem
is a very simple finite domain constraint solving problem
(CSP): to decide if there exists some substitution o such
that o(w;) € Dom(wj) for each w; € Fin(w) and o satisfies
all these disequations.

In particular, for infinite signature, if the first step were
performed, then every domain would remain infinite. No-
tice that any answer contains a finite number of disequa-
tions. Therefore, as explained above, the answer is satisfi-
able. |



There are other three operations which are basic for solv-
ing the constraints generated by Shepherdson operators:

PROPOSITION 3.

(i) A conjunction of answers for T can be transformed into
an equivalent disjunction of answers for T.

(it) The negation of an answer for T can be transformed
into an equivalent disjunction of answers for T.

(iii) The instantiation of the variablesT by termsT (Z) in an
answer a forT (denoted a[t' (Z)/T)) can be transformed
into an equivalent disjunction of answers for z.

Proof. (i) A conjunction of n answers for the variables T:

N\ 3@ @ =7 @) A \ VT (w; # s1(T,7)))

i=1

is performed by unification of the tuples of terms Zi(ﬁi). If
the most general unifier does not exist, the result is £. Oth-
erwise, the mgu o is applied. Then, we obtain a constraint
of the form

Fw(T = 1(w) A [\ Vo (u; (@) # 5;(w,9)))
J
where W collects all the variables @W* occurring in the con-

straint. Then, each disequation is reduced to a disjunction
of collapsing disequations (by rules (D1) — (D3)):

Jw(z = z(m)/\/\w (wj, # 7, (W, V)V - -Vw,,, # 15, (W, 7)))
J
Now, by the transformation rule (UD) of Figure 5, we trans-

form each universal disjunction of collapsing disequations as
follows:

Fu(z = @A\ 30" (@ = 5w, 0 )AVD” (w;; # ;. (@,77)))

where, 1n some dISJUNcCts, the equational part Ior variaples w
could be empty. By distribution and lifting the disjunction:

\/ w(T = Z(m)A/\ 3N (W =35(w,7") AV (wy, # 15, (W,7°)))

%2}
It suffices to transform the inner conjunction ¢ into
o' (@ =5@7") A \ V0" (w;, # r;,(@,77)))
by collecting equations for w. We use unification where there
are two o more equations on the same variable w;. Finally,

by substitution on the terms #(w), we obtain the following
disjunction of answers for =:

\ Fwo' (@ =1 (@v") A \VO* (wy, # 15, (W, %))
(ii) The negation of an answer for Z:
V(T # t(w) V \/ 357 ( w, 7))
is equivalent (by the rule (UD) and a renaming) to
Jo'(z=w AVo(w # E(—))) %
) A \/ 3 ( (@, 7)))

The second disjunct (lifting the inner existential disjunction
and substituting w; in t(w)) is already a disjunction of an-
swers for T. To transform the first one into a disjunction of

Jw(z =t(w

answers for T, it is enough to apply (just as in (7)) the trans-
formation rule (UD) of Figure 5 to Vo(w’ # ©(7)) and then
to substitute the equations on variables W’ on the right-hand
side of T = w'.

(iii) The instantiation of the variables Z by terms 7 (Z) in
an answer for T:

(T = Uw) A \ Yo, # s@,0) [ (2)/7)

is performed on the basis of p = mgu(t(w),7 (Z)). If such
mgu does not exist, then the result is £. Otherwise, it is
equivalent to

Fw(pa A\ VO((w; # 5(W,7)) )

where 1 = p [ Z and pu2 = p | w. To obtain a disjunc-
tion of answers for Z we firstly apply p2. Then, disequations
are transformed into disjunctions of collapsing disequations.
Finally, we split the universal variables using the transfor-
mation rule (UD) as in () and (é). [ ]

3.2 Operator Schemes: Incremental Solving

Now, we show how literal answers can be computed in an
efficient, incremental and lazy way. There are three aspects
that are crucial for efficiency purposes. First, both operators
O € {T, F} are monotonic (see Prop. 1). If we denote by
O—n(p(T)) the answers that are obtained exactly in the step
n, then

Ok11(p(@)) = Ok(p(@)) V O=i41(p(Z))

Hence, at the k+ 1-iteration step, we calculate O—k11(p(T)).
The previously obtained answers (given by Ox(p(T))) have
being loaded, as part of the predicate description of p, and
we do not recalculate them. Second, in order to avoid some
symbolic transformations and satisfiability checks that are

lation time) the operators schemes where such operations are
already performed. In particular, the first iteration O1 (p(T))
is once calculated at compilation time. Third, these schemes
are in disjunctive form (see Lemma 1) to allow the partial
solving of each disjunct. In fact, each disjunct is solved until
one satisfiable answer (for a literal) is obtained. Then, in
the Prolog-style, the calculated answer can be displayed to
the user or passed to the procedural mechanism that is com-
puting a goal (collection of literals). The unsolved part of
this scheme (also in disjunctive form) is left to be treated, in
the same lazy way, when more answers would be demanded
(by the user or by the goal computation process).

LEMMA 1. Let P be a X-program and p € PSx. The

terations of O € {T, F'} (with respect to P) can be computed
by schemes of the form:

Oip@) = \/ Fw(a(z, W)

\/ Hm(a(f, @) A\ ¢
j=1

where each golp’ ]( ) has one of the following two forms:

(1) Or(€(@))[H(w) /7]

(i) W(Fk(Z(y))[?(U, 5)/@]) where T is non-empty.

Ors1 (p(®)) @) ()



Proof. The schemes for both operators are obtained trans-
forming their definition (see Definition 1). For the operator
T, since Tx(t) = t for any k, it suffices to consider sepa-
rately the clauses with an empty tuple of literals (equivalent

to t):
Ti(p(x)) = \/ w'(z =7 (W)
Tiet1(p(Z)) _
=\ FT@E=5@)AT =F@) AT (7))
Tzt
\/ 3w' (T = 5( wg)/\/\Tk 7 (@")/7'])
Tzt

With regard to the operator F', we first apply the rule
(UD) (Fig. 5) to the definition of Fiy1(p(T)) (Def. 1), this
yields:

m

Fen(p@) = N\ (Vo' (z£T @) v
i=1
o (T =T (@) A
va' (Fx(0' (@) [F (@) /7'])))
where each Vo' (T # ' (w'")) is the negation of one answer
for T, that is transformed into a disjunction of answers for

Z. Then we have a formula of the form:

m

Fen(p@) = N\ (V30" (a@@") v

) W T=T (@) A
v (Fu(0' (7)) [F (@) /7'])))

Then, by distribution, there is a disjunct of the form

/\ V3" (a@ ™)

which is equivalent to F1(p(T)), since Fo(£) = £ for any £.
Now, by distribution and conjunction of answers we are able
to transform it into a disjunction of answers for T:

7)) = \/ Jw(a(z,w

The remaining disjuncts (after the above distribution) are
conjunctions of formulas of both forms: Fw(a(T,w)) and
Jw (T = ¥(@) A Vo(Fu(£(7))[F(@,T) /7)), with at least one
of the second type. Therefore, performing conjunction of
answers for T, we get that Fri1(p(T)) for k > 1 has the
following form:

\/HE( a(Z, W) /\/\V—F;C

J

'@ NI (@,9)/7)))

where the variables U of some (or even all) members in the
internal conjunction may be empty. In this case, each of
them is equivalent to

(@ )P @) /F]V -V F(8,7) [P (@) /7]
Then, distributing and lifting the disjunction to the outer-
most disjunction of the scheme, we obtain that, for k > 1:

Fipa(p(@) = \/ Fo(a(@,@) A \ 7" (w))

J

where each go[p (@) is of the form either Fi(¢(7))[L(w)/7)
or Vo(Fu(€ (7))[7 (w,7) /7). ™

Notice that Ok(£(7)) (in part. Fr(€(7))) gives disjunc-
tions of answers for g, and the instantiation [¢(w)/y] (resp.
[t(w,D)/y]) transforms them into disjunctions of answers for
w (resp. W-U). We would like to remark that universal quan-
tification with literals in its scope (option (%) in Lemma 1)
exclusively appears in the F-scheme of atoms that are de-
fined by (at least) one classical normal clause with a fresh
variable in its body. In the following example, this is the
case of even, but it is not the case of plus.

EXAMPLE 2. For the {0\0, s\1}-program:
plus(0,X,X).
plus(s(Xl), Xg, S(Xg)) L= plus(X1, XQ, Xa).
even(X) : —plus(Y,Y,X).
the F-schemes are :

F1 (plus(Xl, XQ, Xg)) =

WX =s(Wi) AXa =W AXs =Wz AVV(Ws #s(V))) V

FW(Xi =0AKXo =W AXsg=Wa AWy 7 Wa)

Fiq1(plus(Xy, X2, X3)) =

HW(Xl = S(wl> A X2 = WQ A\ X3 = s(W3)/\Fk(p1us(?))[W/7])

Fi(even(X)) = £

Fry1(even(X)) = IW(X = WA YW(Fr(plus(Y))[V,V,W/Y]))

Hence, to compute the answers of any literal of the form
—even(t) universal quantification must be handled, but it is
not required for literals of the form —plus(ti,to, ts). |

ExAMPLE 3. For the program of Example 1, we obtain
the following F-schemes:

Fi(p(X) = WX =WAWW £ £(V)))
Frpa(p(X)) = WX =£(W) A Fr(p(Y1))[W/Y4]) V
(X = £(W) A Tr(q(Y2))[£(W)/Y2])

(X =a A Fi(a(Ys))[a/Ys] A Ti(x(Y2))[a/Y2))
VWX =WAWF#aATi(r(Y2))[W/Y2]) W

We can show, by induction on k, how to compute only
O—i+1(p(T)) avoiding to recalculate Ok (p(Z)). For k = 0,
O=1(p(T)) = O1(p(T)) since Oo(p(T)) = £. Assuming the
induction hypothesis (for k), it is easy to prove the following
fact:

Fact 1. The formulas <p£-p’k] (w) of (1) can be split into

@yl @ .

Proof. We distinguish the two cases of ¢ [p. k]( ). If it has
the form () O (¢(7))[t(w) /7], then

Ox (@) 1) /7] = Ok—1 (£(@))[1(w) /7] V O=x (£(@)) [H(W) /7]
holds as a direct consequence of the induction hypothesis.
In the case of (ii)

= vo( F(Um) (i@, 7)/7]) =

K
PP ()



~30( ~Fia (09))@,7) 3], A ~F-(0(@)[i®,7) /7))
P n

In the previous iteration k, since @Ep’kfl] (w) = -TFv(y), we
have transformed ¥ into a disjunction of answers for w - ©.
At the current step k + 1 we solve 7, which gives another
disjunction of answers for w - v. Since

PP M (@) = M (@) A PV (@) = ~F0(v A n) A TD(Y)

Using conjunction and negation of answers, the variables v
[p,=k]

are eliminated and ¢; (w) is reduced to a disjunction of

answers for w. ]

Then, to compute O—r+1(p(T)), the first member of each
cpg»p (w) (that is gog.p *~1(w)) has been calculated yet, as a
subformula of Ok (p(T)). Hence, each internal conjunction
of Lemma 1(1) can be written as:

Je—1] j— ,=k] /—
(PP Y(@) v oM (w))

>

j=1
By distribution, each one gives a disjunction of formulas of
the form: gogf’el] (w) A<p£§’62] (wW)A-- -/\<p£':”e”'] (w). The collec-
tion of disjuncts such that e; = k — 1 for all j € 1..n gener-
ates Ok (p(T)). Hence, to calculate O—r41(p(T)) we discard
all these disjuncts. The remaining ones produce answers for
w which, by substitution in the corresponding a(Z,w) (of
(1)), give the new answers for .

4. THE PROCEDURAL MECHANISM

Now, we present how the (just explained) bottom-up com-
putation of literal answers can be managed by a top-down
goal computation process that successively collects the lit-
erals’ answers into the constraint of the current goal. The
procedural mechanism that computes a given goal, not only
must obtain all its correct answers, but also must detect
failure. In spite of the bottom-up nature of the answers cal-
culation, the procedural mechanism is in charge of detecting
when a goal should fail.

In this section, we define the procedural mechanism, called
BCN operational semantics, by means of the construction of
a computation tree for an arbitrary given goal. Our formula-
tion provides a uniform treatment for positive and negative
literals. As we will explain later (in Remark 1), there is
no problem to use the new mechanism only when the se-
lected literal is negative, whereas the positive ones are left
to SLD-resolution. Indeed, a preliminary work in this direc-
tion was presented in [20]. In example 4, we show how the
BCN operational semantics works to compute goal answers
and also to detect failure. Finally, we provide the soundness
and completeness results.

4.1 The BCN Operational Semantics

The notion of computation tree is relative to a program
and a selection rule that chooses a literal in the current goal.

In order to define the computation tree, we associate to
each literal ¢ two counters: kr(¢) and kr(¢). They respec-
tively mean the iteration of the operator (resp. T or F) that
has to be computed in the next selection of the literal £. The
nodes of a computation tree are pairs (G, K(G)), where K
is a function that associates values to both counters of each
literal in GG. For initialization, the constant function cons1
associates the value 1 to both counters of every literal.

The expression SolvedForm(c(T)) denotes the solved form
of the equality constraint ¢(Z), that is a disjunction of an-
swers

\/ 3 (a:(7, @)

i=1
We write SolvedForm(¢(Z))= t for m = 1 and a1 = t, and
SolvedForm(c(T))= £ for m = 0.

DEFINITION 4. A BCN-computation tree for a X-goal G,
with respect to a Y-program P and a selection rule R, is a
tree which root is (G, cons1(G)) and for each node with goal

G'= 7 0@),7 0a@ )

where £(T) is the selected literal and (kr(4(T)), kr(€(T))) is
associated by K(G') to values (nt,n™):

(C1) If SolvedForm (Fw(a(Z, w)) A T+ (£(T))) # £, then it is
of the form \/7*, Fw'a;(T,@"). Hence, G’ has one child
for each i € 1..m, with goal G; = Jl,ZQ 0a:(T, ).
Fach K(G;) is identical to K(G') except that £ has no
associated information (it does not appear in G;).
Besides, if SolvedForm(Fw(a(Z,w)) A —T,+(4(T))) =
Vi, Fw’ o (T, w") # £, then G’ has also one child for
each j € 1.m' with goal G; = <—Zl,€,22 Da;(f,ﬁj)
and K (GY%) is identical to K(G') except that kr({(T))
is updated to be nt + 1.

(C2) Otherwise — if case (C1) is not applied — there are the
following two possible cases:

(C2a) If SolvedForm(3w(a(T, w))A—F,,- (£(T))) = £, then
G’ is a failure leaf.

(C2b) If SolvedForm(3w(a(z,w))A—F, - (4(T))) # £, then
it is of the form \/I*, Fw'a;(T,w’). Thus, G’
has one child for each i € 1..m, with goal G; =
Jl,é, 7o a:(%,w"). Each K(G;) results by re-
spectively updating in K (G') the counters k1 ({(T))
and kr(£(T)) tont +1 and n™ + 1. |

In other words, when a literal ¢ is selected in a goal —/¢ 0 a,
we try to get the success-answers of £ by applying the rule
(C1). When it applies, the goal children are «Z£ \ {£} 0a;
(i € 1..m). where a1 V - -V an, is the disjunction of answers
produced by the solver. Besides, the computation tree could
have more branches, keeping the literal ¢, for computing
higher iterations of T'(¢). Notice that these other branches
do not exist whether every T satisfying Jw(a(Z,w)) is also
a success-answer of £(T) at the n' iteration-step. When the
rule (C1) can not be applied, we try to detect failure with
the rule (C2). In the case of the rule (C2a) the goal fails,
whereas (C2b) behaves as an incremental failure detection.

DEFINITION 5. Any finite branch of a computation tree
for G which ends by a leaf of the form «— oa represents
a successful derivation and the constraint a is a computed
answer for G. A failure tree is a finite tree such that every
leaf is a failure. |

Now, we give an example of computation that produces
one answer and then fails.
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Figure 6: A finite BCN-computation tree

ExAMPLE 4. Consider the program of Example 1 and 3.
The goal — — p(Z), — q(Z) produces a unique answerZ = £(a).
In fact, VZ(Z = £(a) < (= p(2),— q(2))) is a logical conse-
quence of program completion. Figure 6 shows a finite BCN-
computation tree. The operators written in the edges of the
tree of Figure 6 are applied to the literal that is just above
marked as selected . The first T-iteration for the selected
literal yields

Ti(~ p(2)) = (2 = WA YV # £(V)))
and, therefore
=T (= p(2)) =3W(Z =£(W)).

Hence, the computation tree is split into two branches. In
the left branch Ti(— q(Z)) = £, therefore failure detection is
intended. Since F1(— q(Z)) = £, both counters are updated,
but the goal does not change (conjunction with t). Next, the
conjunction of the goal constraint with

T2(-q(2)) =2 =1£(a)

is unsatisfiable. Since ~Fa(— q(Z)) is also Z = £(a), failure
is detected. In the right branch, the first iteration of both
operators for = q(Z) increases both counters (as before). In
the next two steps

and
To(~ p(2)) = FH(EZ = £(0) AW(H £ £(V)))

Thus, the expected answer Z = £(a) is generated. There is
not additional branch because

2= £(a) A~ To(- p(2))

is unsatisfiable. In the rightmost branch, the third iteration
of T for the selected literal does not produce any new answer.
Then, the conjunction of the constraint

W(Z =£(W) AW # a)

and —F>(— q(Z)) = Z = £(a) is unsatisfiable. Therefore the
goal fails. |

REMARK 1. The presented procedural mechanism can be
also used to implement an extension of SLD-resolution for
normal logic programs. That is, we can apply it only when
the selected literal is negative, whereas SLD-resolution is ap-
plied to positive literals. In that case the answers for goals

3Remember that Tk (—p) = Fr(p) and F(—@) = Tre(p).

involving positive literals are obtained in a different order
but, by completeness of the SLD-resolution (w.r.t. a fair se-
lection rule), that is equivalent to use the operator T. In
SLD-resolution, a goal —f 0 a with selected positive literal
p(T), should be a failure leaf if there is no clause that can
be applied to the selected literal. This happens whenever the
conjunction of a with the constraint of any clause with head
p(T) is unsatisfiable. It is very easy to see that this is equiv-
alent to FET(X) = (a — F1(£))". Hence, a particular case
of our failure condition holds. |

4.2 Soundness and Completeness

The BCN operational semantics is sound and complete
with respect to the three-valued interpretation of program
completion for the whole class of normal logic programs. In
the following soundness result, computation is relative to
some selection rule.

THEOREM 2. Let be a Y-program P and a ¥-goal G =
~loa, then
1. If G has a failure tree, then Comp(P) =3 (a — —£)".
2. If there is a successful derivation for G with computed
answer a’, then Comp(P) |=3 (a’ — LA a)”.

Proof. 1t is easy to check, by induction on the construction
of computation trees, that

(M A ai) — (MAao))”

<=

Comp(P) |=s (

1

7

holds for any pre-computation tree such that its root is
~muoao and {«m'0a; | ¢ € 1l.r} (r > 1) is the (finite)
collection of all its leaves. In particular,

Comp(P) =5 (' A ai) — (T A ao))”
holds for any ¢ € 1..r. The statement 2 easily follows from

this fact by induction in the length of the derivation.

To prove the statement 1, let {Ji Oa; |ie€lr} (r>1)
be the (finite) collection of all leaves of the failure tree for

G. Hence, FET(X) |= (a; — Fk,(£'))" for each i € 1..r and
some k; € IN. Then, by monotonicity of the operator F' (see
Proposition 1):

Comp(P) s (' Aaz) — (€ A Fu(T)))
where k = max{k;|i € 1..r}. Therefore

Comp(P) s (\/ (T Aai) — \/ (@ A Fu(T)))”

=1 i=1



Additionally, by Theorem 1, we have that
Comp(P) =5 (F(T') — ="

where F) k(?) is a equality constraint, so it is a two-valued
formula. Then,

r

Comp(P) s (\/ (€ Aai) — )"

=1

Hence, Comp(P) =3 (€A a) < £)7,

Comp(P) =3 (a — —0)" W

For completeness the classical notion of fairnessis needed.
A selection rule is fairif and only if every literal that appears
in an infinite branch of a computation tree is eventually
selected.

THEOREM 3. Let be a X-program P and a X-goal G =
—f¢oa. Then, for any fair selection rule:

1. If Comp(P) |=3 (a — —£)¥ then the computation tree
for G is a failure tree.

2. If there exists a satisfiable constraint c such that
Comp(P) =3 (¢ — EAa)", then there existn > 0 com-
puted answers ai,...,an for G such that FET(Y) |=

(c— V;a)".

Proof. We first prove the statement 2. By Theorem 1,
FET(Y) = (¢ — (Tx(f) A a))” holds for some k€ IN. Since
c is satisfiable, (T%(¢) A a) must be satisfiable. Hence, it
suffices to prove the following fact:

Fact 2. If FET(X) F (Tw(0) A a)_a, then there exist n > 0
computed answers a1, ..., an for «¥¢ 0a (w.r.t. P) such that

FET(E) F (Te(D) Aa) — Vi, a)”.

Suppose that £ = ¢1,...,¢n. The proof is made by induc-
tion on m. The base case (m = 0) trivially holds. For the
induction step we assume, without loss of generality, that ¢1
is the selected literal. Since FET(X) = (Tk(f1) A a)?, then
there exist » > 1 answers al,...,a. such that

SolvedForm(a A Tk (41))= Vi_, a;

Therefore, the goal G has r children of the form 7o a;
where ¢ = lo, ..., ln. Then

FET(®) = (Te(41) \/

Since FET(X) = (Tx(7)) A \/i_, a})?, there exists a non-
empty set J C {1,...,m} such that
FET(S) = (Te(0) Aa) < \/ (Te(T) Adf))"
JjeJ
and FET(Y) = (Ti(?) A a})? holds for all j € J. By the

induction hypothesis, Fact 2 holds for each (7% (Z,) A aj)
with 7 € J. Then, there exist a set of computed answers
{a],... ,aii | k;j >0} for the goal 7o a;- such that

FET(S) = (T(@) A d)) — \/i

h=1

holds for every j € J. Therefore {—0a) | j€J, h € L.k;}

is a non-empty collection of computed answers for «{0a
such that

FET(X) = (Ti(?) A a)

SV V

J€J h=1

Thus, the Fact 2 and the statement 2 of the Theorem hold.

Finally, we prove the statement 1. By Theorem 1, for
some k€ IN: FET(X) |= (a — Fy(£))” Then, in the compu-
tation tree for GG, there is no branch finished by a computed
answer, since by the contrary this computed answer must
be unsatisfiable by application of the Theorems 2 and 1.
Now, let us suppose that the computation tree for G has an
infinite branch that is formed by goals

-0 =1 -2
—0 O ao, /0 dag, P daz, ...

where 2° = 7 , ap = a and each ¢ C 7 is non-empty. By
construction of the tree, FET(X) = (ait1 — a:)” holds
for all € IN. By coherence of the operators T and F (see
Proposition 1), FET(X) = (a; — —T»(£))" for all i € IN.
Therefore, there is some ¢ € IV such that the constraint
ai AT, () is unsatisfiable for any /€7 and any ne IN. This
means — by construction of the tree and fairness — that
a; should be successively strengthened (in the considered
branch) with —F,(¢;) for every £; €€ and increasing n€ IN.
Hence, there exists some j such that

FET(S) [ (a; — (a0 A ~Fielli,) A+ A=Fi(li,,, )"
where 45, , .. .,Zimj C 7 C 7. This is a contradiction, since
a; should be unsatisfiable because ap = a and FET(X) |=
(a — Fr(£))”. As a result, the computation tree for G
has neither a leaf with a computed answer, nor an infinite
branch. Therefore, it must be a failure tree. |

5. CONCLUSIONS

Constructive negation subsumes the negation as failure
(NAF) rule and, at the same time, solves the floundering
problem of NAF. With regard to the wellknown technique
of delaying each negative literal until it would be grounded
(then, NAF could be used) we would like to point out two
drackwards. First, it can produce infinite computation when
constructive negation finitely fails and, second, it is not nec-
essarily more efficient. The latter was also remarked in [6].
Consider the following program®:

p(a).

q(£*(a))

r(2): — = s(2)
p(£(X)) : — p(X)
q(Y) : — q(£(Y)
s(g(V)).

With the delay technique, the goal «— p(X),— r(X). causes
an infinite computation that successively obtains a ground
term from the first subgoal and a failure from the second
one. Nevertheless, our procedural mechanism finitely fails

*Of course, f%°(a) denotes f(...(f(a))...)
———
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Program Goal Time (ms.) | # Answers
pa). 26 100
pEE,Y)) - p(X), - p(N). — —p(2). 130 500
pEX,Y)) 1= = p(X), p(Y). 433 1500
even(0) . 151 25
even(s(X)):- = even(X). «— —even(Z). 1474 50
6532 75
less(0,s(Y)). — —less(Z,s%(0)),less(Z,s'(0)). 42 10
less(s(X),s(Y)): —less(X,Y). — —less(Z,8"(0)),less(Z,5'°(0)). 2079 90
21 50
— —less(Z1,22). 42 75
78 100

sum(0,X,XD .

X, 21 50
sum(s(X),Y,s(Z)):- — —sun(Z1,22,73) 49 75
sum(X,Y,Z). 83 100

229 10
even by_sum(X) : —sum(Y,Y,X). « —even by_sum(Z). 2870 20
16468 30

symmetric(a).
symmetric(g(X)):- symmetric(X). 26 100
symmetric(f(X,Y)):- mirror(X,Y). 130 500
mirror(a,a). — —symmetric(Z) 281 1000
mirror (g(X),g(Y)):- mirror(X,Y). 433 1500
mirror (f (X,Y) ,f(Z,W)):- mirror(X,W), 624 2000

mirror(Y,Z).

16 100
member (X, [X[]). — —disjoint(L1,L2). 130 500
member (X, [-|L]) : —member(X,L). 990 1500
disjoint([],-). 125 100
disjoint([E|EL],L) : ——member(E,L), < —~disjoint(L,[0]), max1ist(L,s%(0)). 672 500
disjoint(EL,L). 2677 1500
gt(0,X,X). 3624 100
gt(X,0,X). « —maxlist(L,s()). 3652 500
gt(s(X),s(Y),s(Z)) : —gt(X,Y,2). 3659 1500
maxlist([],0). 3661 100
maxlist([E|L],NE) : —maxlist(L,EAux), gt(E,EAux,NE). | ~max1ist(L,Z). 3687 500
’ 3718 1500

Figure 7: Some experimental results

because the second iteration for the second literal gives the
constraint 3V (X = g(V)). Besides, the following goal:

—q(X),~ =(X).

fails with the delay technique, but constructive negation
works more efficiently. In fact, if we select the literal - r(X),
then, it is restricted by a strong constraint:

—q(X) 03V (X =g(V))

that immediately produces the failure. By delaying the sec-
ond subgoal, failure requires the construction of 100 failure-
trees.

In this paper we have provided the basic ideas for de-
signing a sound, complete and efficient implementation of
constructive negation. Actually, we have implemented a
prototype (http://www.sc.ehu.es/jiwlucap/BCN.html) in
Sictus Prolog v.3.10.1 and the results obtained seem very
promising. In Figure 7 you can find a table describing some
experiments conducted with the prototype on a Pentium IV

at 1.7 GHz. We have taken measurements with the function
statistic/2 of Sicstus Prolog. The third column means the
milliseconds of CPU-time to produce the number of answers
specified by the immediate cell in the fourth column.

We are aware that it is difficult to asses the value of these
experiments in terms of the absolute time spent by the pro-
totype to produce (some) answers. Instead, a comparative
study with respect to other implementations would have
been more adequate. The problem is that the existing expe-
rience in implementing negation (beyond negation as failure)
in logic programming is, to our knowledge, very limited. In
particular, Chan ([5]) and Bartdk ([2]) have implemented
constructive negation for the special case of finite computa-
tion trees. This restriction is quite strong and causes that
the examples used to test the implementation are computa-
tionally very simple. As a consequence, the results obtained
by our implementation and by Bartdk are quite similar (it
was impossible to obtain Chan’s implementation). Moreno
and Munoz in [17] discuss how to incorporate negation in a



Prolog compiler. But the paper essentially discusses ways to
avoid using constructive negation. On the other hand, the
paper leaves opened the problem of how constructive nega-
tion can be implemented to use it when is unavoidable. A
similar problem happens in [18], where the use of abstract
interpretation is discussed in this context. Finally, quite re-
cently we have learned about [19] where an implementation
of constructive negation is proposed. However, the proposal
seems very preliminary. No proof of soundness or complete-
ness is provided and, actually, some examples have led us to
think that this implementation is not yet fully correct.
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