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Verified Software: 
Proposal for a Grand Challenge Project
Tony Hoare, Microsoft Research

Verified software consists of programs that have been
proved free of certain rigorously specified kinds of error.
Confidence in the correctness of the proof is very high be-
cause it has been generated and checked automatically by
computer. Our understanding of the concept of a proof goes
back to the Greek philosophers Pythagoras and Aristotle.

The German philosopher Leibniz proposed mechanical
reasoning for mathematical theorems. James King ex-
plored the idea of a mechanical program verifier in his
1969 doctoral thesis.1 Since then, the ideal of verified soft-
ware has inspired a generation of research into program
correctness, programming language semantics, and me-
chanical theorem proving. The results have moved into in-
dustrial applications to detect errors in software simula-
tions of hardware devices.

A new Grand Challenge?
A Grand Challenge is a scientific project that an interna-

tional team of scientists coordinates and carries out over 10
years or more. A recent example, the Human Genome Pro-
ject (1991–2004), was inspired by an altruistic scientific
ideal to uncover the six billion bits of the human genome—
effectively, the blueprint from which nature manufactures
each of us. It was expected that on successful completion
of the project (15 years ahead), the pharmaceutical indus-
try could exploit its results and experimental techniques
and tools to benefit human health. This is now beginning to
happen.

Many scientists took the turn of the millennium as an
opportunity to ask themselves and their colleagues whether
the time was ripe for a Grand Challenge project of similar
scale and ambition in their own branch of science. I pro-
pose that computer scientists reactivate the program veri-
fier challenge and solve it by concerted collaborative and
competitive efforts within the foreseeable future. Leading
computer scientists have discussed this proposal at confer-
ences in Europe, North America, and Asia over the last two
years.

Vision
The scientists planning this project envision a world in

which computer programmers seldom make mistakes and
never deliver them to their customers. At present, program-
ming is the only engineering profession that spends half its
time and effort on detecting and correcting mistakes made
in the other half of its time.

We envision a world in which computer programs are
always the most reliable component of any system or de-
vice that contains them. At present, devices must often be
rebooted to clear a software error that has stopped them
from working.

Intelligent Systems 
and Formal Methods 
in Software Engineering
Bernhard Beckert

Software is vital for modern society. It manages our finances,
regulates communication and power generation, controls air-
planes, and processes security-critical information. Consequently,
the efficient development of dependable software is of ever-
growing importance. Over the last few years, technologies for the
formal description, construction, analysis, and validation of soft-
ware—based mostly on logics and formal reasoning—have ma-
tured. We can expect them to complement and partly replace tra-
ditional software engineering methods in the future.

Formal methods in software engineering are an increasingly
important application area for intelligent systems. The field has
outgrown the area of academic case studies, and industry is show-
ing serious interest. This installment of Trends & Controversies looks
at the state of the art in formal methods and discusses the develop-
ments that make successful applications possible. Tony Hoare, a
pioneer in the field, convincingly argues that we’ve reached the
point where we can solve the problem of how to formally verify
industrial-scale software. He has proposed program verification as
a computer science Grand Challenge. Deductive software verifica-
tion is a core technology of formal methods. Reiner Hähnle describes
recent dramatic changes in the way it’s perceived and used. Another
important base technique of formal methods, besides software
verification, is synthesizing software that’s correct by construction
because it’s formally derived from its specification. Douglas R. Smith
and Cordell Green discuss recent developments and trends in this
area. Surprisingly efficient decision procedures for the satisfiability
modulo theories problem have recently emerged. Silvio Ranise and
Cesare Tinelli explain these techniques and why they’re important
for all formal-methods tools. Thomas Ball and Sriram Rajamani look
at formal methods from an industry perspective. They explain the
success of Microsoft Research’s SLAM project, which has developed
a verification tool for device drivers.

–Bernhard Beckert
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Cost-benefit
Current estimates of the cost of software

error to the world’s economies are in the re-
gion of US$100 billion a year and increas-
ing. Software producers and users share this
cost. The total cost of our proposed research
over a period of 10 years is $1 billion, shared
among all participating nations.

If the research is successful, the cost of
deploying its results will be many times
larger than the research cost. Those who
profit from the deployment will meet these
costs.

Security
Verification methods already exist that de-

tect some errors that make software vulnera-
ble to virus attack. However, the technology
is also available to those who plan such at-
tacks. We must develop the technology not
only to detect but also to eliminate such errors.

The risks
The main scientific risk to the project is

that methods of computer generation and
checking of proofs continue to require
skilled human intervention. The tools will
therefore remain as scientific tools, suit-
able to advance research but inadequate
for engineers’ needs.

Another risk is that the computing re-
search community has little experience with
long-term research, requiring collaboration
among specialized research areas. The pro-
ject’s success will require adjustment of the
current research culture in computer science
and alignment of research-funding mecha-
nisms to new scientific opportunities, meth-
ods, and ideals.

The main impediment to deploying the
research results will be educating and train-
ing programmers to exploit the tools. The
primary motivator for deployment will be
commercial competition among software
suppliers.

The method
The project will exploit normal scientific

research methods. Advances in knowledge
and understanding will be accumulated in
comprehensive mathematical theories of
correct programming. These will be tested
by extensive experimentation on real work-
ing programs from a broad range of appli-
cations. The research results will be incor-
porated in sets of tools that will enable the
practicing programmer to exploit them re-
liably and conveniently.

Scientific ideals
As with the Human Genome Project, the

driving force of the project is scientific cur-
iosity to answer basic questions underlying
the whole discipline. For software engineer-
ing, the basic questions are: What do pro-
grams do? How do they work? Why do they
work? What evidence exists for the correct-
ness of the answers? And finally, how can
we exploit the answers to improve the qual-
ity of delivered software?

The ideal of program correctness is like
other scientific ideals—for example, accu-
racy of measurement in physics, purity of
materials in chemistry, rigor of proofs in
mathematics. Although these absolute ideals
will never in practice be achieved, scientists
will pursue them far beyond any immediate
market need for their realization. Experience
shows that eventually some ingenious inven-

tor or entrepreneur will find an opportunity
to exploit such scientific advances for com-
mercial benefit.

Commitment to such ideals contributes
to the cohesion of integrity of scientific re-
search. It’s essential to the organization of a
large-scale, lengthy project such as a Grand
Challenge. A similar commitment by the
engineer contributes to the trust and esteem
that society accords to the profession.

Industrial participation
The programming tools developed in this

project must be tested against a broad range
of programs representative of those in use
today. We propose that our industrial part-
ners contribute realistic challenge programs
of various sizes and degrees of difficulty.
These must be programs with no competitive
value so that they can be released for sci-
entific scrutiny. Industry might also contri-

bute valuable prizes to the teams making the
greatest progress on these and other chal-
lenge problems. 

The tools will be continuously im-
proved in the light of experience of their
use. Throughout the project, students will
be trained to apply the tools to commer-
cially relevant programs and will obtain
employment that exploits their skills on
competitive proprietary products.

The scientists engaged in the project will
give any required support and advice for the
development of commercial toolsets that will
spread the project’s results throughout the
programming profession.

The state of the art
Advanced engineering industries—inclu-

ding transport, aerospace, electronics hard-
ware, communications, defense, and national
security—already exploit verification tech-
nology in small, safety-critical cases. Spe-
cialized tools in these areas are available from
numerous start-up companies, together with
consultation and collaboration in their use.
Other tools are available for rapid detection
of as many errors as possible.

In scientific research laboratories, guar-
antees based on complete verification have
been given for small microprocessors, op-
erating systems, programming language
compilers, communication protocols, large
mathematical proofs, and even the essential
kernels of the proof tools themselves.

In the last 10 years, some of the software
carrying out the basic task of constructing
proofs has improved in performance by a fac-
tor of 1,000. This is in addition to the factor
of 100 achieved by improvements in the hard-
ware’s speed, capacity, and affordability. Both
the software and hardware continue to im-
prove, giving a fair chance of substantial
program verification over the next 10 years.

The start of the project
Many research centers throughout the

world are already engaged in the early stages
of this project. The next step is to persuade
the national funding agencies of the coun-
tries most capable of contributing that this
Grand Challenge potentially offers a good
return on investment.
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Deductive Software
Verification
Reiner Hähnle, University of Koblenz

Deductive software verification is a for-
mal technique for reasoning about properties
of programs that has been around for nearly
40 years (see the previous essay for more de-
tails about verification’s history). However,
numerous developments during the last dec-
ade have dramatically changed how we per-
ceive and use deductive verification:

• The era of verification of individual algo-
rithms written in academic languages is
over. Contemporary verification tools
support commercial programming lan-
guages such as Java or C#, and they’re
ready to deal with industrial applications.

• Deductive verification tools used to be
stand-alone applications that could be
used effectively only after years of acad-
emic training. Now we see a new genera-
tion of tools that require only minimal
training to use and are integrated into
modern development environments.

• Perhaps the most striking trend is that
deductive verification is emerging as a
base technology. It’s employed not only
in formal software verification but also
in automatic test generation, in bug find-
ing, and within the proof-carrying code
framework—with more applications on
the horizon.

What is deductive software
verification?

Three ingredients characterize deductive
software verification: First, it represents tar-
get programs as well as the properties to be
verified as logical formulas that must be
proven to be valid. Second, it proves valid-
ity by deduction in a logic calculus. Third, it
uses computer assistance for proof search
and bookkeeping.

In contrast to static analysis and model
checking, you can model the semantics of
the target programming language precisely—
that is, without abstracting from unbounded
data structures (integers, lists, trees, and so
on) or unbounded programming constructs
(such as loops or recursive method calls).
The logics used for deductive verification are
at least as expressive as first-order logic with
induction. So, you can formalize and prove
far-reaching properties of target programs.

This precision has a price, of course: even
more so than in model checking, predicting

the amount of computing resources neces-
sary to achieve a verification task is difficult.
In general, computability theory implies
theoretical limitations that exclude a verifi-
cation system that can prove program prop-
erties over infinite structures.

In light of these results, in the past,
designers of theorem provers often traded
off automation for precision by relying on
human interaction. A recent trend is to insist
on automation but to accept occasionally
approximate results. In contrast to static an-
alysis and model checking, which use ab-
straction, in deductive verification you give
up on completeness by shortcutting proof
search. In this case, you can’t obtain func-
tional correctness proofs, but automatic gen-
eration of unit tests and warnings about po-
tential bugs are still useful.

Embedding versus encoding
Two approaches to logical modeling of

programming languages and their semantics
exist. In the first, target programs appear as a
separate syntactical category embedded in
logical expressions. The best-known formal-
ism of this kind is Hoare logic. More recent
ones include Dijkstra’s weakest precondition
calculus and dynamic logic. Logical rules
that characterize the derivability of those for-
mulas that contain programs reflect the target
programming language’s operational seman-
tics. Rule application is syntax driven, and at
least one rule exists for each target-language
construct. You can view proofs in such cal-
culi as symbolic execution of the program
under verification. You can compute either a
program’s strongest postcondition with res-
pect to a given start state or, vice versa, the
weakest precondition with respect to a given
final state. In either case, symbolic execution

results in a set of program-free formulas, the
verification conditions. A first-order theorem
prover can then automatically carry out a
comparison of the strongest postcondition
(weakest precondition) to the final state (start
state) in the specification using a first-order
theorem prover.

Representative state-of-the-art systems
(see table 1) employing the embedding ap-
proach include Spec# and KeY. Spec#, al-
though its authors refer to it as a “static
program verifier,” is an advanced verifica-
tion condition generator with a theorem
prover back end for C# programs annotated
with specifications written in the Spec#
language. KeY supports the full Java Card
2.2 standard (http://java.sun.com/products/
javacard). It’s not merely a verification con-
dition generator; it interleaves symbolic ex-
ecution and automated theorem proving to
increase efficiency.

The second modeling approach encodes
both the target language syntax and seman-
tics as theories, often in higher-order logic.
This involves formalizing many auxiliary
data structures such as sets, functions, lists,
tuples, and records. To verify a target pro-
gram—that is, to prove a theorem about it—
you need a large library of lemmas for the
auxiliary theories used in the formalization.
Programs are typically encoded as mutually
recursive function definitions, which can
also be seen as an abstract functional pro-
gramming language. Needless to say, fully
formalizing an imperative programming
language such as Java in this way is a sub-
stantial undertaking.

Arguably the most powerful verification
system along these lines is ACL2, which its
authors have been improving since they cre-
ated it more than 30 years ago. Another well-
known system is HOL, a general interactive
theorem-proving system based on typed
higher-order logic. The generic theorem
prover Isabelle is increasingly popular—it
even lets you define the logic it uses as a
basis of formalization. HOL and Isabelle
weren’t designed to be software verification
tools; they’re logical and reasoning frame-
works that can be just as well applied (and in
fact have been applied) to pure mathematics.

A changing perspective
Both approaches to logic modeling of

programs—embedding and encoding—
have specific strengths and weaknesses.
These lead to distinct usage scenarios.
The embedding approach is giving rise to
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a new generation of program analysis
tools.

Despite ACL2’s impressive performance
and detailed documentation,1 using it effec-
tively requires a long apprenticeship: the
formalization style is tightly interwoven
with the control of heuristics that are essen-
tial for automation. Consequently, detailed
tool knowledge is required for effective use,
limiting the number of potential users.

General-purpose verification tools based
on encoding programs into logical frame-
works require you to master their theoreti-
cal underpinnings before you can use them.
Large, imperative programming languages
don’t match these tools’ functional flavor
well, and formalizing the target language
semantics is a considerable undertaking. In
conjunction with their generality, this makes
them predestined for theoretical investiga-
tions (for example, precise semantical
modeling of programming languages)
rather than routine verification tasks. On
the other hand, these tools’ expressivity lets
you formally verify the correctness of

compilers or of the calculi used in the sys-
tems based on embedding that have a sim-
pler theory. This latter capability of cross-
validating the target language’s formal
semantics in different verification tools is
essential to ensure trust in the verification
process. In the light of certification, this
is increasingly important.

Research groups within the theorem-
proving community rooted in logic and
proof theory (where formal foundations
and theoretical completeness are major
virtues) often developed tools based on
encoding of target programs. The recent
generation of tools based on embedding,
however, is heavily influenced by the pro-
gramming languages and software engi-
neering communities’ needs:

• User interfaces shouldn’t be more com-
plex than those of debuggers or compilers.

• Tools must be integrated into develop-
ment environments and processes.

• Bug finding and testing are as important
as verification.

On the other hand, approximation via
incompleteness is quite acceptable.

For verification tools to be usable, they
must cover to a considerable extent modern
industrial programming languages such as
Java and C# as verification targets. Equally
important is the possibility of writing speci-
fications in languages close to those devel-
opers use. For example, KeY supports OCL
(the Object Constraint Language, which is
part of the Unified Modeling Language; see
www.uml.org) and JML (the Java Modeling
Language; see www.cs.iastate.edu/~leavens/
JML). The latter is compatible with Java ex-
pression syntax and has become the de facto
standard for verification tools targeting Java.
JML is also supported by JACK (Java Applet
Correctness Kit) and JIVE (Java Interactive
software Visualization Environment), among
other tools. Spec#, named identically to the
tool set, is a JML analog for C#. In all cases,
high-level specifications are compiled auto-
matically to logic-based representations, so
that users don’t need to write such low-level
specifications.

Trends and challenges
One major trend is that verification tools

attempt to combine formal verification, au-
tomatic test generation, and automatic bug
finding into a uniform framework that, in
turn, is integrated into standard software de-
velopment platforms such as Eclipse (www.
eclipse.org). The driving force behind this
trend is the insight that mere formal verifica-
tion is too limited in many cases: it depends
on the existence of relatively extensive for-
mal specifications and, as I explained earlier,
often isn’t fully automatic. In addition, for-
mal verification target languages are at the
source-code or, at most, bytecode level. But
there must also be ways to validate binaries
deployed on, for example, smart cards. We
should also remember that industrial users
often fail to see the point of proving correct-
ness, but they always see the need for debug-
ging and testing.

A uniform view of verification, test
generation, and bug finding is well justi-
fied: the Extended Static Checking project
(http://secure.ucd.ie/products/opensource/
ESCJava2) pioneered verification technol-
ogy for bug finding. A theoretical basis al-
so exists for recasting the search for bugs
as verification attempts of invalid claims.2

Likewise, automated white- and black-box
test generation can be embedded into a ver-
ification framework.3
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Table 1. A selection of verification tools.

Modeling Target
Name Creator Availability approach language Remarks

ACL2 University Public Encoding ACL2
of Texas

HOL (Higher- University Public Encoding Various Programming 
order logic) of Cambridge environment

Isabelle University Public Encoding Various
of Cambridge, 
Technical 
University Munich

JACK (Java INRIA Need Embedding Java
Applet to register
Correctness
Kit)

JIVE (Java Swiss Federal No Embedding Java
Interactive Institute of 
software Technology (ETH) 
Visualization Zürich, University 
Environment) of Kaiserslautern

KeY Chalmers Public Embedding Java Card Eclipse and 
University, Borland Together 
University of plug-ins, test 
Karlsruhe, generation
University of 
Koblenz

KIV University Public  Hybrid ASM Multiple 
(Karlsruhe of Augsburg (except the Pascal-like specification 
Interactive Java version) Java methods
Verifier)

Spec# Microsoft Public Embedding C# Visual Studio 
Research plug-in, bug

finding



A renewed interest in verification itself is
motivating the development of better inte-
grated, more automatic verification tools.
This is partly driven by enhanced certifica-
tion requirements for safety-critical soft-
ware, but also by technological and econom-
ical considerations. Mobile software hosted
on smart cards and cell phones shares im-
portant deployment characteristics with
hardware: recalling and updating it is diffi-
cult and costly. In addition, typical mobile
software applications bear a high economic
risk. Most security policies can’t be enforced
statically or by language-based mechanisms
alone, but they can be seen as particular in-
stances of verification problems and, there-
fore, can be tackled with deductive verifica-
tion tools. The EU Integrated Project MOBIUS

(Mobility, Ubiquity, and Security, http://
mobius.inria.fr) combines type-based pro-
gram analysis and deductive software verifi-
cation in a proof-carrying code architecture
to establish security policies offline in Java-
enabled mobile devices.

Exciting new applications of deductive
verification technology are emerging in de-
pendable computing—for example, sym-
bolic fault injection, symbolic fault coverage
analysis, or deductive cause-consequence
analysis.

Deductive verification is quickly moving
forward, but formidable challenges lie ahead.
Several important program features can’t yet
be handled adequately—notably concurrent
threads, support for modularity, and floating-
point numbers.

The lack of available documentation out-
side of technical research articles threatens
to hamper progress. Currently, only one
book attempts to document the theory and
application of a newer-generation verifica-
tion tool.4 We need more.

Verification tools’ reach can be extended
with powerful automated theorem provers
that deal with verification conditions and in-
termittent simplification of proof goals. Nu-
merous theorem provers optimized for verifi-
cation have appeared recently. The needs of
abstract interpretation and software model
checking have mostly driven their develop-
ment, so these systems aren’t yet fully opti-
mized for deductive verification. Neverthe-
less, early experiments have been promising.
Most deductive-verification tools offer a
theorem prover back-end interface in the re-
cently adopted SMT-LIB (Satisfiability Mod-
ulo Theories Library) format (www.smt-
lib.org).

Although tool and method integration
have progressed substantially, we don’t yet
fully understand how best to integrate verifi-
cation into software development processes
or into large-scale enterprise software frame-
works.

In business and automotive applica-
tions, using software that has been auto-
matically generated from more abstract
modeling languages such as UML or
Simulink is becoming popular. This poses
a challenge to verification because mod-
eling languages lack conventional pro-
gramming languages’ maturity and pre-
cise semantics. Besides, few verification
tools can handle them. Verifying the gen-
erated source code isn’t possible either
because it’s too unstructured.

The available specification languages for
expressing formal software requirements

aren’t fully satisfactory. General-purpose
formalisms such as Z or RSL tend to be too
cumbersome to use. OCL is too abstract,
while JML and Spec# are in flux and are tied
to a particular target programming language.
Specification is, of course, a problem not
only of deductive verification but also of
any verification technique.
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Software Development 
by Refinement
Douglas R. Smith and Cordell Green,
Kestrel Institute

The term automatic programming has
been used since computing’s early days to
refer to the generation of programs from
higher-level descriptions. The first COBOL

compilers were called automatic program-
mers, and since then the notion of what con-
stitutes “higher level” description has been
rising steadily. Here, we focus on automating
the generation of correct-by-construction
software from formal-requirements-level
specifications. Interest in this topic arises
from several disciplines, including AI, soft-
ware engineering, programming languages,
formal methods, and mathematical founda-
tions of computing, resulting in a variety of
approaches. Our work at the Kestrel Institute
emphasizes formal representation and rea-
soning about expert design knowledge,
thereby taking an AI approach to automated
software development.

Automated software development (also
called software synthesis) starts with real-
world requirements that are formalized into
specifications. Specifications then undergo
a series of refinements that preserve prop-
erties while introducing implementation
details. These refinements result from ap-
plying representations of abstract design
knowledge to an intermediate design.

The sweet spot for automated software
development lies in domain-specific mod-
eling and specification languages accom-
panied by automatic code generators.
Domain-specific code generation helps
put programming power in the hands of
domain experts who aren’t skilled pro-
grammers. An active research topic is how
to compose heterogeneous models to get
a global model of a system. Another trend
is toward increased modularity through
aspect- and feature-oriented technologies.
These techniques provide a novel means
for automatically incorporating new re-
quirements into existing code. Here, we
summarize Kestrel’s approach to automated
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software development, which is embodied
in the Specware system (www.specware.org).

Applications 
of software synthesis

Projects spanning various application
areas convey a sense of what’s possible in
automated software development.

Synthesis of scheduling software
In the late 1990s, Kestrel developed a

strategic airlift scheduler for the US Air
Force that was entirely evolved at the specifi-
cation level. From a first-order-logic specifi-
cation, the application had approximately
24,000 lines of generated code. Using the
Kestrel Interactive Development System
(KIDS), more than 100 evolutionary deriva-
tions were carried out over a period of sev-
eral years,1 each consisting of approximately
a dozen user design decisions. KIDS used
abstract representations of knowledge about
global search algorithms, constraint propaga-
tion, data type refinements (for example, sets
to splay trees), and high-level code optimiza-
tion techniques such as finite differencing
and partial evaluation. The resulting code ran
more than two orders of magnitude faster
than comparable code that experts had man-
ually written.

Continued progress in generating schedul-
ing software led to the development of the
domain-specific Planware system.2 Planware
defines a domain-specific requirement lan-
guage for modeling planning and scheduling
problems. From such a problem model (typi-
cally 100 to 1,000 lines of text derived from
mixed text and graphical input), it automati-
cally generates a complex planner/scheduler
together with editors and visual display code
(more than 100,000 lines of code for some
applications). Design theories similar to the
ones used in KIDS are specialized and fully
automated in Planware, so code generation
(or regeneration) takes only a few minutes.

Synthesis of Java Card applets
The current Java Card system uses a

domain-specific language for specifying
Java Card applets.3 The system not only
generates Java Card code but also produces
formal proofs of consistency between the
source specification and the target code.
Certification is a major cost in the deploy-
ment of high-assurance software. By deliv-
ering both Java Card code and proofs, an
external certifier can mechanically check
the proofs’ correctness. Our goal is to dra-

matically lower the cost of deploying soft-
ware that must pass government certifica-
tion processes. Elsewhere, NASA Ames’
AutoBayes and AutoFilter projects are al-
so exploring the simultaneous generation
of code and certification evidence from
domain-specific specifications.

Model-based code generation
The Forges project explored generating

production-quality code from MatLab mod-
els. To do this, the project developed an op-
erational semantics model of the StateFlow
language. It then used partial evaluation of
that operational semantics with respect to a
given StateFlow model to produce execu-
table code. The result was then optimized
and sent to a C compiler. The code quality
compared favorably to code that commer-
cially available tools produced.

Deriving authentication protocols
The Protocol Derivation Assistant tool

explores the transformations and refinements
needed to derive correct-by-construction
authentication protocols. A major result has
been the derivation of various well-known
families of protocols.4 Each family arises
from choices of various features that are com-
posed in. Hand-simulating this approach,
Cathy Meadows and Dusko Pavlovic found a
flaw in a protocol (called Group Domain of
Interpretation, GDOI) that had been exten-
sively studied and analyzed.

Automated policy enforcement
Many safety and security policies have

effects that cut across a system’s compo-
nent structure. Recent theoretical work has
shown that you can treat many such cross-
cutting requirements as system invariants.
Moreover, we’ve developed techniques for

calculating where and how to modify the
system to enforce those constraints. These
techniques depend on automated inference,
static analysis of program flow, and synthe-
sis of many small segments of code for in-
sertion at appropriate locations.

More details about Specware
Most of the example applications we

discussed earlier were developed using
Kestrel’s Specware system.

From requirements to specifications
Refinement-oriented development starts

with the procuring organization’s require-
ments, which are typically a mixture of in-
formal and semiformal notations reflecting
various stakeholders’ needs. To provide the
basis for a clear contract, the stakeholders
must formalize the requirements into speci-
fications that both the procuring organiza-
tion (the buyer) and the developer (the
seller) can agree to. You can express specifi-
cations at various levels of abstraction. At
one extreme, a suitable high-level program-
ming language can sometimes serve to ex-
press executable specifications. However,
an executable specification must include
implementation detail that’s time-consum-
ing to develop and get right and that might
be better left to the developer’s discretion.
At the other extreme, a property-oriented
language (such as a higher-order logic) can
be used to prescribe the intended software’s
properties with minimal prescription of im-
plementation detail. The solution in Spec-
ware is a mixture of logic and high-level
programming constructs providing a wide-
spectrum approach. This lets specification
writers choose an appropriate level of ab-
straction from implementation detail.

Refinement: From specifications to code
A formal specification serves as the cen-

tral document of the development and evo-
lution process. It’s incrementally refined to
executable code. A refinement typically
embodies a well-defined unit of program-
ming knowledge. Refinements can range
from situation-specific or ad hoc rules, to
domain-specific transformations, to domain-
independent theories or representations of
abstract algorithms, data structures, opti-
mization techniques, software architectures,
design patterns, protocol abstractions, and
so on. KIDS and a Specware extension
called Designware are systems that auto-
mate the construction of refinements from
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reusable or abstract design theories. A cru-
cial feature of a refinement from specifica-
tion A to specification B is that it preserves
A’s properties and behaviors in B while typi-
cally adding more detail in B. This preserva-
tion property lets you compose refinements,
meaning that you can treat a chain of refine-
ments from an initial specification to a low-
level executable specification as a single
property- and behavior-preserving refine-
ment, thereby establishing that the generated
code satisfies the initial specification.

The Specware framework
Specware provides a mechanized frame-

work for composing specifications and re-
fining them into executable code. The
framework is founded on a category of
specifications. The specification language,
called MetaSlang, is based on a higher-
order logic with predicate subtypes and
extended with a variety of ML-like pro-
gramming constructs. MetaSlang supports
pure property-oriented specifications, exe-
cutable specifications, and mixtures of these
two styles. You use specification morphisms
to structure, parameterize, and refine speci-
fications. You use colimits to compose spec-
ifications, instantiate parameterized speci-
fications, and construct refinements. You
use diagrams to express the structure of
large specifications, the refinement of spec-
ifications to code, and the application of
design knowledge to a specification. A recent
Specware extension supports specifying,
composing, and refining behavior through
a category of abstract state machines.

The framework features a collection of
techniques for constructing refinements
based on formal representations of program-
ming knowledge. Abstract algorithmic con-
cepts, data type refinements, program opti-
mization rules, software architectures, abstract
user interfaces, and so on are represented as
diagrams of specifications and morphisms.
These diagrams can be arranged into tax-
onomies, which allow incremental access to
and construction of refinements for particu-
lar requirement specifications.

Concluding remarks
A key feature of Kestrel’s approach is the

automated application of reusable refine-
ments and the automated generation of re-
finements by specializing design theories.
Previous attempts to manually construct
and verify refinements have tended to re-
quire costly rework when requirements

change. In contrast, automated construc-
tion of refinements allows larger-scale ap-
plications and more rapid development and
evolution.

Near-term practical applications of auto-
mated software development will result
from narrowing down the specification lan-
guage and design knowledge to specific ap-
plication domains, as in the Planware and
Java Card prototypes we mentioned earlier.
By narrowing the specification language, the
generator developers can effectively hard-
wire a fixed sequence of design choices (of
algorithms, data type refinements, and opti-
mizations) into an automatic-design tactic.
Also, by restricting the domain, a generator
developer can specialize the design knowl-
edge to the point that little or no inference is
necessary, resulting in completely automa-
ted code generation.
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Satisfiability Modulo Theories
Silvio Ranise, INRIA

Cesare Tinelli, University of Iowa

Many applications of formal methods rely
on generating formulas of first-order logic
and proving or disproving their validity. Des-
pite the great progress in the last 20 years in
automated theorem proving (and disproving)
in FOL, general-purpose theorem provers,
such as provers based on the resolution cal-
culus, are typically inadequate to work with
the sort of formulas that formal-methods
tools generate. The main reason is that these
tools aren’t interested in validity in general
but in validity with respect to some back-
ground theory, a logical theory that fixes the
interpretations of certain predicate and func-
tion symbols. For instance, in formal meth-
ods involving the integers, we’re only inter-
ested in showing that the formula

�x �y (x < y � x < y � y)

is true in those interpretations in which <
denotes the usual ordering over the integers
and � denotes the addition function. When
proving a formula’s validity, general-pur-
pose reasoning methods have only one way
to consider only the interpretations allowed
by a background theory: add as a premise
to the formula a conjunction of the theory’s
axioms. When this is possible at all (some
background theories can’t be captured by a
finite set of FOL formulas), generic theo-
rem provers usually perform unacceptably
for realistic formal-method applications. A
more viable alternative is using specialized
reasoning methods for the background the-
ory of interest. This is particularly the case
for ground formulas, FOL formulas with
no variables (so also no quantifiers) but pos-
sibly with free constants—constant sym-
bols not in the background theory.

For many theories, specialized methods
actually yield decision procedures for the
validity of ground formulas or some sub-
set of them. For instance, this is the case,
thanks to classical results in mathematics,
for the theory of integer numbers (and for-
mulas with no multiplication symbols) or
the theory of real numbers. In the last two
decades, however, specialized decision
procedures have also been discovered for
a long (and growing) list of theories of
other important data types, such as

• certain theories of arrays,
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• certain theories of strings,
• several variants of the theory of finite

sets,
• some theories of lattices,
• the theories of finite, regular, and infinite

trees, and
• theories of lists, tuples, records, queues,

hash tables, and bit vectors of a fixed or
arbitrary finite size.

The literature on these procedures often
describes them in terms of satisfiability in a
theory—relying on the fact that a formula is
valid in a theory T exactly when no inter-
pretation of T satisfies the formula’s nega-
tion. So, we call the field satisfiability mod-
ulo theories and call those procedures SMT
solvers.

Using SMT solvers in formal methods
isn’t new. It was championed in the early
1980s by Greg Nelson and Derek Oppen at
Stanford University, by Robert Shostak at
SRI, and by Robert Boyer and J Strother
Moore at the University of Texas at Austin.
Building on this work, however, the last 10
years have seen an explosion of interest
and research on the foundations and practi-
cal aspects of SMT. Several SMT solvers
have been developed in academia and in-
dustry with continually increasing scope
and improved performance. Some of them
have been or are being integrated into

• interactive theorem provers for high-
order logic (such as HOL and Isabelle),

• extended static checkers (such as CAs-
CaDE, Boogie, and ESC/Java),

• verification systems (such as ACL2,
Caduceus, SAL, and UCLID),

• formal CASE environments (such as
KeY),

• model checkers (such as BLAST, MAGIC,
and SLAM),

• certifying compilers (such as Touchstone),
and

• unit test generators (such as CUTE and
MUTT).

In industry, Cadence, Intel, Microsoft, and
NEC (among others) are undertaking SMT-
related research projects.

Main approaches
The design, proof of correctness, and

implementation of SMT methods pose
several challenges. First, formal methods
naturally involve more than one data type,
each with its own background theory, so

suitable combination techniques are nec-
essary. Second, satisfiability procedures
must be proved sound and complete.
Although proving soundness is usually
easy, proving completeness requires spe-
cific model construction arguments show-
ing that, whenever the procedure finds a
formula satisfiable, a satisfying theory
interpretation for it does indeed exist. This
means that each new procedure in princi-
ple requires a new completeness proof.
Third, data structures and algorithms for a
new procedure, precisely for being spe-
cialized, are often implemented from
scratch, with little software reuse. Three
major approaches for implementing SMT
solvers currently exist, each addressing
these challenges differently and having its
own pros and cons.

SAT encodings
This approach is based on ad hoc transla-

tions that convert an input formula and rele-
vant consequences of its background theory
into an equisatisfiable propositional formula
(see, for instance, Ofer Strichman, Sanjit A.
Seshia, and Randal E. Bryant’s work1). The
approach applies in principle to all theories
whose ground satisfiability problem is de-
cidable, but possibly at the cost of an expo-
nential blow-up in the translation (that is, the
size of the equisatisfiable formula the trans-
lation produces is exponentially larger than
the size of the original formula). The ap-
proach is nevertheless appealing because
SAT solvers can quickly process extremely
large formulas. Proving soundness and com-
pleteness is relatively simple because it re-
duces to proving that the translation preserves
satisfiability. Also, the implementation effort
is relatively small for being limited to the

translator—after that, you can use any off-
the-shelf SAT solver. Eager versions of the
approach, which first generate the complete
translation and then pass it to a SAT solver,
have recently produced competitive solvers
for the theory of equality and for certain
fragments of the integers theory. However,
current SAT encodings don’t scale up as
well as SMT solvers based on the small en-
gines approach (which we discuss next) be-
cause of the exponential blow-up of the eager
translation and the difficulty of combining
encodings for different theories.

Small engines
This approach is the most popular and

consists of building procedures implement-
ing an inference system specialized on a
theory T. The lure of these “small engines”
is that you can use whatever algorithms and
data structures are best for T, typically lead-
ing to better performance. A disadvantage is
that proving an ad hoc procedure’s correct-
ness might be nontrivial. A possibly bigger
disadvantage is that you must write an en-
tire solver for each new theory, possibly du-
plicating internal functionalities and imple-
mentation effort.

One way to address the latter problem is to
reduce a theory solver to its essence by sepa-
rating generic Boolean reasoning from the-
ory reasoning proper. The common practice
is to write theory solvers just for conjunc-
tions of ground literals—atomic formulas
and negations of atomic formulas. These
pared-down solvers are then embedded as
separate submodules into an efficient SAT
solver, letting the joint system accept arbi-
trary ground formulas. Such a scheme (for-
mulated generally and abstractly by Robert
Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli2) lets you plug in a new theory solver
into the same SAT engine as long as the solver
conforms to a simple common interface.

Another way to reduce development
costs is to decompose, when possible, a
background theory into two or more com-
ponent theories, write a solver for each
smaller theory, and then use the solvers co-
operatively. Greg Nelson and Derek Op-
pen developed a general and highly in-
fluential method for doing this.3 All major
SMT solvers based on the small-engines
approach use some enhancement or varia-
tion of this method.

Big engines
You can apply this rather recent approach
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to theories T that admit a finite FOL axiom-
atization, capitalizing on the power and flex-
ibility of current automated theorem provers
for FOL. In particular, you can apply it to
provers based on the superposition calculus,
a modern version of resolution with a built-
in treatment of the equality predicate and
powerful techniques for reducing the search
space. The approach consists of instrument-
ing a superposition prover with specialized
control strategies that, together with the ax-
ioms of T, effectively turn this “big engine”
into a decision procedure for ground satisfi-
ability in T. 

A big plus of the approach is a simplified
proof of correctness, which reduces to a
routine termination proof for an exhaustive
and fair application of the superposition
calculus’ rules.4 Another advantage is that,
when the approach applies to two theories,
obtaining a decision procedure for their
union is, under reasonable assumptions, as
simple as feeding the union of the axioms to
the prover. A further advantage is the reuse
of efficient data structures and algorithms
for automated deduction implemented in
state-of-the-art provers. 

The main disadvantage is that to get addi-
tional functionalities (such as incremental-
ity, proof production, or model building),
you might need to modify the prover in
ways that the original implementers didn’t
foresee, which might require a considerable
implementation (or reimplementation)
effort.

Standardization efforts
Because of their specialized nature, differ-

ent SMT solvers often are based on different
FOL variants, work with different theories,
deal with different classes of formulas, and
have different interfaces and input formats.
Until a few years ago, this made it arduous to
assess the relative merits of existing SMT
solvers and techniques, theoretically or in
practice. In fact, even testing and evaluating
a single solver in isolation was difficult be-
cause of the dearth of benchmarks.

To mitigate these problems, in 2002 the
SMT community launched the SMT-LIB
(Satisfiability Modulo Theories Library)
initiative, a standardization effort co-led by
us and supported by the vast majority of
SMT research groups. The initiative’s main
goals are to define standard I/O formats
and interfaces for SMT solvers and to build
a large online repository of benchmarks for
several theories. Several SMT solvers world-

wide now support the current version of the
input format, and numerous formal-methods
applications are adopting it. The repository,
which is still growing, includes about 40,000
benchmarks from academia and industry.
(See www.smt-lib.org for more details on
SMT-LIB and on SMT-COMP, the affili-
ated solver competition.)

Future directions
Although SMT tools are proving in-

creasingly useful in formal-methods ap-
plications, more work is needed to im-
prove the trade-off between their efficiency
and their expressiveness. For example,
software verification problems often re-
quire handling formulas with quantifiers,
something that SMT solvers don’t yet do
satisfactorily. Finding good heuristics for
lifting current SMT techniques from

ground formulas to quantified formulas is
a key challenge.

Other lines of further research come from
the need to enhance SMT solvers’ interface
functionalities. For instance, to validate the
results of a solver or integrate it in interac-
tive provers, we need solvers that can pro-
duce a machine-checkable proof every time
they declare a formula to be unsatisfiable.
Similarly, to be useful to larger tools such
as static checkers, model checkers, and test
set generators, an SMT solver must be able
to produce, for a formula it finds satisfiable,
a concrete, finite representation of the inter-
pretation that satisfies it. Other potentially
useful functionalities are the generation of
unsatisfiable cores of unsatisfiable formulas
or of interpolants for pairs of jointly unsat-
isfiable formulas. More research on effi-
ciently realizing all these functionalities is
under way.
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Static Driver Verifier: 
An Industrial Application 
of Formal Methods
Thomas Ball and Sriram K. Rajamani,
Microsoft Research

Microsoft will soon release Windows
Vista, the latest in its line of PC operating
systems. Each version of the Windows OS
has simultaneous releases of development
kits that let third-party developers create
software that builds upon it. An important
class of software that extends Windows is
device drivers (or simply “drivers”), which
connect the huge and diverse number of
devices to the Windows OS. The Windows
Driver Kit (www.microsoft.com/whdc/
devtools/ddk/default.mspx) “provides a
build environment, tools driver samples and
documentation to support driver develop-
ment for the Windows family of operating
systems.”

The Static Driver Verifier tool, part of the
Windows Driver Kit, uses static analysis to
check if Windows device drivers obey the
rules of the Windows Driver Model (WDM),
a subset of the Windows kernel interface that
device drivers use to link into the operating
system. The SDV tool is powered by the
SLAM software-model-checking engine,1

which uses several formal methods such as
model checking, theorem proving, and static
program analysis. We describe technical and
nontechnical factors that led to this tool’s
successful adoption and release.

Successful applications of formal meth-
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ods in commercial software engineering
are rare for several reasons, including

• the lack of a compelling value proposi-
tion to users,

• the high cost of obtaining formal specifi-
cations, and

• a lack of scalability and automation in
tools based on formal methods.

We describe how the SLAM engine and
SDV address these obstacles.

SDV’s value proposition
The biggest reason SDV succeeded is

the importance of the driver reliability
problem. The reliable operation of device
drivers is fundamental to the reliability of
Windows. According to Rob Short, Corpo-
rate Vice President of Windows Core Tech-
nology, failed drivers cause 85 percent of
Windows XP crashes.2 Device-driver fail-
ures appear to the customer as Windows
failures. So, Microsoft invests heavily in
improving the Windows Driver Kit, which
includes new driver models (interfaces with
supporting libraries) as well as a diverse set
of tools to catch bugs early in the develop-
ment of device drivers.

SDV’s value proposition is that it detects
errors in device drivers that are hard to find
using conventional testing. SDV places a
driver in a hostile environment and uses
SLAM to systematically test all code paths
while looking for violations of WDM usage
rules. SLAM’s symbolic execution makes
few assumptions about the state of the OS or
the driver’s initial state, so it can exercise
situations that are difficult to exercise by
traditional testing.

The cost of creating 
formal specifications

SDV analyzes a driver (written in C)
against interface rules for the WDM. These
rules are written in a state-machine descrip-
tion language called SLIC (Specification
Language for Interface Checking). Be-
cause many thousands of drivers use the
same WDM interface, it made economic
sense for Microsoft to write the specifica-
tions because the cost is amortized by run-
ning SDV across many drivers. Further-
more, the specifications themselves are
programs, and, like all programs, they’re
error prone. As the specifications were
used on drivers, they were debugged, and
only those that produced valuable results

are part of the SDV release. Creating the
SLIC specifications as well as the environ-
ment model (a C program) representing
how Windows invokes a device driver took
several staff-years of effort.

Scalability and automation
Exhaustively analyzing all possible be-

haviors of large programs isn’t possible
because programs have an astronomical
number of behaviors. Instead, the SLAM
engine focuses on an “abstraction” of the
program, which contains only the state of
the program that’s relevant to the property
being verified. For example, to check if a
driver is properly using a spinlock, SLAM
tracks only the state of the lock itself and
the variables in the driver that guard the
state transitions involving the lock. SLAM
uses a technique called counterexample-

driven refinement to automatically discover
the relevant state. The SLAM toolkit uses
Boolean programs as models to represent
these abstractions. Boolean programs are
simple, and property checking for Boolean
programs is decidable. Our experience
with SLAM demonstrates that for control-
dominated properties, this model suffices
to represent useful abstractions. 

SLAM’s contributions
SLAM builds on much work from the

formal-methods community, such as sym-
bolic model checking, predicate abstrac-
tion, abstract interpretation, counterexam-
ple-guided abstraction refinement, and
automatic theorem proving using decision
procedures.

SLAM’s research contribution is to apply
these concepts in the context of program-
ming languages. Its abstraction tool is the

first to solve the problem of modularly build-
ing a sound predicate abstraction (Boolean
program) of a C program. SLAM’s model
checker is a symbolic dataflow analysis
engine (a cross between an interprocedural
analysis and a model checker) that checks
Boolean programs. SLAM symbolically
executes a C program path to determine its
feasibility and to discover predicates to elim-
inate infeasible execution paths, thus refining
the Boolean program abstraction. Adapting
existing techniques, such as predicate ab-
straction, to work in the context of a real-
world programming language required new
research, in addition to the engineering effort
to make them scale and perform acceptably.

Directions
Since SLAM’s invention, many in acad-

emia and industry have done considerable
work on improving counterexample-driven
refinement for software and addressing key
related problems.

Performance
Of course, users want tools to run in min-

utes rather than hours (and seconds are even
better). Increased performance also lets tool
providers more quickly debug the properties
that their tools take as input. Recent work on
using interpolant-based model checking
(rather than predicate abstraction) appears
promising, as do approaches that leverage
recent advances in satisfiability solvers.

Precision
SLAM and many other tools sacrifice

precision for performance. For example,
SLAM doesn’t precisely model integer
overflow or bit vector operations. Using
more precise decision procedures for
modular arithmetic and bit vectors would
reduce the number of false error reports
in tools such as SLAM and might also
increase performance.

Explaining the cause of errors
Tools such as SLAM produce error paths

that are often long and contain much irrele-
vant information. We and others have shown
that you can automatically prune away this
irrelevant information and present a much
more concise, relevant error report.

Inferring specifications
As we noted earlier, developing useful

specifications is error prone and time con-
suming. Recent work on automatically infer-
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ring simple specifications from a code cor-
pus shows much promise and will be an
essential part of methodologies for inserting
software tools such as SLAM into legacy
environments.
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