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including program logics for real-word pro-
gramming languages—put verification of in-
dustrial software within reach. At the same 
time, suitable theories of abstraction and com-
position of systems make it possible to deal 
with complexity. Finally, the availability of ef-
ficient satisfiability modulo theories (SMT) 
solvers has increased verification system perfor-
mance and automation. SMT solvers provide 
efficient reasoning capabilities over combina-
tions of theories—including integers, lists, ar-
rays, and bit vectors—which is a ubiquitous 
subtask of hard- and software verification.

Verification systems are now commer-
cially used to formally verify many indus-
trial applications (see Table 1). Even highly 
complex system software can be formally 
verified when sufficient effort is spent, as 
the L4.verified (www.ertos.nicta.com.au/ 
research/l4.verified) and Verisoft (www. 
verisoftxt.de) projects demonstrate.

Here, we describe how verification is em-
ployed to ensure dependability of real-word 

systems, and then offer an overview of the vari-
ous reasoning methods in use today. In keep-
ing with this special issue’s theme, we focus 
on verification scenarios requiring a nontrivial 
amount of logical reasoning—that is, we don’t 
consider static analyses based on type systems, 
propagation rules, dependency graphs, and so 
on. For the same reason, we don’t discuss run-
time assertion checking. We do place more 
emphasis on software (rather than hardware) 
verification, which is now growing and matur-
ing rapidly. If it’s still lagging behind hardware 
applications or hardware-related applications, 
this is partly because the hardware industry 
embraced formal methods 20 years ago. An-
other reason is that less expressive—and hence, 
decidable—formalisms can be usefully em-
ployed to model hardware, while software veri-
fication requires more expressive formalisms.

Verification Scenarios
Verification scenarios differ in various ways. 
The verification target—that is, the formal 

Over the past few decades, the reach and power of verification  methods 

have increased considerably, and we’ve seen tremendous progress 

in the verification of real-word systems. Partly, this is due to methodological 

 advances: since the beginning of this century, the availability of formalisms—
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description of the system that’s actu-
ally being verified—can be an abstract 
system model (such as an automa-
ton or a transition system); program 
source code, byte code, or machine-
level code; or written in some hard-
ware-description language.

Likewise, the requirement specifi-
cation—the formal description of the 
properties to be verified—can take 
various forms. Specifications can be 
algorithmic (executable), describ-
ing how something is to be done, or 
they can be declarative, describing 
what the (observable) output should 
look like. They might refer only to 
the initial and the final state of a sys-
tem run—that is, to the system’s I/O 
behavior (“if the input is x, then the 
output is x + 1”)—or they might re-
fer to the system’s intermediate states 
and outputs (“if in some state the 
output is x, then in all later states the 
output must be some y with y > x”).

Specification bottleneck
For many years, the term formal veri-
fication was almost synonymous with 
functional verification. In the past 
decade, it has become increasingly 
clear that full functional verification 
is an elusive goal for almost all ap-
plication scenarios. Ironically, this 
became clear through the advances 
of verification technology: with the 
advent of verifiers that fully cover 
and precisely model industrial lan-
guages and can handle realistic sys-
tems, it’s finally become obvious just 
how difficult and time consuming it 
is to specify real systems’ functional-
ity. Not verification but specification 
is the real bottleneck in functional 
verification.1

Because of this, “simpler” veri-
fication scenarios are often used in 
practice. These relax the claim to 
universality of the verified proper-
ties, thus reducing the complexity 
of the required specifications, while 

 preserving the verification result’s 
usefulness; examples include verifica-
tion methods for finding bugs instead 
of proving their absence, and methods 
that combine verification and test-
ing. Verifying generic and uniform 
properties also reduces the amount of 
functional specifications that must be 
written.

Finally, the problem of writing spec-
ifications is greatly alleviated if the 
specification and the verification tar-
get are developed (or generated) in 
tandem. In contrast, writing speci-
fications for legacy systems is much 
harder. It’s often difficult to extract 
the required system knowledge from 
legacy code and its (typically incom-
plete) documentation. More generally, 
systems that haven’t been designed 
with verification in mind might not 
provide an appropriate component 
structure. Even if they obey principles 
such as information hiding and encap-
sulation, their components might not 
be of the right granularity or might 
have too many interdependencies.

Handling Complexity
Of course, we must limit the sim-
plification of verification scenarios, 
lest they become useless. At some 
point, we must face the complexi-
ties of real-world systems. There are 
two fundamental approaches, which 
are typically combined, to deal with 
complex verification targets: abstrac-
tion and (de)composition. Abstrac-
tion considers an abstract model 
of the verification target that’s less 

 complex than the target system itself. 
Decomposition subdivides the verifi-
cation target into components so that 
their properties are small enough to 
be verified separately.

Neither abstraction nor decomposi-
tion come for free: a suitable abstract 
model and suitable components, in 
turn, must be identified and their 
properties specified. Both abstraction 
and decomposition lead to additional 
sources of errors or additional effort 
to show that the abstract model is in-
deed a valid abstraction—that is, that 
all properties of the abstract model 
hold for the actual target system. For 
decomposition, we must show that 
the components’ verified properties 
imply the desired property for the 
composed system.

functional Correctness
To verify a system’s functional cor-
rectness requires formally proving 
that all possible system runs satisfy 
a declarative specification of the sys-
tem’s externally observable behavior. 
The system must satisfy the specifica-
tion for all possible inputs and initial 
system states.

The standard approach is to use 
contract-based specifications. If the 
input and the initial state, in which 
the system is started, satisfy a given 
precondition, then the system’s final 
state must satisfy a given postcon-
dition, such as, “If the input is non- 
negative, then the output is the square 
root of the input.” To handle the 
frame problem, pre-/ postcondition 

Table 1. Examples of commercially successful verification systems.

Static Driver Verifier 
(SDV)

Microsoft’s SDV is integrated into Visual Studio and routinely finds 
bugs and ensures compliance of Windows driver software.

Astrée This abstract-interpretation-based static analyzer has been used to 
prove the absence of run-time errors in the primary flight-control 
software of Airbus planes.

ACL2 The ACL2 theorem prover has been used to verify the correctness of 
commercial microprocessor systems for high-assurance applications.

HOL Light The HOL Light system has been used to formally verify various 
 floating-point algorithms implemented in Intel processors.

Pex This glassbox test generation tool for C# is part of Visual Studio 
Power Tools.
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pairs are often accompanied by a 
description of which variables (or 
heap locations) a system is allowed 
to change (otherwise, you’d have to 
specify explicitly that all untouched 
variables remain unchanged).

Pre-/postcondition pairs describe 
programs’ I/O behavior, but they 
can’t specify the behavior in inter-
mediate states. This is problematic if 
you need to verify the functionality 
of concurrent or reactive systems, as 
what such systems do in intermediate 
states is observable. In addition, such 
systems aren’t necessarily intended 
to terminate (as with servers, for ex-
ample). For that reason, extensions of 
the pre-/postcondition approach let 
you specify properties of whole traces 
or histories (all states in a system run) 
or properties of all the state transi-
tions (two-state invariants).

State-of-the-art verification systems, 
such as KeY, Why, and KIV, can prove 
functional correctness at the source-
code level for programs written in in-
dustrial languages such as Java and C 
(Table 2 shows further information on 
many of the verification systems men-
tioned here). Programs are specified 
using formalisms that are specific to 
the target language, such as the Java 
Modeling Language for Java or the 
ANSI/ISO C Specification Language 
(ACSL) and the VCC language for C.

A different approach to functional 
verification is to formalize both the 
verification target’s syntax and se-
mantics in an expressive logic and for-
mulate correctness as a mathematical 
theorem. Besides functional verifica-
tion of specific programs, this permits 
expressing and proving meta proper-
ties such as the target language’s type 
safety. Formalizations exist, for exam-
ple, for Java and C in Isabelle/HOL.

Although verifying non-trivial sys-
tems is possible using today’s tools and 
methods, they need to be  decomposed 
and auxiliary specifications must be 

created to describe the components’ 
functional behavior. Typically, the 
amount of auxiliary annotations re-
quired is a multiple (up to five times) 
of the target code to be verified (mea-
sured in lines of code).1

Safety and Liveness Properties
The verification of safety and live-
ness properties is closely related to 
model checking techniques.2 Typi-
cally, the verification target is an 
abstract system model with a finite 
state space. The goal is to show that 
the system never reaches a critical 
state (safety), and that it will finally 
reach a desired state (liveness). Spec-
ifications are written in variants of 
temporal logics that are interpreted 
over state traces or histories. Mostly, 
the specifications are written in de-
cidable logics (that is, propositional 
temporal logics, possibly with timing 
expressions).

Although both the system model 
and specification use languages of 
limited expressiveness, the specifica-
tion bottleneck persists. It can be al-
leviated using pattern languages and 
specification idioms for frequently 
used properties.3 Even then, how-
ever, model checking for safety and 
liveness properties is far from an 
automatic or push-button verifica-
tion scenario. Often, problems need 
careful reformulation before model 
checkers can cope with them.

Lately, there has been growing in-
terest in the verification of safety 
and liveness properties for hybrid 
systems,4 and various methods and 
tools—such as HyTech and KeY-
maera—have been developed for that 
purpose. Hybrid systems have dis-
crete as well as continuous state tran-
sitions, as is typical for cyber-physical 
systems, automotive and avionics ap-
plications, robotics, and so on. An 
important instance of hybrid autom-
ata are timed automata, in which the 

continuous variables are clocks repre-
senting the passing of time.5

refinement
Refinement-driven verification begins 
with a declarative specification of the 
target system’s functionality. This is, 
for example, expressed in typed first- 
or higher-order logic plus set theory. 
In a series of refinement steps, the 
specification is gradually turned into 
an executable system model. Provided 
that each refinement step preserves 
all possible behaviors, the final result 
is guaranteed to satisfy the original 
specification.

The approach’s main difference 
from functional verification is that 
the refinement spans more levels and 
starts at the most abstract level. For 
nontrivial systems, dozens of refine-
ment steps might be necessary. The 
advantage of more levels is that the 
“distance” between adjacent levels is 
smaller than that between the specifi-
cation and target system in functional 
verification. Hence, the individual 
steps in refinement-driven verification 
tend to be easier to prove. To ensure 
correctness, only certain kinds of re-
finement are permitted and each re-
finement step must be accompanied 
by a proof that behavior is preserved.

Using many refinement levels can 
easily lead to an excessive effort for 
specification and proving. To allevi-
ate this, refinement-based methods 
often work with patterns and librar-
ies and, for this reason, work best in 
specific application domains. For ex-
ample, Event-B is optimized for reac-
tive systems while Specware is used 
to develop transport schedulers.

In a refinement-based scenario, it’s 
important to always co-construct the 
multilevel specification and the target 
system. This avoids problems related 
to verifying legacy systems and is an 
important reason for the viability of 
refinement-based methods.
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In addition to systems that refine 
from an abstract specification down 
all the way to executable code, there 
are methods and systems—such as 
the Alloy Analyzer—that relate dif-
ferent abstract model levels to each 
other. This creates less complex 
 models and proofs, as it doesn’t 
consider platform- and implementa-
tion  language-specific details. On the 
other hand, it can’t uncover errors 
that involve those details.

uniform, Generic, and 
Lightweight Properties
Using generic or uniform specifica-
tions can reduce the need to write re-
quirement specifications. Rather than 
describing the specific functionality 
of the target system, these specifica-
tions express only properties that are 
desirable for a general class of system. 
In addition to reducing the specifica-
tion overhead for individual systems, 
this allows the use of simpler and less-
expressive specification languages. An 
important class of generic properties 
is the absence of typical errors—such 
as buffer overflows, null-pointer ex-
ceptions, and division by zero. In the 
case of SDV, a set of general proper-
ties was devised such that a device 
driver satisfying these properties can’t 
cause the operating system to crash. 
This is possible, because the ways in 
which a driver might crash the OS are 
generally known and don’t depend on 
a particular driver’s functionality.

Simple, lightweight properties can 
be formalized using (Boolean) ex-
pressions of the target programming 
language without the need for quan-
tifiers or higher-order logic features. 
Systems such as Spec# and CBMC 
allow the verification of lightweight 
properties that have been added as 
assertions to the target program. 
Verification of lightweight properties 
succeeds in many cases without aux-
iliary specifications.

Further, non-functional properties 
can often be specified in a uniform 
way even if they aren’t completely ge-
neric. This includes limits on resource 
consumption such as time, space, and 
energy. A further example concerns 
security properties. A verification tar-
get might be forbidden to call certain 
methods, or information-flow prop-
erties might be specified to ensure 
that no information flows from secret 
values to public output.

An important variation of the 
generic- property scenario is proof-
carrying code (PCC), in which code 
that’s downloaded from an untrusted 
source—such as an applet down-
loaded from an untrusted website—is 
accompanied by a verification proof. 
The host system can check that proof 
before running the code to ensure that 
the code satisfies the host’s security 
policies and has other desirable prop-
erties. The PCC scenario requires a 
predefined set of properties be shared 
by the host and the untrusted source.

relational Properties
Relational properties don’t use declar-
ative specifications, but rather relate 
different systems, different versions of 
the same system, or different runs of 
the same system to each other.

Typically, the verified relation be-
tween systems is functional—exam-
ples include a simulation relation (one 
system is a refinement of the other) or 
bisimulation (both systems exhibit the 
same behavior)—which corresponds 
to compiler correctness. Another ex-
ample of a relational property is non-
interference: If it’s provable that any 
two system runs that differ in the ini-
tial value of some variable x result in 
the same output, then the variable x 
doesn’t interfere with the output (the 
system doesn’t reveal information 
about the initial value of x).

Verifying relational properties avoids 
the bottleneck of having to write 

 complex requirement specifications. 
However, verification might still require 
complex auxiliary specifications that 
describe the functionality of subcompo-
nents or detail the relation between the 
two systems (coupling invariants).

bug finding
The bug-finding scenario’s concept 
is to give up on formal verification’s 
claim to universality. One variation 
on this theme is to use failed proof at-
tempts to generate bug warnings. If a 
verification attempt fails because some 
subgoals can’t be proven, then instead 
of declaring failure, the verification 
system gives warnings to the user that 
are extracted from the open subgoals. 
These warnings indicate that a prob-
lem might exist at the points in the 
verification target related to the open 
subgoals. If the subgoals could not be 
closed due to missing auxiliary spec-
ifications or a time-out, even though 
in fact a proof exists, false positives 
are produced. If this scenario is to be 
useful, there can’t be too many spu-
rious warnings. To ensure this, some 
systems (such as the Extended Static 
Checker for Java) also give up on 
soundness—that is, they don’t show 
all possible warnings.

A second variation on bug finding 
is to prove correctness for only part of 
the program runs and inputs. So, if the 
verification succeeds, it indicates the 
absence of errors in many—but not 
all—cases. On the other hand, if a ver-
ification attempt fails with a counter 
example (and not just a time out), then 
the counter example indicates a bug in 
the verification target (or the specifica-
tion) and, moreover, describes when 
and how the bug makes the system fail.

One example of the latter approach 
is bounded verification: imposing a fi-
nite bound on the domains of system 
variables or on the number of execu-
tion steps in the target system, which 
yields relative verification results that 
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hold only up to the chosen bound. 
Bounded verification reduces the need 
for decomposition—and thus the need 
to write auxiliary specifications, such 
as contracts for subcomponents and 
loop invariants. In particular, loop 
invariants aren’t needed, as they can 
be considered as induction hypoth-
eses for proving (by induction) that 
the loop works for all numbers of re-
quired loop iterations. Because the 
number of loop iterations is bounded, 
no induction is needed.

A further use of verification for bug 
finding is to enhance the debugging 
process using verification technol-
ogy based on symbolic execution to 
implement symbolic debuggers. Such 
symbolic debuggers cover all possible 
execution paths, and there’s no need 
to initialize input values.

Test Generation
Verification and testing are different 
approaches to improving software 
dependability that can both comple-
ment and support each other. Verifi-
cation methods can be used to help 
with testing in several scenarios. For 
example, verification methods such 
as symbolic execution can generate 
tests from the specification and the 
source code (glass-box testing) or 
from the specification of the verifica-
tion target alone (black-box testing). 
Using reasoning techniques, it’s pos-
sible to generate tests that exercise 
particular program paths, satisfy var-
ious code coverage criteria, or cover 
all disjunctive case distinctions in the 
specification.

Testing goes beyond verification 
in an important dimension: verifica-
tion ensures correctness of the target 
system, but not of the runtime envi-
ronment or the compiler backends; 
testing, however, can also find bugs 
that are located outside the target sys-
tem itself. For this reason, testing can’t 
be replaced by verification in all cases.

Verification Methods
Most verification approaches fall into 
one of four methodologies: deductive 
verification, model checking, refinement 
and code generation, and abstract inter-
pretation. We’ll now introduce some di-
mensions that are useful for classifying 
these approaches and we discuss how 
they influence the type of reasoning that 
occurs during verification.

Arguably, the main tradeoff that in-
fluences a verification method’s design 
is automation of proof search versus 
expressiveness of the logic formalism 
used for specification and reasoning. 
Most verification systems use a logic-
based language to express properties. 
Common logics, ordered according to 
their expressiveness, include proposi-
tional temporal logic, finite-domain 
first-order logic (FOL), quantifier-free 
FOL, full FOL, FOL plus reachabil-
ity or induction schemata, dynamic 
logic, higher-order logic, or set theory. 
The expressiveness of a logic and the 
computational complexity of its deci-
sion problems are directly related. For 
undecidable languages, such as first-
order logic, full automation can’t be 
expected; yet even for decidable lan-
guages, such as temporal logic, prob-
lems quickly become infeasible as the 
target system’s size grows.

However, there’s a difference be-
tween the theoretical complexity of 
the decision problem of a logic and 
the efficiency/effectiveness of prov-
ers in practice. In reality, typical in-
stances of undecidable problems are 
hard—but not impossible—to solve. 
Theory tells us that, in some in-
stances, either no (finite) proof or no 
counter example exists (otherwise the 
problem would be decidable). But in 
practice, such problem instances are 
few and far between. Even for unde-
cidable problems, the real difficulty is 
to find—existing—proofs.

Verification methods that use ab-
straction can take different forms: 

while abstract interpretation attempts 
to find a sound abstraction of the 
target system, for which the desired 
properties are still provable, in model 
checking, the users typically work 
with an abstract system model from 
the start, and might have to refine and 
adapt it many times during the verifi-
cation process. As we show later, it’s 
fruitful to combine both approaches.

Another dimension of verification 
method design is verification work-
flow, which is heavily influenced by 
expressiveness: assuming a decidable 
modeling language and a feasible tar-
get system size, it’s possible to auto-
matically verify a system provided that 
the specified property actually holds, 
that the verifier is suitably instru-
mented, and that the system is suit-
ably modeled. This approach, typically 
realized in model checking,2 enables 
a batch mode workflow (often misla-
beled as “push button” verification) 
based on cycles of failed verification 
attempt and failure analysis, followed 
by modifications to the target system, 
specification, or instrumentation, until 
a verification attempt succeeds. 

Verification systems for expressive 
formalisms (first-order logic and be-
yond) require often more fine-grained 
human interaction, where a user gives 
hints to the verifier at certain points 
during an attempted proof. Such hints 
could be quantifier instantiations or 
auxiliary specifications, such as loop 
invariants or induction hypotheses.

Finally, a further distinction is the 
verification method’s precision—that 
is, whether it might yield false posi-
tives6 (and if so, to what extent).

Deductive Verification
Under deductive verification, we sub-
sume all verification methods that 
use an expressive (at least first-order) 
logic to state that a given target system 
is correct with respect to some prop-
erty. Logical reasoning (deduction) is 

IS-29-01-beckert.indd   24 26/03/14   9:13 PM



R e p R e s e n t a t i o n  a n d  R e a s o n i n g

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 25

then used to prove validity of such a 
statement. Perhaps the best-known 
approach along these lines is Hoare 
logic,7 but it represents only one of 
three possible architectures.

The most general deductive verifica-
tion approach is to use a highly expres-
sive logical framework, typically based 
on higher-order logic with inductive 
definitions. Such logics permit the defi-
nition of not only properties, but also 
the target language’s abstract syn-
tax and semantics. In so-called proof- 
assistants, such as HOL and Isabelle, 
real-life languages of considerable 
scope have been modeled in this man-
ner, including, for example, the floating 
point logic of x86 processors, a non-
trivial fragment of the Java language, 
the C language, and an OS kernel.

A second deductive verification ap-
proach is provided by program log-
ics, where a fixed target language is 
embedded into a specification lan-
guage. The latter is usually based on 
first- order logic, and target language 
objects occur directly as part of logi-
cal expressions without encoding. The 
target language’s semantics is reflected 
in the calculus rules for the program 
logic. For example, the task to prove 
that a program “if (B) Q else R; S” is 
correct relative to a pre-/postcondi-
tion pair is reduced to prove correct-
ness of the two programs “Q;S” and 
“R;S,” respectively, where additional 
assumptions that the path condition B 
respectively holds and doesn’t hold, are 
added to the precondition (we assume 
that B’s execution has no side effects). 
Typically, at least one such proof rule 
exists for each syntactic element of the 
target language. Such calculi have been 
implemented for functional languages 
(in ACL2 and VeriFun), as well as for 
imperative programming languages (in 
KeY and KIV).

Hoare logic7 is a representative of 
a third architecture: here, a set of re-
write rules specifies how first-order 

correctness assertions about a given 
target system are reduced to purely 
first-order verification conditions us-
ing techniques such as weakest pre-
condition reasoning. For example, if 
an assertion P holds immediately af-
ter an assignment “x = e;”, then this 
is propagated to the assertion P(x/e) 
(denoting P where all occurrences of 
x are replaced with e) that must hold 
just before the assignment. This ap-
proached, called verification condition 
generator (VCG) architecture, is real-
ized, for example, in Dafny and Why.

All three architectures need numerous 
and detailed auxiliary  specifications, 
 including loop invariants and/or induc-
tion hypotheses; all three can also be 
used for proving functional correctness 
of systems. Due to their general nature 
and their expressiveness, proof assis-
tants for higher-order logic tend to re-
quire more user interaction than the 
other two. However, in the past years, 
external automated theorem provers 
are increasingly employed to decrease 
the amount of required interactions. To 
make this work, it’s necessary to trans-
late between first- and higher-order 
logic—hence, a loosely coupled system 
architecture is used and the granularity 
(complexity) of problems handed over 
to external reasoners tends to be large.

An interesting fact is that the de-
signers of all verifiers that use a dedi-
cated program logic felt the need to 
add sophisticated first-order reason-
ing capabilities to their systems, start-
ing with the seminal work by Robert 
S. Boyer and J. Strother Moore in the 
predecessor of the ACL2 system.8 
Adding these capabilities was neces-
sary because mainstream automated 
reasoning systems for first-order logic 
lacked central features required for 
verification, such as types, heuris-
tic control, and induction. The cou-
pling of these “internal reasoners” 
is tight, so that intermediate results 
can be constantly simplified without 

 translation overhead (fine problem 
granularity). The downside is that in-
ternal reasoners are difficult to use 
independently of their host systems 
and their internal workings are not 
typically well documented.

In contrast to logical frameworks 
and program logics, VCG systems ad-
mit workflow in batch mode: in the 
first phase, a verification problem 
is reduced to a (typically very large) 
number of first-order queries. These 
are then solved by external reasoners, 
which are often run competitively in 
parallel. The advantage is a modular 
architecture that can exploit the lat-
est progress in automated reasoning 
technology. The disadvantage is that 
it can be difficult to relate back the 
failure of proving a verification con-
dition to its root cause. It’s also hard 
to implement aggressive simplifica-
tion of intermediate results.

Model Checking
In model checking,2 the execution 
model of a soft- or hardware system is 
viewed as a finite transition system—
that is, as a state automaton whose 
states are propositional variable as-
signments. Because finite transition 
systems are standard models of prop-
ositional temporal logic, to check that 
a finite transition system T is a model 
of a temporal logic formula P means 
to ensure that every possible system 
execution represented by T meets the 
property expressed with P. Hence, 
model checking can be used for sys-
tem verification.

The bottleneck is the explosion 
of  the number of possible states that 
occurs even for small systems when 
an explicit representation of states is 
chosen. Since the mid-1980s, enor-
mous progress has been made in 
state representation that, in many 
cases, is able to avoid state explosion. 
First, encodings based on binary de-
cision diagrams (BDDs)9 made vast 
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 improvements possible, later Buechi 
automata, symmetry reduction, ab-
straction refinement, modularization, 
and many other techniques pushed 
the boundaries.2 Many of these are 
implemented in the widely used SPIN 
and NuSMV model checkers. Systems 
such as UPPAAL extended temporal 
logic with timing conditions and can 
be used to model real-time systems.

Traditionally, automata-based tech-
niques and efficient data structures to 
represent states played a much more 
prominent role in model checking 
than logical reasoning. This is about to 
change, as the model checking commu-
nity strives to overcome the standard 
approaches’ fundamental limitation to 
finite state systems. To go beyond the fi-
nite state barrier (or simply deal with 
finite but large systems), several tech-
niques have been suggested, including 
sound abstraction (related to abstract 
interpretation, which we discuss later) 
and abstraction with additional checks, 
as well as incomplete approaches, such 
as bounded model checking.10 Yet an-
other possibility is offered by symbolic 
execution engines, which enumerate 
reachable states without loss of preci-
sion; examples include KeY, VeriFast, 
Java PathFinder, and Bogor. The logic-
based techniques for infinite state rep-
resentation realized in the latter systems 
use automated reasoning to bound 
state exploration.11 We expect the com-
bination of ideas from deductive veri-
fication and model checking to enable 
further advances in the  coming years.

Lately, there has been a trend to 
subsume verification tools and meth-
ods that use reasoning technology, 
such as SMT and propositional satis-
fiability (SAT) solving under the term 
“model checking”; an example of 
such a system is CBMC (see Table 2). 
Here, we use the term “model check-
ing” in a narrower sense and consider 
this other type of system under the 
“deductive verification” heading.

refinement and Code 
Generation
Verification can also be achieved by 
gradually refining an initial system 
model (that directly reflects the re-
quirements) into an executable model, 
provided that each refinement step 
preserves the properties of the pre-
ceding one. Declarative and highly 
nondeterministic concepts, conve-
niently expressed in set theory, must 
be refined into operational ones. For 
example, there might be a proof ob-
ligation relating a set comprehension 
to an iterator. Hence, refinement over 
multiple levels for nontrivial systems 
creates a large number of proof obli-
gations about set theory. 

Evidently, most proof obligations 
generated during refinement-based 
verification can be discharged with au-
tomated theorem provers, yet there’s 
been surprisingly little interaction with 
the automated-reasoning community. 
This can be partly explained by a mis-
match of requirements: the support for 
set-theoretic reasoning in mainstream 
automated reasoning tools is limited. 
One industrially successful system, 
Specware, uses higher-order logic, and 
thus outsources the discharging of 
proof obligations to Isabelle, but not 
to first-order provers.

Almost no work exists in the veri-
fication community regarding code 
generation by compilation and opti-
mization of executable, yet abstract 
system models. Of course, there’s an 
abundance of model-driven software 
development approaches. However, 
most of the involved notations (such 
as UML) are not rigorous enough to 
permit formal verification. The same 
is true for code generation from lan-
guages such as MathWorks, SystemC, 
VHDL, and Simulink, although the 
Scoot system (www.cprover.org/scoot) 
can extract abstract models from Sys-
temC. Recent research has shown that 
deductive verification of relational 

properties is a promising approach to 
ensure correct compilation and opti-
mization.12 We believe that provably 
correct (behavior-preserving) code 
generation offers vast opportunities 
for the reasoning and formal verifi-
cation communities to employ their 
techniques.

abstract Interpretation
Abstract interpretation13 is a method 
to reason soundly, in finite domains, 
about potentially infinite state systems. 
The idea can be simply stated: in the 
target system, all variables are inter-
preted not over their original domain 
(that is, their type), but over a more 
abstract, smaller one. For example, 
an integer variable might have only 
the values “positive,” “0,” “negative,” 
“non-positive,” “non-negative,” and 
“anything.” Of course, all operations 
also must be replaced by operations 
over the abstract domain, for exam-
ple, “positive” + “non-negative” yields 
“positive” and so on. The abstract do-
mains and operations are chosen so as 
to preserve the semantics: if a property 
holds in the abstract system, then it 
must also hold in the original system.

If the abstract domain is finite (or at 
least has no infinite ascending chains), 
it’s possible to show that any computa-
tion in the abstract system must finitely 
terminate, because loops and recur-
sive calls reach a fixpoint after finitely 
many steps. The price to pay, of course, 
is a loss of precision and completeness: 
not all properties of interest might be 
expressible in the abstract domain and, 
even if they are, a property that holds 
for the actual system might cease to 
hold in its abstraction.

Reasoning in connection with ab-
stract interpretation means con-
straint solving in specific abstract 
domains. However, because abstract 
interpretation can be seen as a very 
general method to render infinite com-
putations finite in a sound manner, it’s 
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natural to combine it with precise ver-
ification methods. This has been done 
since the late 1990s with model check-
ing, notably in counter-example guided 
abstraction and refinement (CEGAR), 
where a suitable system abstraction 
is computed incrementally.14 It’s less 
known that symbolic program execu-
tion can be seen as abstract interpre-
tation, which makes it possible to put 
sound abstraction on top of verifica-
tion systems based on symbolic execu-
tion. The KeY system has realized this, 
and allows the exploitation of syner-
gies between abstract interpretation-
style constraint solving and deductive 
verification-style logical reasoning.15

Trends and Opportunities
We now offer a brief discussion of 
the main trends and opportunities 
for reasoning in the verification con-
text. Our 10 key conclusions are also 
shown in the related sidebar.

Non-functional Properties
From the somewhat sobering insight 
that full functional verification is too 
expensive for most application scenar-
ios due to both general difficulties and 
the effort required in achieving func-
tional specification, new opportunities 
have arisen: non-functional properties 
of systems—such as resource (includ-
ing energy) consumption or security 
properties—can often be schemati-
cally specified. Often, the required 
specifications (including invariants) 
can be automatically generated.16

This is a great opportunity for the 
verification community: whereas func-
tional verification is rarely requested by 
industry and likely to remain a niche 
for high-assurance applications, non-
functional properties are extremely rel-
evant in everyday scenarios and can 
easily be mapped to business cases, 
 including quality-of-service parameters 
such as response time or resource con-
sumption in cloud applications.17

Method Convergence
From our discussion of verification 
methods, it’s clear that there’s much 
to be gained from a closer collabora-
tion of the various subcommunities. 
Here, we offer two examples. First, 
to verify large industrial systems, it’s 
necessary to use both methods opti-
mized for finite state systems (such as 
model checking) and methods for in-
finite state systems (such as deductive 
verification). Abstract interpretation 
and symbolic execution seem to be 
natural bridges. Second, compilation, 
code generation, and code simplifica-
tion are neglected areas in verifica-
tion. There’s a vast opportunity for 
verification in correct code genera-
tion from modeling languages such as 
Simulink and SystemC. Although first 
steps have been made,18 this is (so far) 
a missed opportunity because existing 
methods and tools in deductive verifi-
cation can well be applied here.

The Importance of reasoning
The advent of efficient SMT solv-
ers has given a boost to verification 
 system performance. SMT solvers 

combine efficient theory reasoning 
over variable-free expressions with 
heuristically driven quantifier instan-
tiation. Importantly, they can also 
detect counter examples for invalid 
problems. Similar techniques had 
been implemented as part of mono-
lithic verifiers such as ACL2 or KIV 
for decades, but standalone SMT 
solvers are much easier to maintain, 
and they also benefit from progress in 
SAT solving. As a consequence, there’s 
currently the happy situation that the 
verification and SMT solving com-
munities drive each other’s research. 
With some delay, this opportunity 
has also been grasped by the first- 
order theorem proving community, as 
is witnessed by recent events such as 
the Dagstuhl Seminar 13411 on de-
duction and arithmetic, as well as the 
rise of theorem-proving methods that 
can create counter examples, such as 
instantiation-based proving.

One challenge that current veri-
fication approaches barely address 
is how to deal with verification tar-
get changes. During system develop-
ment and maintenance, such changes 

Based on our analysis, we have 10 key conclusions.

 1.  Given enough time and effort, current technology permits the formal 
 verification of even highly complex systems. 

 2.  The main bottleneck of functional verification is the need for extensive 
specifications. 

 3.  Verification of complex systems is never automatic or “push-button.” 
 4.  Verification of non-functional properties alleviates the specification 

 problem and is of great practical relevance.
 5.  Verification, bug finding, and test generation are not alternatives, but 

rather complement each other: all are essential. 
 6.  Abstraction and compositional verification are key to handling complexity 

in verification.
 7.  Model-centric software development and code generation account for 

huge opportunities in verification and are under-researched. 
 8.  There’s a convergence of finite-state/abstract methods (model checking, 

abstract interpretation) and infinite state/precise methods (deductive 
 verification, refinement).

 9.  Verification, SMT solving, and first-order automated reasoning form a 
 virtuous cycle in extending the reach of verification technology.

10.  There are many scenarios and variations of verification, which makes 
 different systems hard to compare; and there’s no single best verification tool

10 Key Conclusions
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Table 2. An overview of reasoning and verification systems. (This table may serve as a starting point for further exploration. It 
contains a representative selection of systems that were historically influential or represent the state of the art.)

System/URL Method Verification scenario

Alloy Analyzer 
alloy.mit.edu/alloy

Refinement, deductive  verification Functional correctness, safety  properties

ACL2 
www.cs.utexas.edu/users/moore/acl2

Deductive verification (interactive) Functional correctness, bug finding

Astrée 
www.astree.ens.fr

Static analysis Safety properties, generic properties

Bogor 
bogor.projects.cis.ksu.edu

Model checking Safety properties

CBMC 
www.cprover.org/cbmc

Deductive verification Bug finding, lightweight properties

Coq 
www.lix.polytechnique.fr/coq

Proof assistant (interactive) Functional correctness, safety, security prop-
erties, refinement relations

Dafny 
research.microsoft.com/projects/dafny

Deductive verification (batch) Functional correctness, bug finding

ESC/Java 
www.kindsoftware.com/products/opensource/ESCJava2

Deductive verification Bug finding

Event-B 
www.event-b.org

Deductive verification Refinement

Frama C/Why 
frama-c.com

Deductive verification (batch) Functional correctness, bug finding

HyTech 
embedded.eecs.berkeley.edu/research/hytech

Model checking Safety properties of hybrid automata

Isabelle 
isabelle.in.tum.de

Proof assistant (interactive) Functional correctness, safety, security 
properties, refinement relations

Java Pathfinder 
babelfish.arc.nasa.gov/trac/jpf

Model checking Safety properties

KeY System 
www.key-project.org

Deductive verification (interactive) Functional correctness, bug finding, secu-
rity properties

KeYmaera 
symbolaris.com/info/KeYmaera.html

Deductive verification (interactive) Safety and liveness properties of hybrid 
automata

KIV 
www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv

Deductive verification (interactive) Functional correctness, bug finding, secu-
rity properties

NuSMV 
nusmv.fbk.eu

Model checking Safety properties

Pex 
research.microsoft.com/projects/pex

Deductive verification Test-case generation

PVS 
pvs.csl.sri.com

Proof assistant (interactive) Functional correctness, safety, security 
properties, refinement relations

Spec# 
research.microsoft.com/projects/specsharp

Deductive verification Bug finding, lightweight properties

Specware 
www.specware.org

Deductive verification Refinement

SPIN 
spinroot.com

Model checking Safety properties

TVLA 
www.cs.tau.ac.il/~tvla

Abstract interpretation Safety properties, functional verification

UPPAAL 
www.uppaal.org

Model checking Safety/liveness properties of temporal 
automata

VeriFast 
people.cs.kuleuven.be/~bart.jacobs/verifast

Deductive verification (batch) Functional correctness

VeriFun 
www.verifun.org

Deductive verification (batch), 
induction proofs

Functional correctness

VCC 
research.microsoft.com/projects/vcc

Deductive verification (batch) Functional correctness, bug finding
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are normal and occur frequently, 
triggered by feature requests, envi-
ronment changes, refactoring, bug 
fixes, and so on. Any change in the 
target system has the potential to 
completely invalidate the expended 
verification effort. If re-verification 
is expensive, this constitutes a major 
threat against the practical usefulness 
of all but fully automatic and light-
weight verification methods. One so-
lution might be verification methods 
that are aware of changes,19 which 
lets automated reasoning replace re-
verification, especially in those parts 
of a system that remain unchanged.

The future looks bright for the 
collaboration of verification and 

reasoning. Recent advances in both 
fields and increasingly tight interac-
tion have already given rise to indus-
trially relevant verification tools. We 
predict that this is only the beginning, 
and that within a decade tools based 
on verification technology will be as 
useful and widespread for software 
development as they are today in the 
hardware domain. 
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