
Elimination of Local Variables from

Definite Logic Programs �

Javier Álvez 1 and Paqui Lucio 2

Departamento de Lenguajes y Sistemas Informáticos
Universidad del Páıs Vasco

San Sebastián, Spain

Abstract

In logic programming, a variable is said to be local if it occurs in a clause body but not in its
head atom. It is well-known that local variables are the main cause of inefficiency (sometimes
even incompleteness) in negative goal computation. The problem is twofold. First, the negation
of a clause body that contains a local variables is not expressible without universal quantification,
whereas the abscence of local variables guarantees that universal quantification can be avoided to
compute negation. Second, computation of universal quantification is an intrinsically difficult task.
In this paper, we introduce an effective method that takes a definite logic program and transforms
it into a local variable free (definite) program. Source and target programs are equivalent w.r.t.
three-valued logical consequences of program completion. In further work, we plan to extend our
results to normal logic programs.

Keywords: local variables, logic programming, program transformation.

1 Introduction

Local variables are very often used in logic programs to store intermediate
results that are passed from one atom to another in a clause body. It is well-
known that local variables cause several problems for solving negative goals,
since they give raise to unavoidable universal quantification in the negation of
a clause body. Depending on the LP or CLP approach, universal quantification

� This work has been partially supported by Spanish Projects TIC 2001-2476-C03 and
TIN2004-079250-C03-03.
1 Email: jibalgij@si.ehu.es
2 Email: jiplucap@si.ehu.es

Electronic Notes in Theoretical Computer Science 137 (2005) 5–24

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.01.037

mailto:jibalgij@si.ehu.es
mailto:jiplucap@si.ehu.es
http://www.elsevier.com/locate/entcs

affects simple goals or constrained goals. In the so-called intensional negation
(cf. [2]) for the LP approach, universal quantification prevents from achieving
a complete goal computation mechanism. Afterwards, constructive negation
was introduced in [4,5] and extended in [8,16] to a complete and sound op-
erational semantics for the whole class of normal logic programs in the CLP
framework. Intensional negation was also extended to CLP in [3] where a
complete operational semantics is provided. The computational mechanisms
proposed in [3,8,16] deal with universally quantified (constrained) goals that,
in general, are not easy to compute in an efficient manner. Besides, the nega-
tion technique is introduced in [14] and local variable absence is claimed as a
sufficient condition for the completeness of the technique.

In this paper, we present an effective transformation method for eliminat-
ing local variables from definite logic programs. The underlying aim is to im-
prove the performance of a practical implementation of constructive negation
(cf. [1]). Efficiency is achieved because: (1) the negative query is computed
w.r.t. an equivalent definite logic program that does not contain any local
variable, hence universal quantification is avoided; and (2) the target program
is built at compilation time. We would like to remark that the transformed
program (without local variables) must only be used to compute negative lit-
erals, using the original one for positive literals. Source and target programs
are equivalent w.r.t. the standard Clark-Kunen semantics for normal (in par-
ticular, definite) logic programs. In further work, we plan to extend our results
to normal logic programs.

Our method is unfold/fold-based in the sense that its correctness is given
by an unfold/fold transformation sequence. Besides, the transformation relies
in a preliminary partition of the argument positions inside the atoms. This
partition, called mode specification, associates a mode (input/output) to each
argument position. Mode specifications are automatically inferred according
to the local variables that are going to be eliminated. The mode specifica-
tion is only used during local variable elimination and it has neither to do
with restricting user-goals nor with the dataflow that is assumed by the pro-
grammer. Mode analysis and specification is used for several purposes such
as compiler optimization, parallel goal-evaluation, etc. (for instance, [7,10]),
which are far from the aim of this work. The elimination method requires
a previous syntactical normalization of the program with respect to its local
variable occurences.

Outline of the paper. In the next section, we give some preliminary defi-
nitions. Program normalization is presented in Section 3. The fourth section
introduces the notion of mode specification. In Section 5, we show how to
eliminate the local variables from a definite program in several phases. Fi-

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–246

nally, we give some conclusions and reflections about the presented, future
and related work.

2 Preliminaries

Every program P is built from symbols of a signature Σ ≡ {FSΣ,PSΣ} of
function and predicate symbols respectively, and variables from X. Both
function and predicate symbols have associated a number n ≥ 0, called its
arity. A Σ-term is either a variable or a n-ary function symbol of FSΣ applied
to n Σ-terms. A bar is used to denote tuples, or finite sequences, of objects,
like x as abbreviation of the n-tuple of variables x1, . . . , xn. Concatenation
of sequences is denoted by the infix operator � and 〈 〉 stands for the empty
sequence. We use the symbols \ and ∩ as binary infix operators for differ-
ence and intersection over sequences respectively, with the obvious meaning.
From now on r, s, t, u denote terms and x, y, z variables, possibly with bar and
sub/super-scripts.

A substitution σ is a mapping from a finite set of variables, called its
domain, into a set of terms. It is assumed that σ behaves as the identity for the
variables outside its domain. As usual, functional composition of substitutions
is denoted by their juxtaposition. The most general unifier of a set of terms
{s1, . . . , sn}, denoted by mgu(s), is an idempotent substitution σ such that
σ(si) ≡ σ(sj) for all 1 ≤ i, j ≤ n and for any other substitution θ with the
same property, θ ≡ σ′σ holds for some substitution σ′.

A Σ-atom p(t) is a n-ary predicate symbol p ∈ PSΣ applied to a n-tuple
of Σ-terms t; we say (in abuse of language) that p(t) is an n-ary atom. We
also use the two logical constants True and False as atoms. Form(Σ) stands
for the set of first-order Σ-formulas that can be built using predicate symbols
from PSΣ∪{=}, connectives form {¬,∧,∨,→,↔} and quantifiers from {∀, ∃}.
The universal closure of a formula ϕ is denoted by ϕ∀. The three-valued logical
consequence relation between set of Σ-formulas and Σ-formulas is denoted by
the infix symbol |=3.

A (definite) clause C is an expression of the form a :−K where a (head) is
an atom and K ≡ a1, . . . , am (body) is a conjunction of atoms ai for 1 ≤ i ≤ m.
When the body is empty (or equivalent to True), the clause a is called a fact.

Let α be any syntactic object, we denote by Var(α) the sequence of all the
variables that occur in α. In a clause, a variable is local if it occurs in its body
but not in its head. Local variables are divided into auxiliary and isolated
depending on the number of atoms where they occur in. An auxiliary variable
occurs in more than one atom, whereas an isolated variable occurs in just one
atom. Anyway, every (non-auxiliary) local variable can be transformed into

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 7

an auxiliary variable (see next section). For α being a clause or any object
(atom, term, etc) that occurs in a clause, we denote by AuxVar(α) the set of
auxiliary variables in α. Similarly, AuxVar(α) denotes the set of non-auxiliary
variables.

A (definite) program P is defined by a collection of (definite) clauses. We
use the term Σ-program whenever the signature is relevant. For a predicate p,
we denote by DefP (p) the set of all clauses in P with head p. All definitions in
this paper are given modulo reordering of the clause bodies and standardiza-
tion apart is always assumed. Given p, q ∈ PSΣ and a Σ-program P , we say
that p directly depends on q if q occurs in some clause in DefP (p). By reflexive
transitive closure of this relation, we obtain the set DpdP (p) such that, w.r.t.
program P , p depends on all predicates in DpdP (p) (p ∈ DpdP (p) for every p).
Besides, MRP (p) ≡

⋃
{q | q ∈ DpdP (p) and p ∈ DpdP (q)} is the set of all mutu-

ally recursive predicates with p and MRDefP (p) ≡
⋃

{DefP (q) | q ∈ MRP (p)}.

The standard declarative meaning of normal (in particular, definite) logic
programs is the program completion (proposed by Clark in [6]), interpreted in
three-valued logic (as proposed in [11]), that is also known as Clark-Kunen se-
mantics. The predicate completion formula of a predicate p such that DefP (p) ≡

{p(t
i
) :− qi(si)|i ∈ 1..m} is the sentence:

∀x(p(x) ↔
m∨

i=1

∃yi(x = t
i
∧ qi(si)))

where each yi ≡ Var(t
i
) � Var(si). The Clark’s completion of a program P ,

namely Comp(P), consists of the universal closure of the set P ∗ of the pred-
icate completion formulas for every p ∈ PSΣ together with the free equality
theory FET (Σ). Program transformation preserves some equivalence relation
on programs. Different equivalence relations are induced by the different se-
mantics (see [12] for a systematic comparison). Since we plan to extend our
results to normal programs, we are interested in completion semantics. Shep-
herdson’s operators T P and F P (for a program P) were introduced in [15] and
provide a characterization of the three-valued logical consequences of program
completion.

Definition 2.1 ([15]) Let p ∈ PSΣ be defined by a set of clauses DefP (p) as
above:

T P
0 (p(x)) ≡ False T P

n+1(p(x)) ≡
m∨

i=1

∃yi(x = t
i
∧ T P

n (qi(si)))

F P
0 (p(x)) ≡ False F P

n+1(p(x)) ≡
m∧

i=1

¬∃yi(x = t
i
∧ ¬F P

n (qi(si)))

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–248

where yi ≡ Var(t
i
) � Var(si). Besides, Tn(True) ≡ True and Fn(True) ≡ False

for all n. The extension to connectives and quantifiers is the obvious one. �

Notice that T P
k (p(x)) and F P

k (p(x)) are formulas (in first-order logic with
equality) that represent the successes and failures of the atom p(x) which can
be derived from P in k steps. Facts produce the one level successes since their
clause body is True.

Theorem 2.2 For any normal (in special, definite) program P and any sen-
tence ϕ, Comp(P) |=3 ϕ ⇔ there exists n ∈ N such that FET (Σ) |=3 T P

n (ϕ).

Proof. Lemma 4.1 in [15] proves the equivalence Φn
P |=3 ϕ ⇐⇒ FET (Σ) |=3

T P
n (ϕ) for all n ∈ N, where Φn

P is the n-iteration of Fitting’s immediate con-
sequence operator ΦP (cf. [9]). Besides, Kunen’s Theorem 6.3 in [11] proves
that Comp(P) |=3 ϕ ⇐⇒ there exists n ∈ N such that Φn

P |=3 ϕ. �

As a consequence, the three equivalence relations that are induced on the
set of programs by Fitting’s and Shepherdson’s operators and by logical con-
sequence of program completion have the same strength. TF -equivalence is a
useful representative of these three notions. Below, we give a more precise def-
inition of the TF -equivalence (∼=TF) relation on programs. A strictly stronger
equivalence relation is given by logical equivalence of program completions.
That means to require FET (Σ) |=3 Comp(P1) ↔ Comp(P2) for the equiva-
lence of the programs P1 and P2. The interested reader is referred to [12] for
an example of TF -equivalent programs whose completions are not logically
equivalent.

Definition 2.3 Let P1 and P2 be two Σ-programs:

(i) P1 �TF P2 iff for all p ∈ PS 1

Σ ∩ PS 2

Σ and for all k ∈ N, there exists
k′ ∈ N such that FET (Σ) |=3 (T P1

k (p(x)) → T P2

k′ (p(x)) ∧ F P1

k (p(x)) →
F P2

k′ (p(x)))∀

(ii) P1
∼=TF P2 iff P1 �TF P2 and P2 �TF P1. �

Intuitively, TF -equivalent programs have equivalent sets of answers, but
not necessarily obtained at the same iteration step. We transform a Σ-program
into a TF -equivalent Σ′-program without local variables where Σ′ ⊇ Σ.

3 Normalization

Program normalization is a preliminary treatment of the local variables occur-
rences which enables the subsequent elimination method. Here, we explain in
detail the syntactic requirements of normalization and we also show that any
definite logic program can be transformed into a TF -equivalent normalized

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 9

one.

The syntactic restriction affects single clauses.

Definition 3.1 A clause C ≡ p(t) : − q1(s
1), . . . , qn(sn) is normalized iff it

satisfies the following two conditions:

(i) Every local variable y exactly occurs in the atoms qi−1(s
i−1) and qi(s

i) for
some 2 ≤ i ≤ n and does not occur anymore in C

(ii) Let mi be the arity of the predicate qi then, for every 2 ≤ i ≤ n − 1 and
every 1 ≤ j ≤ mi, either AuxVar(si

j) ⊂ AuxVar(si−1) or AuxVar(si
j) ⊂

AuxVar(si+1). �

Then, normalization is extended from clauses to programs in the obvious way.

Definition 3.2 A program P is normalized iff every clause C ∈ P is normal-
ized. �

Theorem 3.3 Every definite logic program P can be transformed into a TF-
equivalent normalized program P ′.

Proof. Let suppose that the clause C ≡ p(t) :− q1(s
1), . . . , qn(sn) ∈ P is not

normalized. Then, there are two possibilities, depending on the condition in
Definition 3.1 that does not hold.

If condition (i) does not hold, there exists at least a local variable y that
violates it. Let qi(s

i) (1 ≤ i ≤ n) be the leftmost atom of C where the local
variable y occurs in. We replace the atom qi+1(s

i+1) with q′i+1(r
i+1) where:

• q′i+1 is a new predicate

• ri+1 ≡ si+1
� y � y′

• y′ is a new local variable.

The definition of the new predicate q′i+1 is given by the clause q′i+1(z
′) ≡ qi+1(z)

where z′ ≡ z � x � x and x �∈ z. In addition, we replace the atom qk(s
k) with

qk(s
k)[y′/y] for every i + 2 ≤ k ≤ n. Note that for i = n, we only need to

add a new atom p′(y) where p′ is a new predicate that is defined by the single
clause p′(). The local variable y does already satisfy the first condition, since
it occurs in two consecutive atoms and does not occur anymore in the clause.
The process ends since either the number of local variables which violate the
condition (i) decreases (that is, y′ satisfies the condition (i)) or this number
does not decrease but the new local variable y′ occurs in the atom that is one
step closer to the end of the clause body. Besides, source and target programs
are proved to be TF -equivalent by unfolding the new atoms.

If condition (ii) is violated, we suppose (without loss of generality) that
condition (i) holds for every clause in the program. Then, let qi(s

i) be the left-

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2410

most atom of C such that for some 1 ≤ j ≤ m (being m the arity of the pred-
icate qi) AuxVar(si

j)∩AuxVar(si−1) �≡ ∅ and AuxVar(si
j)∩AuxVar(si+1) �≡ ∅.

We replace the atom qi(s
i) with q′i(r

i) where:

• q′i is a new predicate

• x ≡ AuxVar(si
j) ∩ AuxVar(si−1),

• ri ≡ t
i
� x � x′,

• x′ is a tuple of new variables that corresponds with x

• t
i
is obtained by substituting si

j[x
′/x] for si

j in si.

The definition of q′i is given by the clause q′i(z
′) :−qi(z) where z′ ≡ z �x �x and

x ∩ z ≡ ∅. In addition, we replace the atom qi+1(s
i+1) with q′i+1(r

i+1) where
q′i+1 is also a new predicate and ri+1 ≡ si+1

�x′. The definition of the predicate
q′i+1 is given by the clause q′i+1(z

′) :−qi+1(z) where z′ ≡ z �x and x∩z ≡ ∅. In
the resulting clause C ′, the term ri

j in the atom p′i(r
i) satisfies the condition (ii)

since now AuxVar(ri
j) ⊂ AuxVar(ri+1) and AuxVar(ri

j) ∩ AuxVar(ri−1) ≡ ∅.
Furthermore, the new introduced tuples of terms in atoms q′i(r

i) and q′i+1(r
i+1)

also satisfy the condition (ii). Besides, condition (i) is preserved in the clause
C ′. This process also ends since the number of terms that violate the condition
(ii) strictly decreases at each step. As above, the programs P and P ′ are proved
to be TF -equivalent by unfolding the new atoms. �

As a consequence, the problem of local variable elimination is reduced to
auxiliary variable elimination. From now on, normalization is always assumed
in programs. In particular, normalized programs does not contain any isolated
variables. Moreover, every auxiliary variable always occurs in two consecutive
atoms in a normalized clause.

Example 3.4 Consider the following program P :

E3.4.1 : preorder(nil, [])
E3.4.2 : preorder(tree(x1, x2, x3), x4) :− preorder(x2, y1),

preorder(x3, y2), append([x1|y1], y2, x4)

The clause E3.4.2 is not normalized because the local variable y1 does not sat-
isfy the condition (i) of Definition 3.1. We obtain a TF-equivalent normalized
program by substituting the next two clauses for the clause E3.4.2 :

E3.4.3 : preorder(tree(x1, x2, x3), x4) :− preorder(x2, y1),
preorder′(x3, y2, y1, y

′
1), append([x1|y

′
1], y2, x4)

E3.4.4 : preorder′(x1, x2, w, w) :− preorder(x1, x2) �

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 11

4 Mode Specification

In order to define the mode specification, it is worthwhile to distinguish be-
tween the argument position j and the corresponding argument uj for some
1 ≤ j ≤ m in a given atom p(u1, . . . , um). Then, each argument position
is associated to a mode, that can be either input (in) or output (out). The
resulting partition of the n argument positions in p(u) is a mode specification.

Definition 4.1 The mode specification in an m-ary atom a, denoted by ms(a),
is either ⊥ or a m-tuple (ms1(a), . . . , msm(a)) ⊆ {in, out}m. ms(a) is unde-
fined if it is ⊥. Otherwise, it is defined. �

For example, if the mode specification (out, in, out, in) is in the atom
p(f(a, y), g(a), y, x), then 〈g(a), x〉 is the order-preserving sequence of argu-
ments occurring in input positions, whereas 〈f(a, y), y〉 corresponds with the
output positions.

For the rest of the paper, we adopt the following notation that allows us
to implicitly represent the mode specification in an atom.

Notational Convention 4.2 Suppose some fixed mode specification ms(p(u)).
The atom p(u) is written as p�uI � uO� to denote that uI and uO are the order-
preserving subsequences of u that respectively correspond with the input and
the output positions. �

For instance, in the previous example, the atom p(f(a, y), g(a), y, x) whose
mode specification is (out, in, out, in) is written as p�〈g(a), x〉 � 〈f(a, y), y〉�.

Definition 4.3 Let P be a program and C ≡ p(t) :− q1(s
1), . . . , qn(sn) ∈ P

be a clause, the mode specification in the clause C, denoted by ms(C), is a
n + 1-tuple (ms(p(t)), ms(q1(s

1)), . . . , ms(qn(sn))). If ms(p(t)) and ms(qi(s
i))

are defined for each 1 ≤ i ≤ n then ms(C) is total. Otherwise, ms(C) is
partial. �

We would like to remark that mode specifications are about positions,
but not about terms being their actual holders. Notice that the same term
(in particular, variable) could occur in distinct atoms (or, even, in the same
atom) in positions with different modes. Moreover, the mode specification
does not restrict the goals and has nothing to do with the dataflow that is
assumed by the programmer.

In this section, we will explain how to automatically infer the mode spec-
ification in the atoms of a program. This inference will be directed by the
auxiliary variables that are going to be eliminated. To start with, the fol-
lowing two definitions set the criteria for inferring the mode specification in a
clause regarding the occurrence of the auxiliary variables. Intuitively, auxil-

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2412

iary variables take a value in their leftmost occurrence atom (mode out) that
is used in the remaining atoms (mode in).

Definition 4.4 Let C ≡ p(t) :−q1(s
1), . . . , qn(sn) be a clause and mi the arity

of the atom qi, the mode specification in the j-th argument position of the atom
qi(s

i) for 1 ≤ j ≤ mi, denoted by msj(qi(s
i)), such that AuxVar(si

j) �≡ ∅ is:

• msj(qi(s
i)) := in if AuxVar(si

j) ⊂ AuxVar(si−1)

• msj(qi(s
i)) := out if AuxVar(si

j) ⊂ AuxVar(si+1) �

However, the mode specification in the argument positions where no auxiliary
variable occurs in is defined according to a given mode specification in the
clause head atom.

Definition 4.5 Let C ≡ p(t) : − q1(s
1), . . . , qn(sn) be a clause such that

ms(p(t)) is defined and mi be the arity of the predicate qi, the mode speci-
fication in the j-th argument position of the atom qi(s

i) for 1 ≤ j ≤ mi,
denoted by msj(qi(s

i)), such that AuxVar(sj
i) ≡ ∅ is:

• msj(qi(s
i)) := in if AuxVar(si

j) ∩ AuxVar(tI) �≡ ∅

• msj(qi(s
i)) := out if AuxVar(si

j) ∩ AuxVar(tI) ≡ ∅ �

In the sequel, given a mode specification in an atom p(u) of a program P ,
we extend it to the clauses that define all the predicates that are mutually
recursive with p, that is, to MRDefP (p). This extension is made in different
phases. First, ms(p(u)) is extended to the set of clauses DefP (p). Second, we
collect the mode specifications in the atoms of predicates h ∈ MRP (p). Finally,
each collected mode specification is extended to DefP (h). In the next section,
we will see how the starting mode specification ms(p(u)) is obtained.

Definition 4.6 Let P be a program and ms(p(u)) be a mode specification, the
mode specification of DefP (p) w.r.t. ms(p(u)), denoted by MS[DefP (p)\ms(p(u))],
consists of the mode specification ms(C) in each clause C ≡ p(t) : − K ∈
DefP (p) where ms(p(t)) ≡ ms(p(u)), according to Definitions 4.4 and 4.5. �

Definition 4.7 Let P be a program and ms(p(u)) a mode specification in an
atom of P , the set of mode specifications in DefP (p) w.r.t. ms(p(u)), denoted
by LMS[DefP (p)\ms(p(u))], is defined by:

{ (h, ms(h(s))) | h ∈ MRP (p) and ms(h(s)) ∈ MS[DefP (p)\ms(p(u))] }

The set of mode specifications in MRDefP (p) w.r.t. ms(p(u)), denoted by
LMS[MRDefP (p)\ms(p(u))], is obtained by transitive closure. �

Definition 4.8 Let P be a program and ms(p(u)) be a mode specification in
an atom of P , the mode specification in MRDefP (p) w.r.t. ms(p(u)), denoted

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 13

by MS[MRDefP (p)\ms(p(u))], is defined by:

{ MS[DefP (h)\ms(h(s))] | ms(h(s)) ∈ LMS[MRDefP (p)\ms(p(u))] }

�

It is important to stress that there exists a unique MS[MRDefP (p)\ms(p(u))] for
each ms(p(u)).

Example 4.9 Given the normalized program P in Example 3.4, the mode
specification in MRDefP (preorder) w.r.t. (in, out) is (in the Notational Con-
vention 4.2 for implicitly representing it):

E4.9.1 : preorder�nil � []�
E4.9.2 : preorder�tree(x1, x2, x3) � x4� :− preorder�x2 � y1�,

preorder′�x3, y1 � y2, y
′
1�, append�[x1|y

′
1], y2 � x4�

E4.9.3 : preorder′�x1, w � x2, w� :− preorder�x1 � x2�

where LMS[MRDefP (preorder)\(in, out)] is:

{ (preorder, (in, out)), (preorder′, (in, out, in, out)) }

Notice that, in this case, each predicate is associated to a unique mode specifi-
cation, although in general there can be several mode specifications associated
to each one. �

5 The Elimination Method

Next, we present a method for transforming definite logic programs in order to
eliminate the auxiliary variables while preserving TF -equivalence. We devoted
the first two subsections to explain in detail the two main subtasks of this
transformation method: to transform the definition of a predicate p into a tail
recursive definition (w.r.t. a mode specification, see below) and to eliminate
the auxiliary variables that are located in the leftmost atom where some of
them occur in. The algorithm that, using these two subtasks, accomplishes
the auxiliary variable elimination is introduced in the third subsection.

5.1 Tail Recursive Transformation

In Prolog, a predicate is said to be tail recursive whenever the recursive call
is the rightmost in every recursive clause that defines the predicate. However,
we define a slightly stronger notion by relating tail recursion to the mode
specification and by imposing some extra syntactic restrictions.

Definition 5.1 The definition of a predicate p in a program P is tail re-
cursive w.r.t. a mode specification ms(p(u)) iff for each pair (h, ms(h(u′)) ∈

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2414

LMS[MRDefP (p)\ms(p(u))], h ≡ p and DefP (h) consists of clauses of the follow-
ing two forms (w.r.t. MS[DefP (h)\ms(h(u′)]):

(1) h�tI � tO� :− K

(2) h�sI � z� :− L, h�rI � z�

where h �∈ DpdP (q) (that is, q �∈ MRP (p)) for every atom q(u′) in K and L, and
z is a fresh tuple of pairwise distinct variables. �

That is, as well as the standard condition of recursion in the rightmost atom,
we also demand that, in the recursive clauses (2), the same tuple of pairwise
distinct variables (namely z) occurs in output arguments of both the head and
the rightmost body atom. Notice that only direct recursion is considered in
our definition. These restrictions will be useful during the auxiliary variable
elimination process.

Next, we show how to transform the definition of a predicate into a TF -
equivalent tail recursive one w.r.t. a mode specification. It is based on the
well-known technique that uses a stack for storing the recursive calls. Here,
we use new constants with predicate names and clauses as super/sub-scripts
to be stored in the stack for representing them.

Definition 5.2 Let P be a program and ms(p(u)) be the mode specification in
an atom that occurs in P , the tail recursive definition of p w.r.t. ms(p(u)),
denoted by TailRDefP [p\ms(p(u))], consists of (where, in each clause, z is a
m-tuple of fresh variables and m is the number of output positions in ms(p(u))):

• A clause (really, a fact):

(1) p tr�z, [] � z�

where p tr is a new predicate.

• For each (h, ms(h(s))) ∈ LMS[MRDefP (p)\ms(p(u))], a clause:

(2) h�x � z� :− p tr�x, [ch] � z�

where the constant ch is associated to ms(h(s)), x is a k-tuple of new vari-
ables and k is the number of output positions in ms(h(s)).

• For each h�sI � sO� :− q1�r
1
I
� r1

O
�, . . . , qn�r

n
I

� rn
O
� ∈ MS[MRDefP (p)\ms(p(u))]

such that {q1, . . . qn} ∩ MRP (p) ≡ ∅, a clause:

(3) p tr�sI, [ch|S] � z� :− q1�r
1
I
� r1

O
�, . . . , qn�r

n
I

� rn
O
�, p tr�sO, S � z�

• For each h�sI �sO� :− q1�r
1
I
�r1

O
�, . . . , qn�rn

I
�rn

O
� ∈ MS[MRDefP (p)\ms(p(u))],

namely ms(C), such that {q1, . . . qn} ∩ MRP (p) �≡ ∅, two clauses 3 :

(4) p tr�sI, [ch|S] � z� :− p tr�sI, [w
1, cC

q1
, . . . , wn, cC

qn
, w, cC

h |S] � z�

3 By convention, r
0

O
≡ sI.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 15

(5) p tr�rn
O
, [w, cC

h |S] � z� :− p tr�sO, S � z�

and, for each 1 ≤ j ≤ n, a clause of the form (6) if qj �∈ MRP (p) and a
clause of the form (7) if qj ∈ MRP (p):

(6) p tr�rj−1

O
, [wj, cC

qj
|S] � z� :− qj�r

j
I
� rj

O
�, p tr�rj

o, S � z�

(7) p tr�rj−1

O
, [wj, cC

qj
|S] � z� :− p tr�rj

I
, [cqj

|S] � z�

where:
· each constant cC

qj
is associated to qj�s

j
I
� sj

O
� in ms(C)

· the constant cC
h is associated to ms(C) itself

· w ≡ (
⋃n

k=1
vk \ Var(sI)) ∪ (Var(sO) \ AuxVar(rn

O
))

· wj ≡ vj ∪ (AuxVar(rj
I
� rj

O
) \ AuxVar(rj−1

O
)) if qj �∈ MRP (p) (type (6))

· wj ≡ vj ∪ (AuxVar(rj
I
) \ AuxVar(rj−1

O
)) if qj ∈ MRP (p) (type (7))

· vj ≡ AuxVar(rj
I
� rj

O
) ∩

⋃n

k=1,k �=j AuxVar(rk
I
� rk

O
) �

Roughly speaking, the clauses of the form (2) store the initial call for each
(h, ms(h(s))) ∈ LMS[MRDefP (p)\ms(p(u))], whereas the clause (1) gives the
output value when no recursive call remains. The clauses of the form (3)
encode the non-recursive clauses and the clauses of the form (4) and (5) the
recursive ones (each clause (5) gives the output value of the original clause).
Notice that the clauses are encoded in different ways according to the each
pair (h, ms(h(s))) ∈ LMS[MRDefP (p)\ms(p(u))]. The clauses of the form (6) and
(7) are used for rebuilding the set of terms of each atom depending on the
mode specification in it. In addition, the variables stored in the stack ensure
that the links between atoms through (non-auxiliary) variables are kept.

Theorem 5.3 Let P be a program and ms(p(u)) the mode specification in an
atom that occurs in P , the programs P and P\DefP (p)∪TailRDefP [p\ms(p(u))]
are TF-equivalent.

Proof. Let P0 be obtained by adding to P \ DefP (p) one set of clauses of the
following form for each pair (h, ms(h(u′))) ∈ LMS[MRDefP (p)\ms(p(u))]:

C5.3.1 : h�x � z� :− h′�x, [ch] � z�
C5.3.2∗ : h′�sI, [ch] � sO� :− q1�r

1
I
� r1

O
�, . . . , qn�rn

I
� rn

O
�

C5.3.3∗ : h′�sI, [ch] � z� :− h′�r1
I
, [w1, cC

q1
] � r1

O
�, . . . , h′�rn

I
, [wn, cC

qn
] � rn

O
�,

h′�rn
O
, [w, cC

h] � z�
C5.3.4∗ : h′�rn

O
, [w, cC

h] � sO�

C5.3.5∗ : h′�rj
I
, [wj, cC

qj
] � rj

O
� :− qj�r

j
I
� rj

O
�

where the constants and the sets of variables are obtained as in Definition 5.2,
and the clauses that are marked with an asterisk * denote schemes on one
or more syntactic objects. In concrete, each one of the previous sets consists
of a single clause C5.3.1, a clause C5.3.2∗ for each non-recursive clause in

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2416

MRDefP (p) and a clause C5.3.3∗, a clause C5.3.4∗ and n clauses C5.3.5∗ for
each recursive clause in MRDefP (p) (being n the number of atoms in the corre-
sponding clause). For technical convenience, we consider that the predicates
h ∈ MRP (p) (except for p) are renamed in the previous sets of clauses.

The programs P and P0 are TF -equivalent since by unfolding the n + 1
body atoms in the clauses of the form C5.3.3∗ and then unfolding the atom
h′�x, [ch] � z� in each clause of the form C5.3.1∗ we obtain P (eliminating the
repeated clauses).

Next, we define the program P1 from P0 by introducing a new predicate
p tr that is defined by:

C5.3.6 : p tr�x, [] � x�
C5.3.7 : p tr�x1, [x2|S] � z� :− h′�x1, [x2] � x3�, p tr�x3, S � z�

Trivially P0
∼=TF P1. Now, we unfold in the clauses of the form C5.3.5∗

the atoms qj�r
j
I

� rj
O
� such that qj ∈ MRP (p) and then we unfold the atom

h′�x1, [x2] � x3� in the clause C5.3.7, obtaining the program P2. DefP (p tr)
and DefP2

(p tr) are equal except for the clauses of the form (4) (see Definition
5.2). In the program P2, the corresponding clauses are of the form:

C5.3.8∗ : p tr�sI, [ch|S] � z� :− h′�r1
I
, [w1, cC

q1
] � r1

O
�, . . . ,

h′�rn
I
, [wn, cC

qn
] � rn

O
�, h′�rn

O
, [w, cC

h] � y�, p tr�y, S � z�

It suffices to fold n + 1 times the rightmost couple of atoms in these clauses
using the clause C5.3.7, obtaining the program P3. At each folding step, we
get a new atom of predicate p tr that is used in the next step. At the end of
this process, DefP (p tr) and DefP3

(p tr) are equal and, therefore, the obtained
program is also identical to P \DefP (p)∪TailRDefP [p\ms(p(u))] (eliminating
the superfluous predicates).

Finally, it is important to remark that, since P is normalized, the links
between the auxiliary variables are preserved in the transformed program. �

Example 5.4 Given the normalized program P in Example 3.4, the tail re-
cursive definition of preorder w.r.t. (in, out) consists of 4 :

E5.4.1 : prdr tr�z, [] � z�
E5.4.2 : preorder�x � z� :− prdr tr�x, [c1] � z�
E5.4.3 : preorder′�x1, x2 � z� :− prdr tr�x1, x2, [c2] � z�
E5.4.4 : prdr tr�nil, [c1|S] � z� :− prdr tr�[], S � z�
E5.4.5 : prdr tr�tree(x1, x2, x3), [c1|S] � z� :−

prdr tr�tree(x1, x2, x3), [[], c3, [x3], c4, [x1], c5, [], c6|S] � z�
E5.4.6 : prdr tr�tree(x1, x2, x3), [[], c3|S] � z� :− prdr tr�x2, [c1|S] � z�

4 For brevity, we use numbers, instead of predicates names, as constant sub-scripts.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 17

E5.4.7 : prdr tr�y1, [[x3], c4|S] � z� :− prdr tr�y1, x3, [c2|S] � z�
E5.4.8 : prdr tr�y3, y2, [[x1], c5|S] � z� :− append�[x1|y3], y2 � y�,

prdr tr�y, S � z�
E5.4.9 : prdr tr�x4, [[], c6|S] � z� :− prdr tr�x4, S � z�
E5.4.10 : prdr tr�y, x1, [c2|S] � z� :− prdr tr�y, x1, [[], c7, [[y], c8|S] � z�
E5.4.11 : prdr tr�y, x1, [[], c7|S] � z� :− prdr tr�x1, [c1|S] � z�
E5.4.12 : prdr tr�x2, [[y], c8|S] � z� :− prdr tr�y, x2, S � z� �

Notice that for every program P and after transforming the definition of a
predicate p in this way, no other predicate is mutually recursive to p. That is,
MRP ′(p) ≡ {p} being P ′ the obtained program.

5.2 A Single Step of Auxiliary Variable Elimination

The second subtask is to eliminate the auxiliary variables that are located in
the leftmost atom where some auxiliary variables occur in. With this aim,
we have to infer the mode specification in the above mentioned atom and
the next one. The Definition 4.4 already fixes the mode specification in the
argument positions where auxiliary variables occur in. In the remaining ones,
the mode specification that is inferred by Definition 4.5 is subject to the mode
specification in the clause head atom, that is undefined for the time being.
Therefore, the mode specification in these positions is inferred as follows.

Definition 5.5 Let C ≡ p(t) : − q1(s
1), . . . , qn(sn) be a normalized clause

such that ms(p(t)) is undefined, qi(s
i) be the leftmost atom that contains some

auxiliary variables for 1 ≤ i ≤ n and let mi and mi+1 be the arities of the
predicates qi and qi+1 respectively, the mode specification in the j-th argu-
ment position of qi(s

i) for 1 ≤ j ≤ mi, denoted by msj(qi(s
i)), such that

AuxVar(si
j) ≡ ∅ is in. In the same way, the mode specification in the j-th

argument position of qi+1(s
i+1) for 1 ≤ j ≤ mi+1, denoted by msj(qi+1(s

i+1)),
such that AuxVar(si+1

j) ≡ ∅ is out. �

Thus, due to Definitions 4.4 and 5.5, the mode specification in the leftmost
atom that contains some auxiliary variables and in the next one is defined.

Example 5.6 Consider the normalized clause E3.4.3 that is in Example 3.4.
preorder(x2, y1) is the leftmost atom that contains some auxiliary variables.
To be precise, the auxiliary variable y1. The mode specification in this atom
and in the next one, that is the atom preorder′(x3, y2, y1, y

′
1)), is (in, out) and

(out, out, in, out) respectively. �

Next, we replace the clause where the auxiliary variables occur in with
the set of clauses that is given in the following definition. We proceed in this
way on the condition that the definition of the leftmost atom predicate is tail

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2418

recursive w.r.t. the inferred mode specification according to Definitions 4.4
and 5.5. Notice that Theorem 5.3 guarantees that this condition holds.

Definition 5.7 Let C ≡ h(u) :− M, pi�t
i

I
� t

i

O
�, pi+1�t

i+1

I
� t

i+1

O
�, N ∈ P be a

clause such that pi�t
i

I
� t

i

O
� is the leftmost atom that contains some auxiliary

variables and DefP (qi) is tail recursive w.r.t. pi�t
i

I
� t

i

O
�, the set of auxiliary

variable free clauses of C in P , denoted by AVF P (C), consists of (where z is

a m-tuple of fresh variables and m is the number of terms in t
i+1

O
):

• A clause:

(1) h(u) :− M, p′�t
i

I
, wI � t

i+1

O
, wO�, N

where p′ is a new predicate, wI ≡ AuxVar(t
i

O
) \AuxVar(t

i

I
� t

i+1

O
) and wO ≡

AuxVar(t
i+1

I
) \ AuxVar(t

i

I
� t

i+1

O
).

• For each pi�rI � rO� :− K ∈ DefP (pj) (non-recursive clauses), a clause:

(2) p′�rIσ, wIσ � z, wOσ� :− K, pi+1�t
i+1

I
σ � z�

where σ ≡ mgu(rO, t
i

O
).

• For each pi�sI � z� :− L, pi�s
′
I
� z� ∈ DefP (pi) (recursive clauses), a clause:

(3) p′�sI, wI � z, wO� :− L, p′�s′
I
, wI � z, wO� �

Note that, since the tuples t
i

O
and t

i+1

I
have disappeared, the involved auxiliary

variables have been eliminated. Again, the set of variables wI and wO ensure
that the links between atoms through (non-auxiliary) variables are kept.

Theorem 5.8 Let C ≡ h(u) :− M, pi�t
i

I
� t

i

O
�, pi+1�t

i+1

I
� t

i+1

O
�, N ∈ P be a

clause such that pi�t
i

I
� t

i

O
� is the leftmost atom that contains some auxiliary

variables and DefP (qi) is tail recursive w.r.t. pi�t
i

I
� t

i

O
�. The programs P and

P \ {C} ∪ AVF P (C) are TF-equivalent.

Proof. Starting from the program P , we obtain P0 by introducing a new
predicate p′ that is defined by the single clause:

C5.8.1 : p′�x, wI � z, wO� :− pi�x � t
i

O
�, pi+1�t

i+1

I
� z�

where:

• x is a m-tuple of fresh variables and m is the number of terms in t
i

I

• z is a n-tuple of fresh variables and n is the number of terms in t
i+1

O

• the sets of variables wI and wO are obtained as in Definition 5.7

• the mode specifications in pi�x� t
i

O
� and pi+1�t

i+1

I
� z� coincide with the ones

in the atoms pi�t
i

I
� t

i

O
� and pi+1�t

i+1

I
� t

i+1

O
� of the clause C.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 19

The programs P and P0 are trivially TF -equivalent. Since DefP (pi) (and
therefore, DefP0

(pi)) is tail recursive w.r.t. pi�x � t
i

O
�, by unfolding this atom

in the clause C5.8.1 we get clauses of the following two forms 5 :

C5.8.2∗ : p′�rIσ, wIσ � z, wOσ� :− K, pi+1�t
i+1

I
σ � z�

C5.8.3∗ : p′�sI, wI � z, wO� :− L, pi�s
′
I
� t

i

O
�, pi+1�t

i+1

I
, wI � z, wO�

where σ ≡ mgu(rO, t
i

O
). We now fold each clause of the form C5.8.3∗ using

C5.8.1, obtaining clauses of the following form:

C5.8.4∗ : p′�sI, wI � z, wO� :− L, p′�s′
I
, wI � z, wO�

By folding the clause C using the clause C5.8.1, we get:

C5.8.5 : h(u) :− M, p′�t
i

I
, wI � t

i+1

O
, wO�, N

The resulting program P1 is defined by the set of clauses:

P1 ≡ (P0 \ {C, C5.8.1}) ∪ {C5.8.5} ∪ C5.8.2∗ ∪ C5.8.4∗

considering C5.8.2∗ and C5.8.4∗ to be sets of clauses. Since the programs P1

and P \ {C} ∪AVF P (C) are syntactically equal, P and P \ {C} ∪ AVF P (C)
are TF -equivalent. �

Example 5.9 Let P be the program in Example 5.4, it only remains to elim-
inate the auxiliary variable y from the clause E5.4.8 :

prdr tr(y3, y2, [[x1], c5|S], z) :− append([x1|y3], y2, y), prdr tr(y, S, z)

According to Definitions 4.4 and 5.5, the mode specification in the atoms
that share the variable y is append�[x1|y3], y2 � y� and prdr tr�y � S, z� re-
spectively. Let DefP (append) consist of (representing the mode specification
append�[x1|y3], y2 � y�):

E5.9.1 : append�[], x � x�
E5.9.2 : append�[x1|x2], x3 � [x1|x4]� :− append�x2, x3 � x4�

Since DefP (append) is not tail recursive w.r.t. append�[x1|y3], y2 � y�, we sub-
stitute TailRDefP [append\append�[x1|y3], y2 � y�] for DefP (append):

E5.9.3 : app tr�z, [] � z�
E5.9.4 : append�x1, x2 � z� :− app tr�x1, x2, [c9] � z�
E5.9.5 : app tr�[], x, [c9|S] � z� :− app tr�x, S � z�
E5.9.6 : app tr�[x1|x2], x3, [c9|S] � z� :−

app tr�[x1|x2], x3, [[], c10, [x1], c11|S] � z�
E5.9.7 : app tr�[x1|x2], x3, [[], c10|S] � z� :− app tr�x2, x3, [c9|S] � z�
E5.9.8 : app tr�x4, [[x1], c11|S] � z� :− app tr�[x1|x4], S � z�

5 As before, the asterisk is used to denote clause schemes.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2420

As it is explained in the next subsection, we substitute app tr([x1|y3], y2, [c9], y)
for append([x1|y3], y2, y) in the clause E5.4.8 and we get:

E5.9.9 : prdr tr(y3, y2, [[x1], c5|S], z) :− app tr�[x1|y3], y2, [c9] � y�,
prdr tr�y � S, z�

Finally, AVFP (E5.9.9) consists of:

E5.9.10 : prdr tr(y3, y2, [[x1], c5|S], z) :− app tr′�[x1|y3], y2, [c9] � S, z�
E5.9.11 : app tr′�x, [] � S, z� :− p tr�x � S, z�
E5.9.12 : app tr′�[], x, [c9|S] � z1, z2� :− app tr′�x, S � z1, z2�
E5.9.13 : app tr′�[x1|x2], x3, [c9|S] � z1, z2� :−

app tr′�[x1|x2], x3, [[], c10, [x1], c11|S] � z1, z2�
E5.9.14 : app tr′�[x1|x2], x3, [[], c10|S] � z1, z2� :−

app tr′�x2, x3, [c9|S] � z1, z2�
E5.9.15 : app tr′�x4, [[x1], c11|S] � z1, z2� :− app tr′�[x1|x4], S � z1, z2� �

5.3 An Auxiliary Variable Elimination Algorithm

Making use of the previous two transformations, we give an algorithm for
eliminating the auxiliary variables from a definite logic program. Remember
that normalization is always assumed.

Roughly speaking, the algorithm in Figure 1 works as follows. For each
clause C ≡ h(u) : − M, pi�t

i

I
� t

i

O
�, pi+1�t

i+1

I
� t

i+1

O
�, N , we select the leftmost

atom that contains some auxiliary variables and the next one. The mode
specification in these atoms, pi�t

i

I
�t

i

O
� and pi+1�t

i+1

I
�t

i+1

O
�, is inferred according

to Definitions 4.4 and 5.5. Besides, the mode specification in pi�t
i

I
� t

i

O
� is

extended to MRDefP (pi) according to Definitions 4.4, 4.6, 4.7 and 4.8 when
necessary. Then, there are two main cases:

• If pi does not depend on h (line 5), we substitute the set of clauses AVF P (C)
(see Definition 5.7) for the clause C. If necessary (line 6), we transform

DefP (pi) into TailRDefP [pi\pi�t
i

I
� t

i

O
�] (see Definition 5.2) and substitute

pi tr�t
i

I
, [cpi

] � t
i

O
� for pi�t

i

I
� t

i

O
� in the clause C, where pi tr is the new

predicate that is introduced by the transformation.

• If pi depends on h (line 12), DefP (pi) is not tail recursive w.r.t. pi�t
i

I
� t

i

O
�

because recursion is not restricted to the rightmost atom. Since ms(h(u)) is

defined after extending pi�t
i

I
� t

i

O
� to MRDefP (pi), we transform DefP (h) into

TailRDefP [h\ms(h(u))]. This transformation eliminates the clause C from
the program P . Therefore, a different clause is selected in the next step.

In the former case (pi �∈ MRP (h)), the involved auxiliary variables are
eliminated by substituting AVF P (C) for the clause C. In the latter case

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 21

PRE: { P0 is a normalized program and P ≡ P0 }

1 repeat

2 select any clause C ≡ h(u) :− M, pi�t
i

I
� t

i

O
�, pi+1�t

i+1

I
� t

i+1

O
�, N

3 such that pi�t
i

I
� t

i

O
� is the leftmost atom where some

4 auxiliary variable occurs in

5 if pi �∈ MRP (h) then

6 if DefP (pi) is not tail recursive w.r.t. pi�t
i

I
� t

i

O
� then

7 transform DefP (pi) into TailRDefP [pi\ms(pi(t))]

8 substitute pi tr�t
i

I
, [cpi

] � t
i

O
� for pi�t

i
I
� ti

O
� in C where

9 pi tr is the new introduced predicate

10 end if

11 substitute AVF P (C) for the clause C

12 else

13 transform MRDefP (h) into TailRDefP [h\ms(h(u))]

14 end if

15 until no auxiliary variable remains in P

POST: { P is an auxiliary variable free program and P ∼=TF P0 }

Fig. 1. An Auxiliary Variable Elimination Algorithm

(pi ∈ MRP (h)), the transformation of DefP (h) into TailRDefP [h\ms(h(u))]
ensures that recursion is restricted to the rightmost most in every clause
C ′ ∈ MRDefP (h). Therefore, this transformation is performed at most once
for each predicate in the program and, after that, auxiliary variables are di-
rectly eliminated according to the first case.

It is important to stress that the transformation to tail recursive itself of-
ten eliminates many of the auxiliary variables (see Example 5.4 where two
auxiliary variables are eliminated). In addition, after the tail recursive trans-
formation of h, when a clause D �∈ DefP (h) is selected, the clauses in DefP (h)
can never be affected by the auxiliary variable elimination process.

Although no transformational step introduces new auxiliary variables, un-
fortunately we do not have a formal termination proof. Hence, further inves-

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2422

tigations must be done to achieve a total correctness proof for the presented
algorithm.

6 Conclusions

The presented method can be automatically applied to every definite logic
program and eliminates its auxiliary (local) variables. Each definite clause
(with auxiliary variables) is replaced with a set of definite clauses with new
predicates. As a result, the negative version of the target program does not
require universal quantification. Hence, much efficiency is gained in negative
goal computation. However, positive goals should be computed with respect
to the source program since, in general, the new predicates that are introduced
by the transformation reduce the efficiency of the positive goal computation.
The aim of the present work is to prove the existence of a general algorithm
for auxiliary variable elimination in definite logic programs. Much work and
further improvements should be made on implementation and experimentation
in order to obtain more efficient target programs.

A method for eliminating local (there called unnecessary) variables from
definite logic programs was introduced in [13]. Their main aim was to eliminate
the redundant computations that are made by means of local variables. Hence,
the target program yields more efficient SLD-computations. This motivation is
essentially different from ours. They present different strategies for guiding the
application of unfold/fold transformations in order to achieve local variable
elimination. The strategies are syntactically based and only guarantee the
complete elimination of local variables for a very restricted subclass of definite
logic programs. To the best of our knowledge, there is no other published result
on the elimination of this kind of variables in logic programs.

We plan to extend our results to normal logic programs. By now, we
think that full generality could not be achieved in this case. However, we
believe that the method can be easily adapted for a wide subclass of normal
logic programs. Future work also includes the extension to constraint logic
programming.

Acknowledgement

We are very grateful for the helpful comments we receive from our referees.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–24 23

References

[1] Álvez, J., P. Lucio, F. Orejas, E. Pasarella and E. Pino, Constructive negation by bottom-
up computation of literal answers, in: SAC ’04: Proceedings of the 2004 ACM Symposium on
Applied Computing, 2004, pp. 1468–1475.

[2] Barbuti, M., P. Mancarella, D. Pedreschi and F. Turini, A transformational approach to
negation in logic programming, Journal of Logic Programming 8 (1990), pp. 201–228.

[3] Bruscoli, P., F. Levi, G. Levi and M. C. Meo, Compilative constructive negation in constraint
logic programs, in: S. Tison, editor, Proc. of the Trees in Algebra and Programming 19th Int.
Coll.(CAAP ’94), LNCS 787 (1994), pp. 52–67.

[4] Chan, D., Constructive negation based on the completed database, in: R. A. Kowalski and K. A.
Bowen, editors, Proc. of the 5th Int. Conf. and Symp. on Logic Progr. (1988), pp. 111–125.

[5] Chan, D., An extension of constructive negation and its application in coroutining, in: E. Lusk
and R. Overbeek, editors, Proc. of the NACLP’89 (1989), pp. 477–493.

[6] Clark, K. L., Negation as failure, in: H. Gallaire and J. Minker, editors, Logic and Databases
(1978), pp. 293–322.

[7] Debray, S. K. and D. S. Warren, Automatic mode inference for logic programs, Journal of Logic
Programming 5 (1988), pp. 207–229.

[8] Drabent, W., What is failure? an approach to constructive negation, Acta Informatica 32

(1995), pp. 27–59.

[9] Fitting, M., A Kripke-Kleene semantics for logic programs, Journal of Logic Programming 2

(1985), pp. 295–312.

[10] King, A., K. Shen and F. Benoy, Lower-bound time-complexity analysis of logic programs, in:
J. Maluszynski, editor, International Symposium on Logic Programming (1997), pp. 261 – 276.

[11] Kunen, K., Negation in logic programming, Journal of Logic Programming 4 (1987), pp. 289–
308.

[12] Maher, M. J., Equivalences of logic programs, in: J. Minker, editor, Foundations of deductive
databases and logic programming (1988), pp. 627–658.

[13] Proietti, M. and A. Pettorossi, Unfolding - definition - folding, in this order, for avoiding
unnecessary variables in logic programs, Theoretical Computer Science 142 (1995), pp. 89–
124.

[14] Sato, T. and H. Tamaki, Transformational logic program synthesis, in: Proceedings of
International Conference on Fifth Generation Computer Systems, 1984, pp. 195–201.

[15] Shepherdson, J., Language and equality theory in logic programming, Technical Report No.
PM-91-02, University of Bristol (1991).

[16] Stuckey, P. J., Negation and constraint logic programming, Information and Computation 118

(1995), pp. 12–33.

J. Álvez, P. Lucio / Electronic Notes in Theoretical Computer Science 137 (2005) 5–2424

	Introduction
	Preliminaries
	Normalization
	Mode Specification
	The Elimination Method
	Tail Recursive Transformation
	A Single Step of Auxiliary Variable Elimination
	An Auxiliary Variable Elimination Algorithm

	Conclusions
	Acknowledgement
	References

