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Abstract. We define a sound and complete logic, called FO⊃, which extends classical
first-order predicate logic with intuitionistic implication.
As expected, to allow the interpretation of intuitionistic implication, the semantics of
FO⊃ is based on structures over a partially ordered set of worlds. In these structures,
classical quantifiers and connectives (in particular, implication) are interpreted within
one (involved) world. Consequently, the forcing relation between worlds and formulas,
becomes non-monotonic with respect to the ordering on worlds. We study the effect
of this lack of monotonicity in order to define the satisfaction relation and the logical
consequence relation which it induces.
With regard to proof systems for FO⊃, we follow Gentzen’s approach of sequent cal-
culi (cf. [8]). However, to deal with the two different implications simultaneously, the
sequent notion needs to be more structured than the traditional one. Specifically, in our
approach, the antecedent is structured as a sequence of sets of formulas. We study how
inference rules preserve soundness, defining a structured notion of logical consequence.
Then, we give some general sufficient conditions for the completeness of this kind of
sequent calculi and also provide a sound calculus which satisfies these conditions. By
means of these two steps, the completeness of FO⊃ is proved in full detail. The proof
follows Hintikka’s set approach (cf. [11]), however, we define a more general procedure,
called back-saturation, to saturate a set with respect to a sequence of sets.

1 Introduction

Combining different logical systems has become very common in several areas of com-
puter science. In this paper, we introduce a logical system, called FO⊃, obtained by
using a combination of classical and intuitionistic logic. Our original motivation for
defining this logic was to provide logical foundations for logic programming (LP) lan-
guages which combine classical (→) and intuitionistic (⊃) implication. A well-founded
LP language should be entirely supported by an underlying logic. This means that
the declarative semantics of the LP language is based on the logical model-theory, and
at the same time, the operational semantics is supported by the logical proof-theory;
cf. [15] for technical details. Sequent calculi provide a very natural and direct way to
formalise the operational semantics of LP languages. It is well known that standard
LP (Horn clauses programming) is well-founded in classical first-order predicate logic.
However, as mentioned in [10]:

“If the two implications are considered altogether, the resulting semantics dif-
fers from that of both intuitionistic and classical logic.”
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Then, for the extension of LP languages with intuitionistic implication, our aim is to
obtain complete sequent calculi for a sound extension of first-order predicate logic with
intuitionistic implication. We want to make it clear that the concern of this paper is the
logic FO⊃ itself, but not its application to LP. In fact, the latter is the main subject
of [1].
The problem in combining Hilbert axiomatizations of classical and intuitionistic logic
is shown in [2]:

“It cannot be attained by simply extending the union of both axiomatizations
by so called interaction axioms”

In fact, whenever both kinds of implicative connectives are mixed, some equivalences
and axiom schemas are lost, and they collapse into classical logic. What they do to
achieve a Hilbert-style axiomatization (and also a tableaux method) is to restrict some
axiom schemas (and tableaux rules) to a special kind of formulas called persistent. The
same restriction is used in the natural deduction system introduced in [12] which also
combines classical and intuitionistic logic. Our proposal enables greater flexibility for
developing deductions, by introducing structure in the sequents, since this structure
makes unnecessary the above persistence-restriction. We will return to this matter in
the last section, after FO⊃ has been presented.

FO⊃ syntax is first-order without any restriction, hence, we deal with variables, func-
tions, predicates, connectives and quantifiers. For semantical differentiation of both
implications, it suffices to consider standard Kripke structures, over a partially ordered
set of worlds. Worlds have an associated classical first-order structure for the seman-
tical interpretation of terms over its universe ([20, 21]). An intuitionistic implication
ϕ ⊃ ψ is satisfied in a world w if every world greater than w satisfying ϕ also satisfies ψ.
By contrast, classical connectives and quantifiers are interpreted within one (involved)
world. In particular, a world w satisfies ϕ → ψ if either w does not satisfy ϕ or sat-
isfies ψ. As a consequence, the forcing relation between worlds and formulas becomes
non-monotonic with respect to the ordering on worlds. This lack of monotonicity is
taken into account to define the satisfaction and logical consequence relations. In par-
ticular, a Kripke model satisfies a formula whenever all its minimal worlds force it.
This satisfaction relation avoids the collapse of both implications. Moreover, it induces
(in the usual way) a logical consequence relation for FO⊃. With regard to sequent
calculi for FO⊃ the central point is the nature of sequents. Gentzen’s original notion
(cf. [8]) considers a sequent to be a pair (Γ, Φ) where the antecedent Γ and the conse-
quent Φ are finite sequences of formulas. It is usual (in classical logic) to consider sets,
instead of sequences, because this prevents some extra inference rules for duplication
of formulas (contraction rule), interchanges of formulas (interchange rule), and so on.
In intuitionistic logic, the consequent usually consists of a single formula. To deal with
classical and intuitionistic implications within the same logic, the antecedent requires
more structure, in order to avoid the collapse of both implications. We introduce this
idea by means of two simple examples. Let us consider the three propositional symbols
p, q, r. It is obvious that p → q is semantically weaker than p ⊃ q. Therefore, we should
not allow the derivation of the sequent with p → q as antecedent and p ⊃ q as conse-
quent. Roughly speaking, p → q is a ”one world sentence”, whereas p ⊃ q is ”about all
greater worlds”. This meaning suggests that the “⊃-in-the-right” rule, to split p ⊃ q
for putting p on the left and leaving q on the right, must be used with care about which
worlds p → q and p are speaking about. In fact, the antecedent of the next sequent
in our derivation tree has the sequence (but not the set) 〈p → q; p〉; obviously with
q as consequent. This sequent should not be derivable, since p → q is saying nothing



about greater worlds satisfying p. Moreover, to derive, for example, the valid (classical)
sentence (p → q) → ((q → r) → (p → r)), it becomes useful to relate p → q, q → r
and p to the same world in the antecedent sequence, taking r as the consequent. Thus
sequences of sets arise as antecedents. Accordingly, in this paper, a sequent consists of
a pair (∆,χ) where the antecedent ∆ is a (finite) sequence of (finite) sets of formulas
and the consequent χ is a single formula. Hence, we say structured sequent calculus to
emphasise its nature. For the study of structured deductive systems in a more general
setting, see [5].
The rest of the paper is organised as follows: in Section 2 we give preliminary details
about syntax and notation; in Section 3 we establish the model theory and the nec-
essary semantical notions and properties; in Section 4 we present the soundness and
completeness results for structured sequent calculi; finally, in Section 5, we summarise
conclusions and related work.

2 Preliminaries

We consider signatures Σ consisting of countable (pairwise disjoint) sets V SΣ of vari-
able symbols, FSΣ of function symbols, and PSΣ of predicate symbols, with some
specific arity for each function and predicate symbol. Function symbols of arity 0 are
called constant symbols. We denote by TermΣ the set of all well-formed first-order
Σ-terms, inductively defined by:
– A variable x ∈ V SΣ is a Σ-term
– If f ∈ FSΣ is n-ary and t1, . . . , tn ∈ TermΣ , then f(t1, . . . , tn) is a Σ-term.

The set FormΣ of all well-formed Σ-formulas contains the atomic formulas and the
recursive composition of formulas by means of intuitionistic implication and classical
connectives and quantifiers. For convenience, we consider the following atomic formulas:
– p(t1, . . . , tn), for n-ary p ∈ PSΣ and t1, . . . , tn ∈ TermΣ

– F (falsehood).
In addition, we consider the classical connectives: negation (¬) and implication (→); the
intuitionistic implication (⊃); and the classical universal quantifier ∀. The remaining
connectives and quantifiers, i.e. conjunction (∧), disjunction (∨), existential quantifi-
cation (∃), and intuitionistic negation (∼), can be defined as abbreviations: ϕ ∧ ψ for
¬(ϕ → ¬ψ), ϕ ∨ ψ for ¬ϕ → ψ, ∃xϕ for ¬∀x¬ϕ, and ∼ ϕ for ϕ ⊃ F . Even the in-
tuitionistic universal quantifier, namely ∀̌, can be expressed in FO⊃ by the formula
(¬F) ⊃ ∀xϕ as definition of ∀̌xϕ.
Terms without variable symbols are called closed terms. By means of quantifiers, for-
mulas have free and bound variables. We denote by free(ϕ) the set of all free variables
of the formula ϕ. We call Σ-sentence a Σ-formula without free variables.
The uppercase Greek letters Γ and Φ (possibly with sub- and superscripts) will be
used as metavariables for sets of formulas, whereas ∆, ∆′, ∆′′, . . . are reserved to be
metavariables for sequences of sets of formulas.
We denote by cons(t) the set of all constant symbols appearing in the term t. A very
simple structural induction extends cons to formulas, sets of formulas and sequences
of sets of formulas.

Structures (or models) are Kripke models of first-order intuitionistic logic ([20, 21]),
that is, we consider worlds with universes and function symbols interpretations, as well
as predicate symbols interpretations. Variables assignments and substitution notation
are especially awkward for dealing with Kripke models. For that reason, to define the



semantics of quantifiers, we follow the approach in [19] of naming all elements of the
universe:

Definition 1. Given a set of elements (or universe) A, a signature Σ can be extended
to the signature ΣA, by adding a new constant symbol â for each element a ∈ A.

In order to simplify substitution notation we write ϕ(t) for the simultaneous substitution
instance of the formula ϕ(x) with terms t for variables x. The notation ϕ(x) is a meta-
expression, which does not mean that x is the exhaustive list of free variables of ϕ, nor
that all of them occur as free variables in ϕ.

3 Non-Monotonic Forcing and Logical Consequence

In this section we firstly establish the semantical structures for FO⊃, and then define
the forcing, satisfaction and logical consequence relations. At the same time, we point
out some interesting meta-logical properties, such as, for example, the monotonicity of
terms evaluation and the substitution lemma, which are usual and useful in most of
the well-known logics.

Semantical structures for FO⊃ are standard first-order Kripke structures with a par-
tially ordered set of worlds ([20, 21]). Worlds have an associated classical first-order
structure over a universe. We consider that the signature of every world includes names
for individuals of its universe. We abbreviate by Σw the signature ΣAw , which extends
Σ with a name â for each a ∈ Aw (see Definition 1).

Definition 2. A Kripke Σ-structure is a triple K = (W (K),�, 〈Aw〉w∈W (K)) where
(a) (W (K),�) is a partially ordered set (of worlds)
(b) Each Aw is a first-order Σw-structure defined by:

– A non-empty universe Aw

– A function fAw : (Aw)n → Aw for each n-ary f ∈ FSΣw

– A set Atw of atomic Σ-formulas of the form p(â1, . . . , ân)
such that for any pair of worlds v � w:
1. Av ⊆ Aw,
2. Atv ⊆ Atw, and
3. fAw(a) = fAv(a), for all n-ary f ∈ FSΣv and all a ∈ (Av)

n.

These Kripke structures allow us to interpret Σw-terms in worlds in a monotonic way.

Definition 3. Let w be a world of a Kripke Σ-structure and let t ∈ TermΣw , its
interpretation tAw (briefly tw) is inductively defined as follows:
– âAw = a for any a ∈ Aw

– (f(t1, . . . , tn))Aw = fAw(tAw
1 , . . . , tAw

n ).

Proposition 4. For any t ∈ TermΣv , any Kripke-structure K and any pair of worlds
v,w ∈W (K) such that v � w: tw = tv ∈ Av ⊆ Aw.

Proof: The usual proof by structural induction on t is suitable.

The satisfaction of sentences in worlds is handled by the following forcing relation:



Definition 5. Letting K be a Kripke Σ-structure, the binary forcing relation  be-
tween worlds in W (K) and Σ-formulas is inductively defined as follows:
w 6 F

w  p(t1, . . . , tn) iff p(t̂w1 , . . . , t̂
w
n ) ∈ Atw

w  ¬ϕ iff w 6 ϕ
w  ϕ → ψ iff w 6 ϕ or w  ψ
w  ϕ ⊃ ψ iff for all v ∈W (K) such that v � w: if v  ϕ then v  ψ
w  ∀xϕ(x) iff w  ϕ(â) for all a ∈ Aw.

For a set of formulas Φ, w  Φ means that w  ϕ for all ϕ ∈ Φ.

It is obvious that  is relative to K, hence we will write K whenever the simplified
notation  may be ambiguous.

FO⊃ satisfies the following meta-logical property:

Lemma 6. (Substitution Lemma) For any Kripke Σ-structure K, any w ∈ W (K),
any closed Σ-terms t1, t2 and any Σ-formula ϕ with free(ϕ) ⊆ {x}:

If tw1 = tw2 and w  ϕ(t1), then w  ϕ(t2).

Proof: A very easy structural induction on ϕ.

By Definition 2, it is obvious that the forcing relation  behaves monotonically for
atomic sentences, therefore we say that FO⊃ is atomically monotonic. However, in
contrast with (pure) intuitionistic logic, monotonicity can not be extended to arbitrary
sentences. This happens because FO⊃ gives a non-intuitionistic semantics to negation,
classical implication and universal quantification. The following example illustrates this
behaviour.

Example 7. Consider the following Kripke structure K with W (K) = {u, v, w} such
that u � v � w, Au with universe {a}, Av with universe {a, b}, Aw with universe

{a, b, c}, Atu = ∅, Atv = {r(â), r(b̂)}, and Atw = {r(â), r(b̂)}. In such a model, the
world u forces ¬r(â) and also r(â) → q(â), but v does not force either. Moreover, v
forces ∀xr(x), but w does not.

Now, our aim is to define a satisfaction relation between Kripke structures and sen-
tences, from which a logical consequence relation between sets of sentences and sen-
tences may be induced in the usual way.

Definition 8. Let |≈ be a satisfaction relation between Σ-structures and Σ-sentences,
then the induced logical consequence relation, denoted by the same symbol |≈, is defined
as follows.

For every set of Σ-sentences Γ ∪ {ϕ}:
Γ |≈ ϕ iff for all Kripke Σ-structure K: K |≈ Γ =⇒ K |≈ ϕ.

It should be noted at the outset that we can not define the satisfaction relation as it is
commonly done in well-known logics with possible worlds semantics, like intuitionistic
logic (cf. [20, 21]) and modal logics (cf. [4]). The reason is that, under this usual notion
(recalled in Definition 9), both implications collapse into the intuitionistic one.



Definition 9. A Kripke structure K satisfies (or is a model of) a sentence ϕ if and only
if w  ϕ for all w ∈ W (K). We call this relation global satisfaction and it is denoted
by K |=G ϕ.

It is easy to observe that, for logics with monotonic forcing relation (e.g. intuitionistic
logic), the fact to be forced in all worlds is equivalent to the fact to be forced in all
minimal worlds. Hence, for this kind of logics, the logical consequence induced (in the
sense of Definition 8) from global satisfaction (|=G) is equivalent to the one induced
from the following minimal worlds satisfaction relation:

Definition 10.
(a) We say that a world w ∈ W (K) is minimal if and only if there does not exist

v ∈W (K) such that v ≺ w.
(b) A Kripke Σ-structure K satisfies (or is a model of) a Σ-sentence ϕ (K |= ϕ) if and

only if w  ϕ for each minimal world w ∈ W (K).
(c) For sets of sentences: K |= Γ if and only if K |= ϕ for every ϕ ∈ Γ .

We adopt, for FO⊃, the satisfaction relation |= of Definition 10(b) and the logical
consequence relation (also denoted by |=) induced from it, in the sense of Definition 8.
As a matter of fact, |= has a direct (instead of induced) equivalent definition, which is
based on the local (in contrast with global) point of view. We are going to define the
local relation |=L and then we prove that it is equivalent to |= and stronger than |=G.

Definition 11. Γ |=L ϕ if and only if for every Kripke structure K and for every
world w ∈ W (K), if w  Γ then w  ϕ.

Proposition 12.
(i) |= and |=L are equivalent logical consequence relations.
(ii) |=L is stronger than |=G.
(iii) If the forcing relation is monotonic, then |=L and |=G are equivalent logical con-

sequence relations.

Proof:
(i) It is trivial that |=L is stronger than |=. To prove the converse, let us suppose that

there exist K and w ∈W (K) such that w  Γ and w 6 ϕ. Then, we can define

Kw = ({v|v ∈ W (K), v � w},�, 〈Av〉v∈W (K),v�w)

Kw is a Kripke structure with a unique minimal world w such that w  Γ and
w 6 ϕ. Therefore, Kw  Γ and Kw 6 ϕ.

(ii) is trivial.
(iii) Suppose that Γ |=G ϕ and consider any K and w ∈ W (K) such that w K Γ .

Now, consider Kw as above. By forcing monotonicity w′ Kw Γ holds for all
w′ ∈W (Kw). Then, w′ Kw ϕ holds for all w′ ∈W (Kw). So, w K ϕ.

Overall, the FO⊃ logical consequence |= has been induced from the minimal world
satisfaction relation of Definition 10(b), however, the equivalent formulation given by
Definition 11 and Proposition 12(i) can be considered when convenient.

It is easy to see that |= is monotonic with respect to set inclusion:

Fact 13. If Γ ⊆ Γ ′ and Γ |= ϕ, then Γ ′ |= ϕ.



4 Structured Sequent Calculi and Completeness

As explained in Section 1, we consider structured sequents. Specifically, a sequent con-
sists of a pair (∆,χ) (written as ∆ Z⇒ χ) where the antecedent ∆ is a (finite) sequence
of (finite) sets of formulas and the consequent χ is a single formula. In order to sim-
plify sequent notation we reserve Γ and Φ (possibly with sub- and superscripts) for
sets of formulas, and ∆, ∆′, ∆′′, . . . for sequences of sets of formulas; the semicolon
sign (; ) will represent the infix operation for concatenation of sequences; Γ ∪ {ϕ} will
be abbreviated by Γ, ϕ; and a set Γ is identified with the sequence consisting of this
unique set. Thus, the semicolon sign (; ) is used to split a sequence into its components
(sets of formulas) and the comma sign (, ) splits sets of formulas into its elements.
For instance, ∆;Γ, ϕ;∆′ denotes the sequence beginning with the sequence of sets ∆,
followed by the set Γ ∪ {ϕ}, and ending with the sequence of sets ∆′. With an abuse
of notation we will write ϕ ∈ ∆ to mean that ϕ belongs to some of the sets of formulas
in ∆.
In this section we firstly define the notion of proof in a structured sequent calculus.
Secondly, we explain what is required for soundness of this kind of calculi. For this
purpose a structured consequence notion is defined. Then, we give general sufficient
conditions for completeness, which have a dual advantage. On the one hand, different
calculi for different purposes could be obtained from the general conditions. On the
other hand, these conditions make the completeness proof easier. Lastly, we provide a
sound and complete structured sequent calculus for FO⊃.

Definition 14. A proof of a sequent ∆ Z⇒ χ in a calculus C (or C-proof) is a finite
tree, constructed using inference rules from C, whose root is the sequent ∆ Z⇒ χ and
whose leaves are axioms (or initial sequents) in the calculus C. When there exists a
C-proof of the sequent ∆ Z⇒ χ, we write ∆ `C χ. Moreover, `C is extended to (finite)
sequences of infinite sets as follows. For ∆ which is a sequence Γ0; . . . ;Γn of (possibly
infinite) sets of Σ-formulas and ϕ a Σ-formula, ∆ `C ϕ holds if and only if there exists
a sequence ∆′ of finite sets Γ ′

0; . . . ;Γ
′
n such that Γ ′

i ⊆ Γi for each i ∈ {1..n} and there
exists a C-proof of the sequent ∆′ Z⇒ ϕ.

Therefore, `C is the derivability relation induced by the calculus C. Notice that every
set in the antecedent of a sequent must be finite, whereas in the derivability relation,
sets can be infinite. A trivial consequence of definition 14 is the following fact, which
provides the thinning rule as meta-rule:

Fact 15. If ∆;Γ ;∆′ `C χ and Γ ⊆ Γ ′, then ∆;Γ ′;∆′ `C χ.

Now, we define a relation |=∗ between sequences of sets of formulas and formulas, such
that its restriction to a single set of formulas coincides with the logical consequence
relation |=.

Definition 16. Let ∆ be a sequence Γ0;Γ1; . . . ;Γn of sets of Σ-sentences and χ a
Σ-sentence, then we say that ∆ |=∗ χ if and only if for all Kripke Σ-structure K and
for all sequence of worlds u0, u1, . . . un ∈W (K) such that ui−1 � ui (for i = 1, . . . , n):

ui  Γi (for all i = 0, . . . , n) =⇒ un  χ.



Reflecting on the direct (local) definition of the logical consequence relation (Definition
11 and Proposition 12), it is obvious that:

Proposition 17. For every set of Σ-sentences Φ ∪ {χ}: Φ |=∗ χ iff Φ |= χ.

The soundness of a calculus C is warranted whenever each proof rule of C preserves
|=∗. In other words, let us consider the following schema of proof rule:

∆1 Z⇒ χ1 . . . ∆n Z⇒ χn

∆ Z⇒ χ

then, because of finiteness of sets in a C-proof and by induction on its length, it suffices
that each proof rule of C (with the above scheme) satisfies:

∆i |=∗ χi (for all i = 1, . . . , n) =⇒ ∆ |=∗ χ.

Notice that the monotonicity of |= with respect to set inclusion (Fact 13) can be
generalized to |=∗ in the following sense:

Fact 18. If Γ ⊆ Γ ′ and ∆;Γ ;∆′ |=∗ ϕ, then ∆;Γ ′;∆′ |=∗ ϕ.

However, |=∗ is non-monotonic with respect to sub-sequence relations, in general. For
instance, ∆;Γ |=∗ ϕ could not hold, although ∆ |=∗ ϕ holds.

As a first step to achieve completeness, we provide general sufficient conditions for `C ,
which are formulated on the basis of Hintikka sets (cf. [11]). We have to saturate sets
which are involved in a sequence. Therefore, we must take into account previous sets
in the sequence. For this purpose, we introduce the notion of back-saturated set with
respect to a sequence of sets ∆. Because of technical reasons, back-saturation is also
made with respect to a set of auxiliary constant symbols.

Definition 19. Let ∆ be a sequence of sets of Σ-sentences and let AC be a countable
set of new auxiliary constants. We say that a set Γ ofΣ∪AC-sentences is back-saturated
with respect to (AC,∆) if and only if it satisfies the following conditions:
1. F 6∈ Γ
2. if A is atomic and A ∈ ∆;Γ , then ¬A 6∈ Γ
3. ϕ → ψ ∈ Γ =⇒ ¬ϕ ∈ Γ or ψ ∈ Γ
4. ϕ ⊃ ψ ∈ ∆;Γ =⇒ ¬ϕ ∈ Γ or ψ ∈ Γ
5. ∀xϕ(x) ∈ Γ =⇒ ϕ(t) ∈ Γ for all closed t ∈ TermΣ∪AC

6. ¬(ϕ→ ψ) ∈ Γ =⇒ ϕ ∈ Γ and ¬ψ ∈ Γ
7. ¬∀xϕ(x) ∈ Γ =⇒ ¬ϕ(c) ∈ Γ for some c ∈ AC.

The first two conditions constitute the so-called atomic coherence property of Γ .

Now, we will show that, for calculi satisfying the conditions in Figure 1, any set
of sentences, in the antecedent of a sequent, can be back-saturated preserving non-
derivability. This is the crucial lemma for completeness.

Lemma 20. Let ∆;Γ ;∆′ be a sequence of sets of Σ-sentences, χ a Σ-sentence, and
AC be a countable set of new auxiliary constants. If ∆;Γ ;∆′ 6`C χ and `C satisfies the
conditions of Figure 1, then there exists a set Γ ∗ such that:
(i) Γ ∗ is back-saturated with respect to (AC,∆),
(ii) Γ ⊆ Γ ∗ and
(iii) ∆;Γ ∗;∆′ 6`C χ.



Proof: We will build Γ ∗, starting with Γ , by iteration of a procedure which adds
sentences. At each iteration step k ∈ IN a set Γk of sentences is built. To do that we
enumerate the set AC by {c0, c1, . . . , cn, . . . . . .}; the set of all closed Σ ∪AC-terms by
{t0, t1, . . . , tn, . . . . . .}; and the set of all Σ ∪ AC-sentences by {γ0, γ1, . . . , γn, . . . . . .}.
The procedure initializes Γ0 := Γ . Then, for any k ≥ 1 it obtains Γk from Γk−1 in the
following way.
(a) If k is odd, it takes the least pair (i, j) ∈ IN2 (in lexicographic order) such that
γi ∈ Γk−1 have the form ∀xϕ(x) and ϕ(tj) 6∈ Γk−1. Then, it makes Γk := Γk−1∪{ϕ(tj)}.
(b) If k is even, it takes the least i ∈ IN such that γi has not been treated yet (in the
step k) and one of the following two facts holds:

(b1) γi ∈ ∆;Γk−1 and it has the form ϕ ⊃ ψ
(b2) γi ∈ Γk−1 and its form is either ϕ → ψ or ¬(ϕ→ ψ) or ¬∀xϕ(x).
Then, it obtains Γk , depending on the case, as follows:
(b1) If ∆;Γk−1,¬ϕ;∆′ 6`C χ then Γk := Γk−1 ∪ {¬ϕ} else Γk := Γk−1 ∪ {ψ}
(b2) γi is ϕ→ ψ: If ∆;Γk−1,¬ϕ;∆′ 6`C χ then Γk := Γk−1 ∪ {¬ϕ}

else Γk := Γk−1 ∪ {ψ}
γi is ¬(ϕ→ ψ): Γk := Γk−1 ∪ {ϕ,¬ψ}
γi is ¬∀xϕ(x): It takes the least j such that cj ∈ AC \ cons(∆;Γk−1;∆

′;χ)
and then it makes Γk := Γk−1 ∪ {¬ϕ(cj)}.

If Γk is back-saturated with respect to (AC,∆), the procedure stops at this step k for
which Γ ∗ = Γk . Otherwise we approximate

Γ ∗ =
⋃

k∈N

Γk .

By construction Γ ⊆ Γ ∗. To finish the proof, we must justify that ∆;Γ ∗;∆′ 6`C χ and
Γ ∗ is back-saturated with respect to (AC,∆).
We will show that ∆; Γk;∆′ 6`C χ, for all k ∈ IN (by induction on k). For k = 0
the assertion holds by hypothesis. Now, consider any k ∈ IN , ∆;Γk−1;∆

′ 6`C χ holds
by the induction hypothesis. For each possible case, in the extension of Γk−1 to Γk ,
there are some conditions in Figure 1 which ensure that ∆;Γk ;∆′ 6`C χ. The case (a)
works because of condition 4, (b1) because of condition 3 and the case (b2), because
of conditions 2, 6, and 8.
Finally, the atomic coherence of Γ ∗ results from ∆;Γ ∗;∆′ 6`C χ because of conditions
1, 5 and 10. The remaining back-saturation properties of Γ ∗ hold by construction.

Now, we will prove that conditions of Figure 1 are, in fact, sufficient for completeness.

Lemma 21. If the derivability relation `C of a calculus C satisfies the conditions of
Figure 1, then for any set of Σ-sentences Φ ∪ {χ}: Φ |= χ =⇒ Φ `C χ

Proof: Suppose that Φ 6`C χ. We will prove that Φ 6|= χ by showing the existence of a
counter-model K with worlds in the set IN∗ of sequences of natural numbers, ordered
by u ≤ v if and only if u is an initial segment of v. 1 This structure K will be such that
ε  Φ and ε 6 χ. Let us consider the existence of a countable family of disjoint sets of
new auxiliary constants 〈ACi〉i∈IN . With each sequence s ∈ IN∗ we associate the set
AC#s and the signature

Σs ≡ Σ ∪
⋃

n≤#s

ACn.

1 ε will denote the empty sequence, · is the infix function for adding a natural number to a sequence
and # is the length function over sequences.



1. A ∈ ∆ =⇒ ∆ `C A
2. ∆;Γ,¬ϕ;∆′ `C χ and ∆;Γ,ψ;∆′ `C χ =⇒ ∆;Γ, ϕ→ ψ;∆′ `C χ
3. ∆;Γ ;∆′;Γ ′,¬ϕ;∆′′ `C χ and ∆;Γ ;∆′; Γ ′, ψ;∆′′ `C χ =⇒

∆;Γ, ϕ ⊃ ψ;∆′;Γ ′;∆′′ `C χ
4. ∆;Γ, ϕ(t);∆′ `C χ =⇒ ∆;Γ,∀xϕ(x);∆′ `C χ
5. ∆;Γ `C A =⇒ ∆;Γ,¬A;∆′ `C χ
6. ∆;Γ, ϕ,¬ψ;∆′ `C χ =⇒ ∆;Γ,¬(ϕ→ ψ);∆′ `C χ
7. ∆;Γ ;ϕ `C ψ =⇒ ∆;Γ,¬(ϕ ⊃ ψ);∆′ `C χ
8. ∆;Γ,¬ϕ(c);∆′ `C χ =⇒ ∆;Γ,¬∀xϕ(x);∆′ `C χ
9. ∆;Γ,¬ϕ `C F =⇒ ∆;Γ `C ϕ

10. ∆;Γ, F ;∆′ `C χ

where A is atomic, t ∈ TermΣ∪AC and c ∈ AC \ cons(∆;Γ, ϕ(x);∆′).

Fig. 1. Sufficient conditions for completeness

Now, we inductively associate a set Γs of Σ-formulas with each s = 〈n0, n1, . . . , nk〉 ∈
IN∗. Let ∆s denote the sequence Γε;Γ〈n0〉;Γ〈n0 ,n1〉; . . . ;Γ〈n0 ,n1 ,...,nk〉 and ∆<s the se-
quence Γε; . . . ;Γ〈n0 ,n1 ,...,nk−1〉.

The collection {Γs|s ∈ IN∗} is defined to satisfy that each Γs is back-saturated with
respect to (AC#s,∆<s), Φ ∪ {¬χ} ⊆ Γε, and ∆s 6`C F .

As basis step, we define Γε as the back-saturated set with respect to AC0 and the empty
sequence of sets such that Φ ∪ {¬χ} ⊆ Γε and Γε 6`C F . Γε exists because Φ,¬χ 6`C F

holds by condition 9. As inductive step, we define Γs·j for s ∈ IN∗ and j ∈ IN , provided
that ∆s 6`C F . In order to do this, we consider an enumeration {γ0, γ1, . . . , γn, . . . . . .}
of all sentences of Γs of the form ¬(ϕ1 ⊃ ϕ2). Then, let γj be ¬(ϕ ⊃ ψ). By conditions
7 and 9, we have that ∆<s;Γs;ϕ,¬ψ 6`C F . So, there exists Γs·j ⊇ {ϕ,¬ψ} back-
saturated with respect to (AC#s+1,∆s) such that ∆s;Γs·j 6`C F .
Now, by means of {Γs | s ∈ IN∗}, we can define K = (IN∗,≤, 〈As〉s∈IN∗) as follows:

– As = {t | t ∈ TermΣs and t is closed}
– fAs(t1, . . . , tn) = f(t1, . . . , tn)

– Ats = {p(t̂1, . . . , t̂n) | p(t1, . . . , tn) ∈ ∆s}.
It is easy to see that K is a Kripke structure and also that t̂s = t = ts holds for any
s ∈ IN∗. To finish the proof we have to check that ε  Φ and ε 6 χ. Hence, since
Φ ∪ {¬χ} ⊆ Γε, it suffices to show that η ∈ Γs =⇒ s  η holds for any s ∈ IN∗ and
any Σ-sentence η. We prove this fact by induction on η, using Definition 19, since each
Γs is back-saturated with respect to (AC#s,∆<s):

– p(t1, . . . , tn) ∈ Γs =⇒ p(t̂1, . . . , t̂n) ∈ Ats =⇒ s  p(t1, . . . , tn)

– ¬ϕ requires induction on ϕ:

• ¬p(t1, . . . , tn) ∈ Γs =⇒ p(t1, . . . , tn) 6∈ ∆s =⇒ p(t̂1, . . . , t̂n) 6∈ Ats
=⇒ s 6 p(t1, . . . , tn) =⇒ s  ¬p(t1, . . . , tn)

• ¬(ϕ→ ψ) ∈ Γs =⇒ ϕ ∈ Γs or ¬ψ ∈ Γs =⇒ s  ϕ or s 6 ψ =⇒ s  ϕ → ψ
• ¬(ϕ ⊃ ψ) ∈ Γs =⇒ ϕ,¬ψ ∈ Γs·j for some j ∈ IN =⇒ s · j  ϕ and s · j 6 ψ

=⇒ s 6 ϕ ⊃ ψ =⇒ s  ¬(ϕ ⊃ ψ)
• ¬∀xϕ(x) ∈ Γs =⇒ ¬ϕ(c) ∈ Γs for some c ∈ AC#s =⇒ s  ¬ϕ(c) for some
c ∈ AC#s =⇒ (by cs = ĉs and Lemma 6) s  ¬ϕ(ĉ) for some c ∈ AC#s =⇒
s  ¬∀xϕ(x)

– ϕ → ψ ∈ Γs =⇒ ¬ϕ ∈ Γs or ψ ∈ Γs =⇒ s  ¬ϕ or s  ψ =⇒ s  ϕ → ψ



– ϕ ⊃ ψ ∈ Γs =⇒ ϕ ⊃ ψ ∈ ∆w for all w ≥ s =⇒ ¬ϕ ∈ Γw or ψ ∈ Γw for all w ≥ s
=⇒ w  ¬ϕ or w  ψ for all w ≥ s =⇒ s  ϕ ⊃ ψ

– ∀xϕ(x) ∈ Γs =⇒ ϕ(t) ∈ Γs for all closed t ∈ TermΣs =⇒ s  ϕ(t) for all closed
t ∈ TermΣs =⇒ (by ts = t̂s and Lemma 6) s  ϕ(t̂) for all t ∈ As =⇒ s  ∀xϕ(x).

The conditions of Figure 1 could be rewritten as inference rules, changing `C by Z⇒.
By Fact 15 and Lemma 21, this is a sound and complete calculus for FO⊃, which is
cut-free, but it is not very natural. In Figure 2, we give a more natural calculus, with
two inference rules for introducing each connective and quantifier on the left and on the
right, respectively. Notice that the differences between the rules for both implications
reflect that ⊃ can be used for any “ulterior” set in the sequence, whereas → only is
valid for the set containing it. We also would like to remark that by looking at the
antecedent as a set of formulas, the rules in Figure 2 become well-known inference
rules in both classical and intuitionistic sequent calculi. In particular, viewed in this
manner, the rules for both implications collapse into a single pair of rules.
The structural rules (Init), (Abs), (Cas) and (RaA) respectively allow us to built initial
sequents, to put any consequent in the place of falsehood, to reason by distinction of
the two cases given by the law of the excluded middle (classical negation), and to make
reductio ad absurdum reasoning. Notice also that by a combination of (¬L) and (Cas)
this calculus provides a derived cut-rule (see Figure 3). Besides, it is easy to check
that, using the abbreviations for the rest of connectives and quantifiers (∧, ∨, ∃,∼),
the expected inference rules can be derived for them.

Structural Rules

(Init) ∆ Z⇒ A if A ∈ ∆ and A is atomic(incl. F ) (Abs) ∆ Z⇒ F

∆ Z⇒ χ

(Cas)
∆;Γ,ϕ;∆′ Z⇒ χ ∆;Γ,¬ϕ;∆′ Z⇒ χ

∆;Γ ;∆′ Z⇒ χ
(RaA)

∆;Γ,¬ϕ Z⇒ F

∆;Γ Z⇒ ϕ

Connective Rules

(¬L)
∆;Γ Z⇒ ϕ

∆;Γ,¬ϕ;∆ Z⇒ χ
(R¬)

∆;Γ, ϕ Z⇒ F

∆;Γ Z⇒ ¬ϕ

(→ L)
∆;Γ Z⇒ ϕ ∆; Γ,ψ;∆′ Z⇒ χ

∆;Γ,ϕ → ψ;∆′ Z⇒ χ
(R →)

∆;Γ,ϕ Z⇒ ψ
∆;Γ Z⇒ ϕ → ψ

(⊃ L)
∆;Γ ;∆′;Γ ′ Z⇒ ϕ ∆;Γ ;∆′;Γ ′, ψ;∆′′ Z⇒ χ

∆;Γ, ϕ ⊃ ψ;∆′;Γ ′;∆′′ Z⇒ χ
(R ⊃)

∆; {ϕ} Z⇒ ψ
∆ Z⇒ ϕ ⊃ ψ

Quantifier Rules

(∀L)
∆;Γ,ϕ(t);∆′ Z⇒ χ
∆;Γ, ∀xϕ;∆′ Z⇒ χ

(R∀)
∆ Z⇒ ϕ(c)
∆ Z⇒ ∀xϕ

(t is a term in (∀L), and c is a new constant which
does not appear in the lower sequent of (R∀)).

Fig. 2. A sound and complete calculus for FO⊃



Now, we will show that the set of inference rules in the Figure 2 constitutes a sound
and complete sequent calculus for FO⊃.

Firstly, the soundness of this calculus can be proved easily but requires a long proof.
The proof consists in checking that each inference rule is sound with respect to (or
preserves) the relation |=∗ (Definition 16). As an example, we show that (→ L) is
sound. Let ∆ be some sequence of sets Γ0; . . . ; Γn and let ∆′ be another sequence
Φ0; . . . ;Φm. Suppose that there exists a Kripke structure K and a sequence of worlds
in W (K): u0 � . . . � un � w � v0 � . . . � vm such that:
– ui  Γi for all i = 1, . . . , n
– w  Γ ∪ {ϕ → ψ}
– vj  Φj for all j = 1, . . . ,m
– vm 6 χ

Since w  ϕ → ψ, then w 6 ϕ or w  ψ. The first case means that ∆;Γ 6|=∗ ϕ and
in the second case it turns out that ∆;Γ,ψ;∆′ 6|=∗ ψ. Therefore, if ∆;Γ |=∗ ϕ and
∆;Γ,ψ;∆′ |=∗ χ, then ∆;Γ, ϕ→ ψ;∆′ |=∗ χ.

Secondly, we will prove completeness by checking that the derivability relation induced
by the calculus of Figure 2 satisfies the conditions of Figure 1. In order to do it easier, we
introduce the derived inference rules of Figure 3. These rules provide cut, contraposition
(in the last set of the antecedent), derivation of assumptions (of the last set of the
antecedent), and contradiction respectively.

(Cut)
∆;Γ Z⇒ ϕ ∆;Γ,ϕ;∆′ Z⇒ χ

∆;Γ ;∆′ Z⇒ χ
(Ctp)

∆;Γ,¬χ Z⇒ ϕ
∆;Γ,¬ϕ Z⇒ χ

(Ass) ∆;Γ,ϕ Z⇒ ϕ (Ctd) ∆;Γ, ϕ,¬ϕ;∆′ Z⇒ χ

Fig. 3. Derived inference rules

(Cut) is derived by using (¬L) and (Cas), and (Ctp) by (¬L) and (RaA). (Ass) can be
derived by induction on ϕ. In the basic case, it suffices to use (Init). For the induction
step it is enough to use the induction hypothesis together with the corresponding rules
(R�) and (�L) in each case of binary connective or quantifier �. Finally, (Ctd) comes
from (¬L) and (Ass).

Theorem 22. (Completeness) The calculus of Figure 2 is complete for FO⊃.

Proof: By Lemma 21, it is enough to check that the calculus satisfies the conditions
of Figure 1. Some of the conditions are directly obtained from an inference rule. This
is the case for condition 1 by (Init), for 4 by (∀L), for 5 by (¬L) and for 9 by (RaA).
Conditions 7 and 10 are also very easy to check; condition 7 holds by rules (R ⊃) and
(¬L) and 10 by (Init) and (Abs).
From now on, the thinning meta-rule (see Fact 15) is often implicitly assumed.
For both conditions 2 and 3 we use the same scheme of proof. We firstly apply (Cas)
with ϕ and ¬ϕ. Then, the sequent with ϕ is a premise of the condition. For the other
sequent we use (Cut) with ¬ϕ as cut-formula. We obtain the other premise of the



condition and also a sequent which is easily derived by (R¬) and (→ L). The resulting
leaves are (Ass) and (Ctd) sequents.
A proof for condition 6 can be similarly obtained beginning with two consecutive
applications of (Cut) with cut-formulas ϕ and ¬ψ on the set Γ .
For condition 8, let us suppose that ∆;Γ,¬ϕ(c);∆′ Z⇒ χ is a derivable sequent. That
is, we are assuming that it is composed of finite sets. With an abuse of notation,
we use the same names for the finite sets in the sequent as for its (possibly infinite)
extensions in the derivability condition 8. We apply finitely many times (R →) and
(R ⊃) to put, one by one, the formulas of ∆′ in the consequent. In this way we obtain
a sequent of the form ∆;Γ,¬ϕ(c) Z⇒ η(∆′, χ), where η(∆′, χ) is the above explained
implicative formula combining both implications. Now, by (Ctp), (R∀) (c does not
appear anywhere in the sequent), and again using (Ctp) we have a proof of the sequent
(S1) ∆;Γ,¬∀xϕ(x) Z⇒ η(∆′, χ). Further, by systematic application of (→ L) and (⊃ L)
to η(∆′, χ), we prove the sequent (S2) ∆;Γ,¬∀xϕ(x), η(∆′, χ);∆′ Z⇒ χ. Applying (Cut)
to (S1) and (S2) we derive the sequent ∆;Γ,¬∀xϕ(x);∆′ Z⇒ χ. By thinning meta-rule
(Fact 15) the corresponding derivability relation is obtained.

5 Conclusions and Related Work

We have shown that structured sequents enable the sequent calculi approach as proof
method for a logic combining classical and intuitionistic implication. We have given
semantical foundations for a logic which achieves such combination in the (unrestricted)
first-order case. Some design aspects of the logic FO⊃ have been influenced and inspired
by its original motivation in the area of logic programming. In particular, antecedents
consisting of sequences of sets arose as a tool to formalize the operational semantics of
LP languages combining classical and intuitionistic implication (see [10, 1]). We have
improved these structured sequents to combine both whole logics. We have provided
general sufficient conditions for completeness of sequent calculi dealing with this kind
of sequents, and also a sound and complete calculus. The completeness proof is based
on a procedure for saturating sets with respect to sequences of sets.
The well-known modal logic S4 (introduced in [14]) is closely related to intuitionistic
logic, by a translation of intuitionistic formulas into S4 formulas ([3, 4]). Similarly, FO⊃

can be translated into S4. The S4 connective � allows one to translate an intuitionistic
implication ϕ ⊃ ψ into �(ϕ → ψ). For atomic monotonicity, atomic formulas p(t)
also have to be translated into �p(t). This transformational approach enables logical
(model-theoretic) foundations for LP languages combining both implications ([9]), and
also provides a useful connection between the semantical aspects FO⊃ and S4. On
the contrary, this connection is not so useful for relating its proof-theoretical aspects.
Structured sequents calculi provide a new deduction style allowing proofs which can not
be translated to S4. Roughly speaking, structured sequent calculi are more flexible than
traditional S4 proof methods. In other words, a probable sequent has more (essentially
different) proofs in FO⊃ than its translation has in S4. For instance, consider the
following S4-rule:

(R�)
Φ# Z⇒ χ
Φ Z⇒ �χ where Φ# = {�ϕ | �ϕ ∈ Φ} 2

2 S4 sequents are symmetric, but this is not relevant for our discussion.



The indispensable non-2-formulas in the antecedent of a sequent with a 2-consequent
must be used before one application of the (R�) rule removes them. The semantical
reason is that 2-formulas are properties of “every greater world” and the rule removes
the “one world” assumptions. In FO⊃, the structure of the antecedent allows us to
preserve all its “information”, even in deduction steps dealing with a “every greater
world” consequent. A remarkable consequence is that FO⊃ is more suitable (than S4)
for goal-directed proofs. A goal-directed (or uniform) proof ([16, 17]) essentially is a
sequent calculus proof obtained by applying (at each step) the (�R) rule, where �
is the top-level logical symbol of the consequent (or goal). When the goal is an atom
A, the legal step (so-called “backchaining”) essentially consists on of applying (→ L)
to some formula ϕ → A in the antecedent. Goal-directed proofs have become an im-
portant proof-theoretical foundation for LP languages and goal-directed proof systems
have been developed for fragments of first order logic ([18]), intuitionistic logic ([7, 16]),
intermediate logics lying in between intuitionistic and classical logic ([6]), and many
other fragments of (higher-order, modal, etc.) logics. A more detailed discussion of this
topic is outside the scope of this paper. [1] deals with a fragment of FO⊃ which is a
logic programming language satisfying the existence of a goal-directed proof for every
provable sequent. Let us illustrate the goal-oriented ability of FO⊃ by means of a sim-
ple example. Consider the sequent p, p → q Z⇒ p ⊃ q. It has a very easy goal-directed
proof, whereas its translation to S4 modal logic, �p, �p → �q Z⇒ �(�p → �q), does
not have a goal-directed proof. For the former, by (R ⊃), we obtain p, p → q ; p Z⇒ q.
Now, by applying (→ L) (“backchaining”) to p → q, two initial sequents p Z⇒ p and
p, q; p Z⇒ q are obtained. For the latter, a goal-directed proof must firstly apply (R�),
hence it obtains the non-provable sequent �p Z⇒ �p → �q. There is a (non goal-
directed) S4-proof which begins with the (→ L) to obtain the initial sequent 2p Z⇒ 2p
and also the sequent 2p,2q Z⇒ 2(2p → 2q) which now can be proved by (R2).
Fariñas and Herzig ([2]) have investigated the combination of classical and intuitionistic
logic, in the propositional case. They provide a Hilbert-style axiomatization and also a
tableaux method. Actually, a completeness proof for the propositional subset of FO⊃

could be obtained by deriving the axiomatization of the propositional logic introduced
in [2]. A similar work is [12] where a natural deduction system is given. A common
characteristic of both systems, [2] and [12], is that some deduction steps depend on the
persistence of formulas. From the semantical point of view, persistent formulas are the
“every greater world” ones in the sense mentioned above. In S4 only 2-formulas are
persistent, whereas the combination of classical and intuitionistic connectives leads to
an inductive characterization of persistence. In [2, 12] persistent goals require the elim-
ination of non-persistent premises, like the (R2)-rule does in S4. Hence their deductive
styles are similar and quite far from the (structured sequents based) FO⊃ style, es-
pecially with regard to goal-directed proofs. Let us consider again the above example
and the tableaux method introduced in [2], in order to obtain a closed tableau for the
sentence ¬((p∧ (p→ q)) → (p ⊃ q)). After some simple steps, we have a linear tableau
containing the three nodes: p, p → q, and ¬(p ⊃ q). From the goal-directed point of
view, the first two play the role of premises and the last one is the goal. Therefore, to
build a “goal-directed tableau” we must enlarge the unique branch with p and ¬q and,
simultaneously, we must eliminate all premises, since they are not persistent. Hence,
this tableau will not close. A closed tableau could be obtained and to do this it suffices
to use the premise p → q before the goal.
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