
A Strong Logic Programming View for

Static Embedded Implications ?

R. Arruabarrena, P. Lucio, and M. Navarro

Dpto de L.S.I., Facultad de Informática, Paseo Manuel de Lardizabal, 1, Apdo 649, 20080-San
Sebastián, SPAIN. Tel: +34 (9)43 448000, Fax: +34 (9)43 219306, e-mail: marisa@si.ehu.es.

Abstract. A strong (L) logic programming language ([14, 15]) is given by two sub-
classes of formulas (programs and goals) of the underlying logic L, provided that:
firstly, any program P (viewed as a L-theory) has a canonical model MP which is
initial in the category of all its L-models; secondly, the L-satisfaction of a goal G in
MP is equivalent to the L-derivability of G from P , and finally, there exists an effective
(computable) proof-subcalculus of the L-calculus which works out for derivation of
goals from programs. In this sense, Horn clauses constitute a strong (first-order) logic
programming language. Following the methodology suggested in [15] for designing logic
programming languages, an extension of Horn clauses should be made by extending its
underlying first-order logic to a richer logic which supports a strong axiomatization of
the extended logic programming language. A well-known approach for extending Horn
clauses with embedded implications is the static scope programming language presented
in [8]. In this paper we show that such language can be seen as a strong FO⊃ logic
programming language, where FO⊃ is a very natural extension of first-order logic with
intuitionistic implication. That is, we present a new characterization of the language
in [8] which shows that Horn clauses extended with embedded implications, viewed as
FO⊃-theories, preserves all the attractive mathematical and computational properties
that Horn clauses satisfy as first-order-theories.

1 Introduction

Horn clause programs are theories in first-order logic (namely FO) whose computation
relation (between programs and goals) is equivalent to the following relations of FO:
logical consequence, derivability and satisfaction in the least Herbrand model of the
program. Moreover, the least Herbrand model of a program is initial in the category
of all first-order models of the program and it exactly satisfies the goals which are
satisfied in every model in this category. In other words, Horn clauses can be seen
as a FO logic programming language, in the strong sense of [14, 15], because its un-
derlying logic FO has attractive (model-theoretic) mathematical and (proof-theoretic)
computational properties (for programs and goals). This idea was formalized in [14, 15]
where the notion of a strong logic programming language is defined as a restriction of
an underlying logic satisfying good properties. This means, once fixed an underlying
logic, setting which subclasses of its formulas correspond to the classes of programs and
queries or goals, respectively. The underlying logic, for these subclasses, must satisfy
three properties: mathematical semantics, goal completeness and operational seman-
tics. The mathematical semantics property requires that any program has a canonical

? This work has been partially supported by the CICYT-project TIC95-1016-C02-02.

model, which is initial in the class of all models of the program (seen as a theory in
the underlying logic). Goal completeness means that logical satisfaction of goals in
the initial model is equivalent to the derivability relation (of the logic) restricted to
programs and goals. The operational semantics property means the existence of an ef-
fective (computable) proof-subcalculus of the calculus (of the logic) for deriving goals
from programs. We believe that this view of axiomatizing a logic programming lan-
guage inside an underlying logic has many advantages. On one hand, it allows one to
separate general logical features from programming language features. On the other
hand, a useful way to analyse, compare and integrate different programming features
is to axiomatize them into a common underlying logic.

Attempts to extend Horn clause logic programming (e.g. with modules, higher-order,
data abstraction, etc.) should be done by preserving (as much as possible) the above-
mentioned mathematical and computational properties. Since Horn clause logic is the
greatest fragment of FO admitting initial models, concrete extensions could require
to change (by restricting or enriching) the underlying logic FO. Many approaches are
concerned with extending Horn clauses with some features for program structuring
that can be seen as a form of modularity in logic programming (see for instance [2]
for a survey). Some of them consider the extension of Horn clauses with implication
goals of the form D ⊃ G, called blocks, where D can be seen as a local set of clauses
(or module) for proving the goal G. This approach yields to different extensions of
Horn clause programming depending on the given semantics to such blocks. A first
basic distinction is between closed blocks: G can be proved only using local clauses
from D, and open blocks: G can be proved using D and also the external environment.
Therefore, open blocks require scope rules to fix the interplay between the predicate
definitions inside a module D and those in the environment. In general, dealing with
open blocks, a module can extend the definition of a predicate already defined in
the environment. Hence, different definitions of the same predicate could have to be
considered, depending on the collection of modules corresponding to different goals.
There are mainly two scope rules, named static and dynamic, allowing this kind of
extension of predicate definitions. In the dynamic approach the set of modules taking
part in the resolution of a goal G can only be determined from the sequence of goals
generated until G. However, in the static case this set of modules can be determined
(for each goal) statically from the block structure of the program. Different proposals of
logic programming languages for open blocks with dynamic scope have been presented
and studied in several papers (e.g.[4–6, 16–18]). The static scope approach has been
mainly studied in [8, 7]. In [2, 7] both different approaches are compared. Some other
works (e.g. [19, 20]) treat open blocks with different scope rules avoiding this kind of
predicate extension.

In [16] Miller proves that the proof-theoretic semantics for its dynamic scope program-
ming language is based on intuitionistic logic, and in [2] it is shown that the Miller’s
canonical model for a program is indeed an intuitionistic model of this program. How-
ever, for the static scope programming language introduced in [8], neither first-order
logic nor intuitionistic logic can be used for this purpose. Following the methodology
suggested in [15] for designing logic programming languages, the extension of Horn
clauses with intuitionistic implication should be strongly axiomatized in a logic which
integrates FO and intuitionistic implication. In this paper we introduce a complete
logic called FO⊃, which is a very natural extension of FO with intuitionistic implica-
tion. We give a new characterization of the well-known semantics for the static scope
programming language presented in [8]. This characterization strongly axiomatizes the

logic programming language inside FO⊃ logic, showing that it satisfies all the desirable
properties.

The paper is organized as follows: In Section 2 we introduce the formalization of [14,
15] for a strong logic programming language which is the methodological basis for our
work. In Section 3 we give a short introduction to the underlying logic FO⊃ giving
the necessary notions and results for the rest of the paper. In Section 4 we develop the
FO⊃ strong axiomatization of the static scope programming language. We conclude,
in Section 5, by summarizing the presented results and related work.

2 Preliminaries

In this section, we introduce the notions of logic and strong logic programming language,
following [14, 15].

The notion of a logic is obtained by combining an entailment system (formalizing the
proof-theoretical component of a logic) with an institution (formalizing the model-
theoretical component) such that a soundness condition relating provability and satis-
faction holds. An entailment system is a triple (Sign, sen, `) with Sign a category of
signatures, sen a functor associating to each Σ ∈ Sign a set sen(Σ) of Σ-sentences and
` a function associating to each Σ ∈ Sign a binary relation `Σ⊆ P(sen(Σ)) × sen(Σ),
called Σ-entailment orΣ-derivability, which satisfies the properties of reflexivity, mono-
tonicity, transitivity and `-translation (i.e. preservation by signature morphisms). An
institution is a 4-tuple (Sign, sen,Mod, |=) with Sign and sen as above; Mod is a func-
tor associating to each Σ ∈ Sign a corresponding category Mod(Σ) whose objects are
called Σ-structures (or Σ-models) and whose morphisms preserve the interpretation
given to signature symbols; and |= is a function associating to each Σ ∈ Sign a binary
relation |=Σ⊆ Mod(Σ)× sen(Σ), called Σ-satisfaction, which satisfies the |=-invariance
property (i.e. for any M2 ∈ Mod(Σ2), H : Σ1 → Σ2, ϕ ∈ sen(Σ1): Mod(H)(M2) |=Σ1 ϕ
iff M2|=Σ2H(ϕ)). Given Γ ⊆ sen(Σ), Mod(Γ) denotes the full subcategory of Mod(Σ)
determined by the structures M ∈ Mod(Σ) such that M |=Σ ϕ for each ϕ ∈ Γ . The
satisfaction relation induces a logical consequence relation between sets of sentences
and sentences, also denoted |=, as follows: Γ |=Σ ϕ iff M |=Σ ϕ for each M ∈ Mod(Γ).
A logic is given by an entailment system and an institution sharing the same signatures
and sentences, such that it holds soundness of the derivability relation w.r.t. the logical
consequence relation. A logic is a 5-tuple L=(Sign, sen, Mod, `, |=) such that:

– (Sign, sen, `) is an entailment system

– (Sign, sen, Mod, |=) is an institution

– For any Σ ∈ Sign, Γ ⊆ sen(Σ) and ϕ ∈ sen(Σ), Γ `Σ ϕ =⇒ Γ |=Σ ϕ (Soundness).

In addition, there are some other useful properties that a logic could satisfy, like com-
pleteness, compactness, etc.

From the axiomatic point of view, a strong logic programming language is a 4-tuple
LPL= (L, Sign′, prog, goal) with:

– L=(Sign, sen, Mod, `, |=) a logic, namely the underlying logic of LPL
– Sign′ a subcategory of Sign
– prog is a functor associating to each Σ ∈ Sign′ a set prog(Σ) (of Σ-programs)

included in Pfin(sen(Σ))

– goal is a functor associating to each Σ ∈ Sign′ a set of Σ-goals, goal(Σ) ⊆ sen(Σ)

such that the following properties are satisfied:

1. Mathematical Semantics: Each program P ∈ prog(Σ) has a model MP which is
initial in the category Mod(P) of all models in Mod(Σ) satisfying P

2. Goal Completeness (w.r.t. the initial model): For any program P ∈ prog(Σ) and
any goal G ∈ goal(Σ), P `Σ G ⇐⇒ MP |=Σ G

3. Operational Semantics: Existence of an effective proof subcalculus for the deriv-
ability relation `Σ restricted to prog(Σ) × goal(Σ).

3 The Logic FO⊃

In this section we introduce the sound and complete logic FO⊃ which extends classi-
cal first-order logic with intuitionistic implication. We present its language, semantical
structures, logical consequence relation, derivability relation and some other details
which are relevant to understand the rest of the paper. A more detailed presentation
of this logic is out of the scope of this paper and it can be found in [11], in particular
there it is proved soundness and completeness of FO⊃ logic.

A signature Σ ∈ Sign consists of countable sets FSΣ of function symbols, and PSΣ

of predicate symbols, with some specific arity for each function and predicate sym-
bol. We also assume a countable set V SΣ of variable symbols. We denote by TΣ the
set of all well-formed first-order Σ-terms. A term is closed if no variable symbol does
occur on it. Well-formed Σ-formulas are built, from atomic ones, using classical con-
nectives (¬,∧,∨,→), intuitionistic implication (⊃), and classical quantifiers (∀,∃). Free
and bound variables and substitution have the usual definitions. sen(Σ) is the set of
Σ-sentences, that is, Σ-formulas with no free variables. We will denote formulas by
lowercase Greek letters ϕ,ψ, γ, χ, The uppercase Greek letters Γ and Φ (probably
with sub- and superscripts) will be used as metavariables for sets of formulas. Model
theory is based on Kripke structures ([21]).

Definition 1. A Kripke Σ-structure is a triple K = (W (K),�, 〈Aw〉w∈W (K)) where
(W (K),�) is a non-empty partially ordered set (of worlds) and each Aw is a first-
order Σ-structure (with universe Aw, over which predicate and function symbols are
interpreted) such that for any pair of worlds v � w in W (K):
– Av ⊆ Aw,
– pAv ⊆ pAw , for all p ∈ PSΣ

– fAw(a1, . . . , an) = fAv(a1, . . . , an), for all a1, . . . , an ∈ Av and f ∈ FSΣ.

Mod(Σ) will denote the category whose objects are Kripke Σ-structures. The mor-
phisms in this category will be given in Definition 6.
We denote by tw the classical first-order interpretation tAw of t ∈ TΣ . Terms inter-
pretation behaves monotonically, that is, for any Kripke-structure K and any pair of
worlds v,w ∈ W (K) such that v � w: tw = tv ∈ Av ⊆ Aw. The satisfaction of sentences
in worlds is handled by the following forcing relation:

Definition 2. Let K ∈ Mod(Σ), the binary forcing relation ⊆ W (K) × sen(Σ) is
inductively defined as follows:

w 6 F

w p(t1, . . . , tn) iff (tw1 , . . . , t
w
n) ∈ pAw

w ¬ϕ iff w 6 ϕ
w ϕ ∧ ψ iff w ϕ and w ψ

w ϕ ∨ ψ iff w ϕ or w ψ
w ϕ → ψ iff if w ϕ then w ψ
w ϕ ⊃ ψ iff for all v ∈W (K) such that v � w: if v ϕ then v ψ
w ∃xϕ iff w ϕ(â/x) for some a ∈ Aw

1

w ∀xϕ iff w ϕ(â/x) for all a ∈ Aw.

We will write w,K ϕ (instead of w ϕ) whenever confusion on the structure K may
occur. This forcing relation gives a non-intuitionistic semantics to negation, classical
implication (→) and universal quantification; as a consequence, the forcing relation
on sentences does not behave monotonically w.r.t. the world ordering. We say that a
sentence is persistent whenever the forcing relation behaves monotonically for it.

Definition 3. A Σ-sentence ϕ is persistent iff for any K ∈ Mod(Σ) and w ∈ W (K):
if w ϕ then v ϕ for any v ∈W (K) such that v � w.

Persistent sentences play an important role in the FO⊃-axiomatization of logic pro-
gramming languages with embedded implications, since there is a subclass of persistent
sentences (that can be syntactically delimited) which includes the class of goals.

Proposition 4. Any atomic sentence is persistent. Any sentence ϕ ⊃ ψ is persistent.
If ϕ and ψ are persistent sentences, then ϕ ∨ ψ and ϕ ∧ ψ are persistent. If ϕ(â) is a
persistent sentence, then ∃xϕ is persistent.

Proof. For atoms the property is a trivial consequence of the Kripke structure defini-
tion. For intuitionistic implication it is also trivial from forcing relation definition. The
other two cases are easily proved, by induction, using the forcing relation definition for
∨,∧ and ∃.

The satisfaction relation |=Σ⊆ Mod(Σ) × sen(Σ) requires the sentence to be forced
(only) in the minimal worlds of the structure. This satisfaction relation induces the
logical consequence relation, denoted by the same symbol |=Σ.

Definition 5. Let K ∈ Mod(Σ) and Γ ∪ {ϕ} ⊆ sen(Σ). We say that
(a) A world w ∈W (K) is minimal iff there does not exist v ∈W (K) such that v � w

and v 6= w.
(b) K |=Σ ϕ (K satisfies ϕ) iff w ϕ for each minimal world w ∈W (K).
(c) Γ |=Σ ϕ (ϕ is logical consequence of Γ) iff K |=Σ Γ ⇒ K |=Σ ϕ, for each

K ∈ Mod(Σ).

Morphisms in Mod(Σ) relate only minimal worlds, with the idea of preserving the
satisfaction relation for ground atoms, in the following way:

Definition 6. For i = 1, 2, let Ki = (W (Ki),�Ki , 〈Ai
w〉w∈W (Ki)) ∈ Mod(Σ) and let

W (Ki)
min be the set of minimal worlds in W (Ki). A morphism H : K1 → K2 is given

by a mapping σH :W (K2)
min → W (K1)

min together with a collection of first-order
Σ-homomorphisms 〈Hw : A1

σH (w) → A2
w〉w∈W (K2)

min . If the mapping σH is unique
(for instance when K1 has only one minimal world) then we will identify H directly
with its collection of first-order Σ-homomorphisms.

1 The constant symbol â stands for the syntactic denotation of a (see e.g.[21]).

Remark 7. We recall that first-order Σ-homomorphisms are mappings that preserve
the operations and relations which (respectively) interpret function and predicate sym-
bols. In particular they preserve ground atoms.

Actually, the above-defined 4-tuple FO⊃ = (Sign, sen,Mod, |=) forms an institution.
The satisfaction relation is preserved: for each signature morphism H : Σ → Σ′,
each K ′ ∈ Mod(Σ′) and each ϕ ∈ sen(Σ), it is the case that Mod(H)(K ′) |=Σ ϕ iff
K ′ |=Σ′ sen(H)(ϕ), where sen(H) : sen(Σ) → sen(Σ′) is the translation of sentences
induced by H and where Mod(H) : Mod(Σ′) → Mod(Σ) is the forgetful functor as-
sociated to H. This functor applies each Σ′-structure K ′ into a Σ-structure K with
the same ordered set of worlds and it associates each first-order structure A′

w into its
forgetful first-order structure VH(A′

w).

Structural Rules

(Init) ∆ B A if A is atomic and A ∈ ∆ (FL) ∆;Γ, F ;∆′ B χ

(Cut)
∆;Γ B ϕ ∆;Γ,ϕ;∆′ B χ

∆;Γ ;∆′ B χ
(RF) ∆;Γ,ϕ,¬ϕ;∆′ B F

Connective Rules

(¬L)
∆;Γ ;¬χ B ϕ
∆;Γ,¬ϕ B χ (R¬)

∆;Γ, ϕ B F

∆; Γ B ¬ϕ

(∨L)
∆;Γ,ϕ;∆′ B χ ∆;Γ, ψ;∆′ B χ

∆; Γ,ϕ ∨ ψ;∆′ B χ
(R∨)

∆ B ϕ
∆ B ϕ ∨ ψ

∆ B ψ
∆ B ϕ ∨ ψ

(∧L)
∆;Γ,ϕ,ψ;∆′ B χ
∆;Γ,ϕ ∧ ψ;∆′ B χ

(R∧)
∆ B ϕ ∆ B ψ
∆ B ϕ ∧ ψ

(→ L)
∆;Γ B ϕ ∆;Γ, ψ;∆′ B χ

∆;Γ, ϕ→ ψ;∆′ B χ
(R →)

∆;Γ, ϕ B ψ
∆;Γ B ϕ→ ψ

(⊃ L)
∆;Γ ;∆′;Γ ′ B ϕ ∆;Γ ;∆′;Γ ′, ψ;∆′′ B χ

∆;Γ, ϕ ⊃ ψ;∆′;Γ ′;∆′′ B χ
(R ⊃)

∆; {ϕ} B ψ
∆ B ϕ ⊃ ψ

Quantifier Rules

(∃L)
∆;Γ, ϕ(c/x);∆′ B χ
∆;Γ, ∃xϕ;∆′ B χ

(R∃)
∆ B ϕ(t/x)
∆ B ∃xϕ

(∀L)
∆;Γ, ϕ(t/x);∆′ B χ
∆;Γ, ∀xϕ;∆′ B χ

(R∀)
∆ B ϕ(c/x)
∆ B ∀xϕ

Fig. 1. A sound and complete sequent calculus for FO⊃.

We will complete the definition of FO⊃ logic by giving a derivability relation `Σ⊆
P(sen(Σ)) × sen(Σ) in terms of sequent calculus proofs. The original Gentzen’s notion
considers sequents Γ B Φ whose antecedentΓ and consequentΦ are both finite (possibly
empty) sequences of formulas. In FO⊃ logic, to deal with classical and intuitionistic
implications inside the same logic, it is essential to introduce extra structure in sequent
antecedents. That is, to achieve soundness and completeness for FO⊃ logic, we consider
sequents consisting of pairs ∆ B ϕ where the antecedent ∆ is a (finite) sequence of
(finite) sets of formulas, and the consequent ϕ is (like in intuitionistic logic) a single
formula. Uppercase Greek letters ∆, ∆′, ∆′′, . . . will be used as metavariables for
sequences of sets of formulas. In order to simplify sequent notation: the semicolon sign
(;) will represent the infix operation for concatenation of sequences, Γ ∪ {ϕ} will be
abbreviated by Γ, ϕ; and a set Γ will be identified with the sequence consisting of this

unique set. On these bases, we present a sound and complete sequent calculus for the
logic FO⊃ in Figure 1 where (in quantifier rules) c stands for a new fresh constant
symbol and t stands for a closed term.
Notice that every rule in the calculus of Fig.1 is a natural generalization (to sequences of
sets in the antecedent) of some classical first-order sequent rule. Moreover, by viewing
the antecedent as a single set of formulas, the rules for both implication connectives
would coincide. It is also easy to see that (R ⊃) is the unique rule creating a new set
in the antecedent.

Definition 8. For any (possibly infinite) set Γ ∪ {ϕ} ⊆ sen(Σ) we say that Γ `Σ ϕ
iff for some finite Γ ′ ⊆ Γ there exists a proof of the sequent Γ ′ B ϕ using the calculus
in Figure 1.

In general, a proof for the sequent ∆ B ϕ is a finite tree constructed using inference
rules of the calculus, such that the root is the sequent ∆ B ϕ and whose leaves are
labeled with initial sequents (in our case, these are (Init), (FL), (RF)). In particular,
the antecedent ∆ may be a unitary sequence of one finite set Γ . We recall that `Σ

is the relation induced (by the calculus in Fig.1) on the set P(sen(Σ)) × sen(Σ). It is
worthwhile noting that this relation satisfies reflexivity, monotonicity and transitivity,
although any rule in the calculus (Fig.1) does not directly correspond with them.
Besides, the `-translation property is also satisfied. However, the extension to a relation
between sequences of sets of formulas and formulas lacks to satisfy the former three
properties.

4 The Logic Programming Language Horn⊃

In this section we give the strong FO⊃ axiomatization for the static scope program-
ming language introduced in [8]. Its syntax is an extension of the Horn clause language,
by adding the intuitionistic implication ⊃ in goals. We define this language as the fol-
lowing 4-tuple Horn⊃ = (FO⊃,Sign′, prog, goal), where Sign′ is the class of finite
signatures in Sign and, for each Σ in Sign′, prog(Σ) is the set of all Σ-programs, which
are finite sets of closed D-clauses (called Σ-clauses), and goal(Σ) is the set of all closed
G-clauses (called Σ-goals). D- and G-clauses are recursively defined as follows (where
A stands for an atomic formula):

G := A | G1 ∧G2 | D ⊃ G | ∃xG D := A | G→ A | D1 ∧D2 | ∀xD

Following [8], we use a simple definition of the operational semantics ofHorn⊃, given by
a nondeterministic set of rules which define when a Σ-goal G is operationally derivable
from a program sequence ∆= P0;...;Pn, in symbols ∆ `s G. Moreover, to deal with
clauses in P ∈ prog(Σ) of the form D1 ∧ D2 and ∀xD, we utilize the closure (w.r.t.
conjunction and instantiation) set [P] of all clauses in P . This abstract definition of
the operational semantics is more suitable to be compared with the mathematical
semantics of Horn⊃.

Definition 9. [P] is defined as the set ∪{[D] | D ∈ P} where [D] is recursively
defined as follows: [A] = {A}, [G → A] = {G → A}, [D1 ∧ D2] = [D1] ∪ [D2],
[∀xD] = ∪{[D(t/x)] | t ∈ TΣ and t is closed}.

(1) ∆ `s A if A is atomic and A ∈ [∆]

(2)
P0; . . . ;Pi `s G

P0; . . . ;Pi; . . . ;Pn `s A
if G→ A ∈ [Pi] and 0 ≤ i ≤ n

(3) ∆ `s G1 ∆ `s G2
∆ `s G1 ∧G2

(4)
∆ `s G(t/x)
∆ `s ∃xG (5)

∆; {D} `s G
∆ `s D ⊃ G

Fig. 2. Operational Semantics for Horn⊃.

Notice that w P ⇔ w [P] and also that all clauses in [P] match the pattern G → A
(with G possibly empty for handling the case A). We extend the notation [P] to [∆] by
[P0;...;Pn] =

⋃n
i=0[Pi]. Now, we define ∆ `s G by means of the rules given in Figure 2.

In order to illustrate the operational behaviour of this language we give the Example
10.

Example 10. Let the program with two clauses P = {((b → c) ⊃ c) → a, b} and let
the goal G1 = a. A proof of P `s G1 is given by the following steps (applying rules in
Figure 2):

P `s a by Rule (2)
if P `s (b → c) ⊃ c by Rule (5)
if P ;{b → c} `s c by Rule (2)
if P ;{b → c} `s b by Rule (1) since b ∈ P ; {b → c}

However, let now the program with a unique clause Q = {((b → c) ⊃ c) → a} and
let the goal G2 = b ⊃ a. The only way to obtain a proof of Q `s G2 would make the
following steps:

Q `s b ⊃ a by Rule (5)
if Q; {b} `s a by Rule (2)
if Q `s (b → c) ⊃ c by Rule (5)
if Q; {b → c} `s c by Rule (2)
if Q; {b → c} `s b

Since the last sequent can not be proved then Q 6`s G2.

This example shows the ”static scope rule” meaning: the set of clauses which can be
used to solve a goal depends on the program block’s structure. Whereas G1 = a can
be proved from the program P because b was defined in P , in the case of G2 = b ⊃ a
and the program Q the ”external” definition of b is not permitted for proving the body
of the clause in Q. This is a mayor difference with the ”dynamic scope rule” used in [16].

In the Appendix A we prove that the proof-subcalculus `s is sound with respect to the
FO⊃-calculus when restricted to the programming language Horn⊃.

In the rest of this section we show that Horn⊃ satisfies all the desirable properties
to be a strong FO⊃ logic programming language. In Subsection 4.1 we present the
mathematical (or model) semantics and we prove the goal completeness property. The
operational semantics is studied in Subsection 4.2, showing the equivalence between
mathematical and operational semantics. Also completeness of `s w.r.t. the FO⊃-
calculus will be proved there as a consequence of previous results. Along the whole
section |= (respectively `) stands for the satisfaction and the logical consequence rela-
tions |=Σ (respectively the derivability relation `Σ) of FO⊃.

4.1 Mathematical Semantics and Goal Completeness

In this subsection we first define the subcategory FMod(Σ) of Mod(Σ). Its objects are
Kripke structures with Herbrand interpretations associated to worlds, with a unique
minimal world and closed w.r.t. superset. Then, we show that to deal with Horn⊃

programs (as particular FO⊃-theories) the category Mod(P) of Kripke Σ-structures
satisfying P can be restricted to the subcategory FMod(P). Notice that, for Horn
clauses, the Herbrand models constitute the corresponding subcategory of the general
first-order structures. We will prove the existence of a model in FMod(P) which is
initial in the whole category Mod(P). Again, one can observe the parallelism with the
least Herbrand model of Horn clauses. Finally, we will prove the goal completeness
property w.r.t. this initial model.

Given a signature Σ, UΣ and BΣ will denote the Herbrand universe and the Herbrand
base, respectively. Consider the complete lattice P(BΣ) of all Herbrand (first-order) Σ-
interpretations over the universe UΣ. Any subset K of P(BΣ), ordered by set inclusion,
can be viewed as a Kripke Σ-structure. On these structures, I,K ϕ (or simply I ϕ)
will denote w,K ϕ for the world w whose first-order associated Σ-structure is I.

Definition 11. FMod(Σ) is the full subcategory of Mod(Σ) whose objects are the
Kripke Σ-structures {Fil(I) | I⊆BΣ} where Fil(I) denotes the filter {J ⊆ BΣ | J ⊇
I}. (FMod(Σ),v) is the partial order given by Fil(I1) v Fil(I2) iff I1 ⊆ I2. The
morphisms in FMod(Σ) can be seen as these inclusions, that is Fil(I1) v Fil(I2) is the
morphism H ∈ Mod(Σ) defined by σH(I2) = I1 and the singleton {⊆: I1 → I2}.

Remark 12. Note that the morphisms H : K1 → K2 with K1 ∈ FMod(Σ) are unique
since: (i) K1 has only one minimal world and (ii) if A and B are first-order Σ-structures
and A is finitely generated then the Σ-homomorphism A → B is unique.

Hence, for formulas ϕ ⊃ ψ, the forcing relation restricted to the class FMod(Σ) satisfies:
I ϕ ⊃ ψ iff for all J ⊆ BΣ such that I ⊆ J , if J ϕ then J ψ.

Proposition 13. Let I1,I2 be two Σ-interpretations, {Ij}j∈J a (possibly infinite) set
of Σ-interpretations, D a Σ-clause and G a Σ-goal.

(a) If I1 G then for all I2 such that I1 ⊆ I2, I2 G

(b) If Ij D for each j ∈ J then ∩jIj D

Proof. (a) is a direct consequence of persistence of goals (see Proposition 4). The proof
of (b) can be made by structural induction on D: For D = A it is trivial, since I A
iff A ∈ I. Cases D = D1 ∧D2 and D = ∀xD1 can be easily proved by applying the
induction hypothesis. For D = G → A, the case ∩jIj A is trivial. Now suppose that
∩jIj 6 A, then there exists j ∈ J such that Ij 6 A and Ij 6 G. Hence ∩jIj 6 G holds
by (a), and therefore ∩jIj G → A.

Proposition 14. (FMod(Σ),v) is a complete lattice with bottom Fil(∅) = P(BΣ).

Proof. It is enough to define the operations t and u for any (possibly infinite) collection
{Fil(Ii)}i as follows: tiFil(Ii) = Fil(∪iIi) and uiFil(Ii) = Fil(∩iIi).

The notion of satisfaction between elements in FMod(Σ) and Σ-clauses (respectively
-goals), borrowed from the underlying logic, is given by Fil(I) |= D iff I D (respec-
tively for G).
The class of models of a Σ-program P, denoted FMod(P), is defined as FMod(P) =
{K∈FMod(Σ) | K|=P} or equivalently as {Fil(I) | I⊆BΣ, I P}. FMod(P) is a full
subcategory of FMod(Σ).

Proposition 15. There exists a least element MP in FMod(P) with respect to v.

Proof. FMod(P) is not empty since Fil(BΣ) = {BΣ} satisfies P . As a consequence
of Proposition 13(b), the intersection (u) of elements in FMod(P) is an element of
FMod(P). Then MP = u{K∈FMod(Σ) | K|=P} belongs to FMod(P) and it is the
least element w.r.t. v. Moreover, MP = Fil(IP) with IP = ∩{I ⊆ BΣ | I P}.

Then,MP is the initial object in the category FMod(P). Now, we will prove the initiality
of MP in the (more general) category Mod(P). Then, following [15], the denotation
function P 7→ MP is called the mathematical semantics of Horn⊃.

Definition 16. A Σ-program P is satisfiable (respectively F-satisfiable) iff there exists
K ∈ Mod(Σ) (respectively K ∈ FMod(Σ)) such that K |= P .

Lemma 17. For each K ∈ Mod(Σ) there exists IK ∈ P(BΣ) (therefore Fil(IK) ∈
FMod(Σ)) such that, for every Σ-clause D and every Σ-goal G:
(a) If K |= D then Fil(IK) |=D
(b) If Fil(IK) |= G then K |= G
Moreover, there exists a unique morphism HK:Fil(IK) → K.

Proof. Let K = (W (K),�, 〈Aw〉w∈W (K)). We consider, for each w ∈ W (K), the H-
interpretation Iw = {p(t1, ..., tn) ∈ BΣ | w,K p(t1, ..., tn)} and let IK = ∩{Iw | w ∈
W (K)}. That is, IK = {p(t1, ..., tn) ∈ BΣ | K |= p(t1, ..., tn)}. Then, for each Σ-clause
D and each Σ-goal G:

(i) If w,K D then Iw D
(ii) If Iw G then w,K G

The proof of above facts (i) and (ii) is made by simultaneous induction on D and G.
(i) and (ii) for an atom A: w,K A iff A ∈ Iw iff Iw A. (i) for D1 ∧D2, ∀xD and
(ii) for G1 ∧G2, ∃xG, can be easily proved by applying the induction hypothesis. To
prove (i) for G→ A, let us suppose that w,K G → A, then w,K A or w,K 6 G.
By the induction hypothesis, Iw A or Iw 6 G holds. Therefore Iw G → A. To
prove (ii) for D ⊃ G, suppose that w,K 6 D ⊃ G, then there exists v ∈ W (K) such
that w � v, v,K D and v,K 6 G. By induction, Iv D and Iv 6 G hold. Then
Iw 6 D ⊃ G, since w � v implies Iw ⊆ Iv.
Now, to prove (a), let us suppose that K |= D, then for all minimal w ∈ W (K):
w,K D. Hence, by (i), for all minimal w ∈ W (K): Iw D. Then, by Proposition
13(b), IK D holds. Therefore Fil(IK) |= D. The proof for (b) is symmetric, suppose
that Fil(IK) |=G, this means that IK G. Then, by Proposition 13(a), Iw G holds
for all minimal w ∈ W (K). Therefore by (ii), w,K G for all minimal w ∈ W (K).
Hence K |=G.
The unique morphism HK:Fil(IK) → K is given by the collection of unique first-order
Σ-homomorphisms {Hw : IK → Aw | w minimal in W (K)}.

Theorem 18. MP is initial in the category Mod(P).

Proof. Given K ∈ Mod(P), the unique morphism from MP into K is H = HK◦ v
obtained by composing the two morphisms v: MP → Fil(IK) and HK : Fil(IK) → K
of the previous lemma.

Corollary 19. A Σ-program P is satisfiable iff it is F-satisfiable.

Now, we will show that MP is typical in Mod(P) (and also in FMod(P)) w.r.t. goal
satisfaction.

Proposition 20. For each Σ-program P and each Σ-goal G: P |= G iff Fil(I) |= G
for all Fil(I) ∈ FMod(P).

Proof. The only-if part is trivial. For the if part let K ∈ Mod(P), that means K |= P .
Then by Lemma 17 Fil(IK) |= P . Then Fil(IK) |= G and, again by Lemma 17,K |= G.

Theorem 21. For each Σ-program P and each Σ-goal G: P |= G iff MP |=G.

Proof. The only-if part is trivial. Conversely,MP |= G is equivalent to ∩{I ⊆ B(Σ) | I
P} G. Therefore I G for all I ⊆ B(Σ) such that I P , hence Fil(I) |= G for all
Fil(I) ∈ FMod(P). Then by Proposition 20, P |=G.

From this result and the fact of that FO⊃ is a complete logic, the goal completeness
property is obtained:

Theorem 22. For each Σ-program P and each Σ-goal G, P ` G iff MP |= G.

Remark 23. It is worthwhile noting that: Fil(I) |= G (or I G) iff G is logical
consequence of I. This can be proved by Proposition 20, by seeing I as a (possibly
infinite) program of ground atoms, and by persistence of G.

4.2 Operational Semantics

In this subsection we first define, for each Σ-program P , an immediate consequence
operator TP (on FMod(Σ)). The monotonicity and continuity of TP in the lattice
(FMod(Σ),v) allow us to use the fixpoint semantics as a bridge between the mathe-
matical and the operational semantics. First we prove the equivalence between math-
ematical and fixpoint semantics and then between fixpoint and operational semantics
(given by `s). Specifically, given a Σ-program P , we will use the fixpoint character-
ization of the least model MP of P in terms of TP , to prove that for every Σ-goal
G, MP |= G if and only if P `s G. We will also show that the proof-subcalculus
`s is sound and complete with respect to the FO⊃ derivability relation, restricted to
Horn⊃-programs and -goals.

Definition 24. The immediate consequence operator TP : FMod(Σ) → FMod(Σ) is
given by TP (Fil(I)) = Fil({A | there exists G → A ∈ [P] such that Fil(I) |= G}).

The operator TP has been defined in terms of the satisfaction relation of FO⊃. That is,
given a filter (generated by a set of ground atoms), it generates the head of the clauses
whose bodies are satisfied by this filter. We want to remark that TP is indeed a FO⊃

logical consequence operator because we can replace (see Remark 23) the satisfaction of
G in the model Fil(I) (or equivalently the forcing relation of G in the minimal world I)
by the logical consequence of G from I. Unlikely for Horn clauses, logical consequence
can not be replaced by set membership since goals are not just conjunction of atoms.
It is well-known that the least fixpoint and the least pre-fixpoint of a continuous op-
erator in a complete lattice is Tω(⊥) where ⊥ is the bottom in the lattice. In the
Appendix B we prove that the above-defined operator TP is monotone and continuous
in the complete lattice (FMod(Σ),v) and also that the models of P are the pre-fixpoints
of TP . Therefore, the least fixpoint of TP is Tw

P (P(BΣ)) which will be simply denoted
Tw

P . Then the correspondence between mathematical and fixpoint semantics is a direct
consequence of these results.

Theorem 25. For all Σ-program P , Tw
P = MP .

Now we will prove the equivalence between mathematical, fixpoint and operational
semantics. We need the following lemma to complete such equivalences. This result
was proved in [8] and our proof is an adaptation (for our operator TP) of the proof
given there. For that reason we will give a sketch of this proof detailing only the main
differences.

Lemma 26. Given a Σ-program P and a Σ-goal G, if Tw
P |= G then P `s G.

Sketch of the proof. Let In denote the minimal world in Tn
P (P(BΣ)), for each n ≥ 0.

Since Tw
P = tn<wT

n
P (P(BΣ)), the minimal world in Tw

P is ∪n<wIn. Then by continuity
of TP it suffices to prove that In G =⇒ P `s G holds for each n ≥ 0. The proof
is made by induction on the highest number m of (⊃)-nesting levels in P and G. If
m = 0 (there are no occurrences of ⊃ either in P or in G), then the proof can be done
by double induction on n and G. The induction hypothesis holds for at most m − 1
(⊃)-nesting levels in P and G. For the case m > 0, let us develop in detail only the
subcase n > 0 and G = D1 ⊃ G1. Let D′

1 be the program In ∪D1 (seen the atoms
in In as clauses with empty bodies) and let ID′

1
be the minimal world in Tω

D′
1
. Then

ID′
1

 D1 and In ⊆ ID′
1
. Therefore ID′

1
 G1. By induction on D′

1 and G1 (note that

the highest number of (⊃)-nesting levels in D′
1 and G1 is less than m), In ∪D1 `s G1

holds. Finally, some `s-properties easy to prove (see [8] for details) are used to obtain
the following implications: In ∪D1 `s G1 =⇒ In;D1 `s G1 =⇒ In `s (D1 ⊃ G1) =⇒
{A | P `s A} `s (D1 ⊃ G1) =⇒ P `s (D1 ⊃ G1).

The following Theorem summarizes all the obtained results. In particular, the equiva-
lence between mathematical and operational semantics is given by (c) ⇔ (e).

Theorem 27. For each Σ-program P and each Σ-goal G, the following sentences are
equivalent:
(a) P |= G
(b) P ` G
(c) MP |= G
(d) Tw

P |= G
(e) P `s G

Proof. (a) ⇔ (b) by the soundness and completeness of FO⊃

(b) ⇔ (c) by the goal completeness property (Th. 22)
(c) ⇔ (d) by the equivalence between mathematical and fixpoint semantics (Th. 25)
(d) ⇒ (e) by the Lemma 26
(e) ⇒ (b) by the soundness of `s w.r.t. ` (Th. 30 in Appendix A)

Corollary 28. The proof-subcalculus `s is complete with respect to the FO⊃-calculus
when restricted to the programming language Horn⊃.

We have used an abstract formulation of the operational semantics, given by the proof-
subcalculus `s. The effectiveness of such subcalculus means the capability for imple-
menting it. This task is out of the scope of this paper, however we would like to mention
here some works giving the main ideas towards such implementation. In [8] a less ab-
stract operational semantics is given by using notions of substitution, unification and
variable renaming for the notation [P]. Whereas this semantics is equivalent to the
given one, it provides an abstract interpreter for the language Horn⊃. In [1] are also
shown, by means of examples, some of the most relevant points taken into account to
make a concrete implementation.

5 Conclusions and Related Work

We have presented a new characterization for the language Horn⊃ of Horn clauses
extended with static embedded implication (introduced in [8]). Our characterization
is based on the methodology proposed in [14, 15] for define logic programming lan-
guages. Hence, we have enriched the underlying logic (FO) of the original language
(Horn clauses) with intuitionistic implication, in a very natural way, obtaining the
complete logic FO⊃. Then we have given a FO⊃-axiomatization of Horn⊃, showing
that it satisfies all the desirable mathematical and computational properties. The fact
of fixing the underlying logic FO⊃ allows us to deal with Horn⊃-programs as special
FO⊃-theories. Therefore, metalogical properties of programs and goals can be studied
in a clean and sound way relative to fixed notions (as model, satisfaction, morphism,
derivability, etc.) in the underlying framework. Following this methodology, we have
obtained a subclass (FMod(Σ)) of logical structures powerful enough for dealing with
Horn⊃-programs, like the subclass of Herbrand interpretations is for Horn clauses in
the first-order case. Indeed, we show that a program (as a theory) has a (general) model
iff it has a model in the subclass FMod(Σ). We believe that this is an important result
about the model-theoretic semantics of Horn⊃. Actually, the equivalence between the
two model-theoretic semantics presented in [8] is a direct consequence of the definition
of FMod(Σ). Moreover, FMod(Σ) is crucial for both: the initial and the fixpoint seman-
tics. On one hand, for any program P , FMod(P) has a least element MP which can be
obtained by intersection of all models of P and also as the ω-iteration of a continuous
immediate consequence operator TP defined on FMod(Σ). Our fixpoint semantics is
essentially equivalent to the fixpoint semantics of [8], although it is obtained in a very
different way. As we pointed out in Subsection 4.2, the operator TP is indeed based
on the logical consequence of the underlying logic (or equivalently on its satisfaction
relation). However, the immediate consequence operator of [8] is based on the notion
of environment and it requires an ad-hoc satisfaction relation between Herbrand in-
terpretations and goals. Moreover, we prove that the operational semantics of Horn⊃

is equivalent to the underlying logical derivability relation. In fact, this derivability

relation is induced by a calculus (Figure 1) designed as an extension of the operational
semantics of Horn⊃. On the other hand, we have showed that Horn⊃-programs are
FO⊃-theories with initial semantics: MP (or equivalently Tω

P) is the initial object in
the class Mod(P) of all (general) models of the program P . Hence, our characterization
of Horn⊃, firstly, places some well-known results into the logical framework given by
FO⊃ and, secondly, it extends these results to a strong axiomatization providing a
well-established model-theoretic semantics and an initial semantics.
We believe that further extensions of this logic programming language, for example with
some kind of negation, could be better developed using the logical foundation provided
by this strong FO⊃-axiomatization. With respect to this matter, there are several
papers dealing with dynamic intuitionistic implication and some kind of negation, e.g.
[3, 5, 9, 10, 12, 13]. We plan to investigate also a possible FO⊃-axiomatization of the
dynamic scope language of [16] in order to place both languages (from [8] and [16])
into the common underlying logic FO⊃. FO⊃ and intuitionistic logic are essentially
equivalent to deal with the latter language. We mean, although these two logics differ
in the universal quantifier interpretation, both coincide in clause interpretation over
structures with constant universe, and it is well-known (cf. [2, 7]) that these structures
are powerful enough. In [16] it is proved that the operational semantics of its language
corresponds to intuitionistic derivability. In [2] it is shown that the canonical model (of
a program), obtained in [16] by a fixpoint construction, is indeed an intuitionistic model
of the program. They also give an intuitionistic (Kripke’s based) model-theory for this
language. Apart from the difference in the considered programming language, there
are three most remarkable differences with our Kripke’s based approach: their logical
structures are generated by terms, our notions of satisfaction and logical consequence
are different, and the worlds of their canonical model are indexed by programs.
A different approach to give logical foundation to this kind of logic programming lan-
guages (or in general to Horn clause extensions) is the transformational one which
consists in translating programs to the language of some well-known logic. In [7] the
language defined in [8] is translated to S4-modal logic. They also translate the language
defined in [16] in order to set both languages into a common logical framework.
The transformational approach is also taken in [19, 20] where logic programs with em-
bedded implications are translated to Horn clause programs. In [20] the definition of a
predicate in a new module overrides its definition in previous modules, therefore nested
definitions are independent of definitions in outer modules. The semantics of such lan-
guages can be defined by a direct mapping from programs in the extended language
to Horn clause programs. Then, Horn clause theory can be used to give logical and
computational foundation to the extended language. However, as it is pointed in [2,
20], when predicate extension is allowed, the translation of each predicate definition
(inside a module) raises different predicate definitions, each one depending on the col-
lection of modules that have to be used. In dynamic scoped languages this collection
can only be determined in run-time, forcing to add new arguments to the translated
predicates to represent the modules currently in use. This makes the transformational
approach inadequate for both semantics and implementation issues. For static scoped
languages, such as the language studied in this paper, this approach could be still use-
ful for implementation issues, since there is a lexical way to determine such collection
of modules (for each goal). However, the translation would not be so direct because of
the multiple transformation of each original predicate. Therefore, in our opinion, for
semantical foundation it is more adequate the model-theoretic approach started in [8],
whose results we have enriched by setting a well-established logical framework.

Acknowledgment: The authors are greatly indebted to Fernando Orejas for fruitful
discussions and suggestions.

References

1. Arruabarrena, R. and Navarro, M. On Extended Logic Languages Supporting Pro-
gram Structuring, In: Proc. of APPIA-GULP-PRODE’96, 191-203, (1996).

2. Bugliesi, M., Lamma, E. and Mello, P., Modularity in Logic Programming, Journal
of Logic Programming, (19-20): 443-502, (1994).

3. Bonner, A. J., and McCarty, L. T., Adding Negation-as-Failure to Intuitionistic
Logic Programming, In: Proc. of the North American Conf. on Logic Programming,
MIT Press, 681-703, (1990).

4. Bonner, A. J., McCarty, L. T., and Vadaparty, K., Expresing Database Queries
with Intuitionistic Logic. In: Proc. of the North American Conf. on Logic Program-
ming, MIT Press, 831-850, (1989).

5. Gabbay, D. M., N-Prolog: An Extension of Prolog with Hypothetical Implications.
II. Logical Foundations and Negation as Failure, Journal of Logic Programming
2(4):251-283 (1985).

6. Gabbay, D. M. and Reyle, U., N-Prolog: An Extension of Prolog with Hypothetical
Implications. I., Journal of Logic Programming 1(4):319-355 (1984).

7. Giordano, L., and Martelli, A.; Structuring Logic Programs: A Modal Approach,
Journal of Logic Programming 21:59-94 (1994).

8. Giordano, L., Martelli, A., and Rossi, G., Extending Horn Clause Logic with Im-
plication Goals, Theoretical Computer Sscience, 95:43-74, (1992).

9. Giordano, L., and Olivetti, N.; Combining Negation as Failure and Embedded
Implications in Logic Programs, Journal of Logic Programming 36:91-147 (1998).

10. Harland., J. Succecs and Failure for Hereditary Harrop Formulae, Journal of Logic
Programming, 17:1-29, (1993).

11. Lucio, P. FO⊃: A Complete Extension of First-order Logic with Intuitionistic
Implication, Technical Research Report UPV-EHU/LSI/TR-6-98, URL address:
http://www.sc.ehu.es/paqui, Submitted to a journal for publication.

12. McCarty, L. T., Clausal Intuitionistic Logic I. Fixed-Point Semantics, Journal of
Logic Programming, 5:1-31, (1988).

13. McCarty, L. T., Clausal Intuitionistic Logic II. Tableau Proof Procedures, Journal
of Logic Programming, 5:93-132, (1988).

14. Meseguer, J., General Logics, In: Ebbinghaus H.-D. et al. (eds), Logic Collo-
quium’87, North-Holland, 275-329, (1989).

15. Meseguer, J., Multiparadigm Logic Programming, In: Proccedings of ALP’92,
L.N.C.S. 632. Springer-Verlag, 158-200, (1992).

16. Miller, D., A Logical Analysis of Modules in Logic Programming, In: Journal of
Logic Programming, 6:79-108, (1989).

17. Miller, D., Abstraction in Logic Programs. In: Odifreddi, P. (ed), Logic and Com-
puter Science, Academic Press, 329-359, (1990).

18. Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A., Uniform Proofs as a Foun-
dation for Logic Programming, Annals of Pure and App. Logic, 51:125-157, (1991).

19. Monteiro, L., Porto, A., Contextual Logic Programmming, In: Proc. 6th Interna-
tional Conf. on Logic Programming, 284-299, (1989).

20. Moscowitz, Y., and Shapiro, E., Lexical logic programs, In: Proc. 8th International
Conf. on Logic Programming, 349-363, (1991).

21. van Dalen, D., and Troelstra, Constructivism in Mathematics: An Introduction
Vol.1 and Vol.2, Elsevier Science, North-Holland, (1988).

A Appendix: Soundness of the proof-subcalculus

We prove here that the proof-subcalculus `s is sound with respect to the FO⊃-calculus
when restricted to the programming language Horn⊃. In the following, the rules in the
FO⊃-calculus and the rules in `s will be respectively called the logical and operational
rules.

Lemma 29. Let ∆ be a sequence of Σ-programs P0; ...;Pn (n ≥ 0) and G be a Σ-goal.
If ∆ `s G then ∆ ` G.

Proof. Soundness of `s w.r.t. ` would be obvious if each operational rule was a logical
rule, but there is a slight difference: the use of (∀L) and (∧L) logical rules is com-
pensated by the use of notation [∆] in operational rules (1) and (2). So that, each of
the operational rules (1) through (5) is derivable in the FO⊃-calculus in the following
way: Rule (1) is derivable using a number of steps of (∀L) and (∧L) and one step of
(Init). Rule (2) can be seen as a particular case of (→ L) when χ = ψ. For this reason
Rule (2) does not need a second premise which holds by (Init). Therefore, Rule (2) is
a combination of (∀L), (∧L), (→ L) and (Init). Rule (3) is (R∧), Rule (4) is (R∃) and
Rule (5) is (R ⊃).

Now, a proof of the sequent ∆ B G can be made by substituting the corresponding
step(s) in the FO⊃-calculus for each step in the proof of ∆ `s G.

As a particular case of this lemma, for ∆ being a single program P , the following result
is obtained:

Theorem 30. Given a Σ-program P and Σ-goal G, if P `s G then P ` G.

B Appendix: Fixpoint Semantics

In this part, we prove the results that are sufficient to establish that Tω
P is the least

fixpoint of the operator TP defined in Subsection 4.2 and that Tω
P is the least model of

P .

Proposition 31. TP is monotone.

Proof. Suppose that Fil(I1) v Fil(I2), that is I1 ⊆ I2. Then (by Proposition 13(a))
{A | G → A ∈ [P], I1 G} ⊆ {A | G → A ∈ [P], I2 G} holds. Therefore
TP (Fil(I1)) v TP (Fil(I2)).

In order to prove the continuity of TP , we first establish the following key lemma:

Lemma 32. For every chain I1 ⊆ I2 ⊆ ...⊆ Ij ⊆..., of Herbrand Σ-interpretations,
every Σ-clause D and every Σ-goal G,

(a) ∪jIj G =⇒ there exists j0 such that Ij0 G

(b) ∪jIj 6 D =⇒ there exists j0 such that Ij0 6 D

Proof. We proceed by simultaneous induction. For atoms (a) and (b) are trivial since
I A iff A ∈ I. (a) for G = ∃xG1 and (b) for D = D1 ∧D2, D = ∀xD1 can be easily
proved by the induction hypothesis.
To prove (a) for G = G1 ∧ G2 suppose that ∪jIj G1 ∧ G2. Then for some indices
j1,j2: Ij1 G1 and Ij2 G2. Hence Ij G1 ∧G2 holds for j = max(j1, j2).
Now, consider (b) for D = G1 → A1. If ∪jIj 6 D then ∪jIj G1 and A1 /∈ ∪jIj. By
induction, there exists j0 such that Ij0 G1 and A1 /∈ Ij0. Therefore Ij0 6 D.
In order to prove (a) for G = D1 ⊃ G1, we proceed by contradiction. Let us suppose
that for all index j: Ij 6 D1 ⊃ G1. Then, for each j, there exists I ′j such that Ij ⊆ I ′j,
I ′j D1 and I ′j 6 G1. Considering, for each j, the non-empty set of interpretations
Cj = {I | Ij ⊆ I, I D1, I 6 G1} and taking, for each j, the interpretation I ′j =
∩{I | I ∈ Cj}, the following facts are verified:

(i) Ij ⊆ I ′j, for all j
(ii) I ′j D1 and I ′j 6 G1, for all j
(iii) {I ′j}j form the chain I ′1 ⊆ I ′2 ⊆ ...⊆ I ′j ⊆...

By applying the induction hypothesis onD1,G1 and the chain {I ′j}j , we have ∪jI
′
j D1

and ∪jI
′
j 6 G1. Since ∪jIj ⊆ ∪jI

′
j, then ∪jIj 6 D1 ⊃ G1, in contradiction with the

hypothesis.

Theorem 33. Let Fil(I1) v Fil(I2) v ...v Fil(Ij) v... be a chain of elements in
FMod(Σ). Then TP (tjFil(Ij)) = tjTP (Fil(Ij)).

Proof. tjTP (Fil(Ij)) v TP (tjFil(Ij)) holds by monotonicity. The reverse inclusion
is equivalent to prove that {A | G → A ∈ [P], ∪jIj G} ⊆ ∪j{A | G → A ∈ [P],
Ij G}. Let A ∈ {A | G → A ∈ [P], ∪jIj G}. Then, for some G: G → A ∈ [P]
and ∪jIj G. Since I1 ⊆ I2 ⊆ ...⊆ Ij ⊆..., there exists an index j0 such that Ij0 G.
Then A ∈ {A | G→ A ∈ [P], Ij0 G} ⊆ ∪j{A | G → A ∈ [P], Ij G}.

The following lemma states that the models of P are the pre-fixpoints of TP .

Lemma 34. Let P be a Σ-program and Fil(I) ∈ FMod(Σ). Then Fil(I) ∈ FMod(P)
iff TP (Fil(I)) v Fil(I).

Proof. Let Fil(I) ∈ FMod(P) and let us show that {A | G → A ∈ [P], I G} ⊆ I. If
A ∈ {A | G → A ∈ [P], I G}, then there exists some G such that G → A ∈ [P] and
I G. Therefore A ∈ I, since I [P]. Conversely, let {A | G → A ∈ [P], I G} ⊆ I.
We have to show that Fil(I) |= G → A, for each G → A ∈ [P]. Suppose Fil(I) |= G.
Then A ∈ {A | G→ A ∈ [P], I G} ⊆ I. Hence Fil(I) |= A.

