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In this paper, we present Adimen-SUMO, an operational ontology to be used by first-order
theorem provers in intelligent systems that require sophisticated reasoning capabilities (e.g.
Natural Language Processing, Knowledge Engineering, Semantic Web infrastructure, etc.).
Adimen-SUMO has been obtained by automatically translating around 88% of the original
axioms of SUMO (Suggested Upper Merged Ontology). Our main interest is to present in
a practical way the advantages of using first-order theorem provers during the design and
development of first-order ontologies. First-order theorem provers are applied as inference
engines for reengineering a large and complex ontology in order to allow for formal reasoning.
In particular, our study focuses on providing first-order reasoning support to SUMO. During
the process, we detect, explain and repair several important design flaws and problems of the
SUMO axiomatization. As a by-product, we also provide general design decisions and good
practices for creating operational first-order ontologies of any kind.
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Introduction

Recently, the Semantic Web community has become very
interested in having practical inference engines for ontolog-
ical reasoning (Chandrasekaran, Josephson, & Benjamins,
1999; Noy & McGuinness, 2001; Staab & Studer, 2009;
d’Aquin & Noy, 2012). A well-known necessary condition
for enabling the automated treatment of knowledge – in par-
ticular, automated reasoning with ontologies – is that ontolo-
gies must be written in a formal language whose syntax and
semantics are both formally defined. Automated reasoning
uses mechanical procedures to obtain a large body of de-
ducible knowledge that can be inferred from a compact mod-
elling.1

A significant feature of interest for formal ontologies is
expressiveness. Since an ontology is a conceptualization of
a certain domain of interest, the language should allow to
express the properties that characterize that domain (Gruber,
2009). It is also well-known that the expressive power of
the underlying logic jeopardizes the computational tractabil-
ity and the inherent complexity of logical reasoning. Indeed,
very expressive logics are undecidable or semi-decidable
with high worst-case complexity. Beyond undecidability,
a highly expressive logic language may be incomplete, i.e.

there is no finite proof system that will prove all entailed sen-
tences in the logic. As a consequence, the trade-off between
expressiveness and reasoning efficiency (even decidability)
is a key point for the design of formal ontologies.

Today, the family of Web Ontology Languages, including
OWL-DL (Horrocks & Patel-Schneider, 2004), is the most
common formal knowledge representation formalism, being
accepted and standardized by the W3C (World Wide Web
Consortium). OWL-DL is a powerful knowledge represen-
tation formalism with high computational efficiency and the-
oretically founded in description logics (DL), which can be
embedded into fragments of first-order logic. Additionally,
pure DLs are subsets of the guarded fragment (GF) of first-
order logic, defined through the relativisation of quantifiers
by atomic formulas. The guarded fragment was introduced
in (Andréka, Németi, & van Benthem, 1998), where the au-
thors prove that the satisfiability problem for GF is decidable.
Indeed, OWL-DL reasoners, such as Pellet (Sirin, Parsia,
Grau, Kalyanpur, & Katz, 2007) or Fact++ (Tsarkov & Hor-
rocks, 2006), implement very efficient decision algorithms
for OWL-DL theories (Motik, Shearer, & Horrocks, 2009).

1Formally, deduction is the logical action of obtaining state-
ments that are true in all models of an axiomatization.
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However, OWL-DL decidability is achieved at the price of
losing expressiveness. Thus, state-of-the-art OWL-DL rea-
soners are unable to cope with more expressive ontologies
such as Cyc (Matuszek, Cabral, Witbrock, & DeOliveira,
2006), DOLCE (Gangemi, Guarino, Masolo, Oltramari, &
Schneider, 2002) or SUMO (Niles & Pease, 2001b).

Likewise, first-order logic (FOL) is a very well-known and
expressive formalism, although reasoning in FOL is undecid-
able. Lately, impressive progress has been made in first-order
(FO) automated reasoning. Every year, the CASC competi-
tion2 (Pelletier, Sutcliffe, & Suttner, 2002; Sutcliffe & Sut-
tner, 2006) evaluates the performance of sound, fully auto-
matic, classical FO automated theorem provers (ATP) on a
bounded number of eligible problems, chosen from the TPTP
Problem Library3 (Sutcliffe, 2009). As a result, there exists
an important collection of FO theorem provers, such as Vam-
pire (Riazanov & Voronkov, 2002) and E-Prover (Schulz,
2002).

Some of these FO theorem provers have been used for
reasoning with expressive ontologies such as SUMO (Sug-
gested Upper Merged Ontology).4 In particular, the authors
of (Horrocks & Voronkov, 2006) give many interesting hints
for adapting the existing general purpose FO theorem provers
for checking its consistency. The authors also provide two
examples of inconsistencies that were detected in SUMO.
Additionally, in (Pease & Sutcliffe, 2007), the authors report
some preliminary experimental results evaluating the query
timeout for different options when translating SUMO into
FOL.5 Evolved versions of the translation described in (Pease
& Sutcliffe, 2007) can be found in the TPTP Library. In the
sequel, we refer to this translation as TPTP-SUMO.

In this paper, we present Adimen-SUMO,6 an operational
off-the-shelf FO version of SUMO. Our main interest is to
present in a practical way the advantages of using FO theo-
rem provers as inference engines for working with large and
complex ontologies. In particular, we have concentrated our
efforts on studying, revising and improving SUMO, although
a similar approach could be applied to Cyc, DOLCE or any
other expressive ontology. We decided to focus on SUMO
since we are aware of its intrinsic problems, and also of the
fact that its design and development have been harshly crit-
icized in the community of ontology developers and users
from the very beginning. For example, in (Oberle et al.,
2007) the authors describe some of the shortcomings that
the axiomatization of SUMO suffers from and propose the
integration of DOLCE and SUMO.

Initially, our intention was to use existing FO theorem
provers as inference engines for working with the ontology.
For this purpose, we started selecting the subset of FOL ax-
ioms from SUMO. These axioms only required a syntactic
transformation to be used by FO theorem provers. Next, in-
crementally, we tried several options to transform the rest
of SUMO into FOL. The initial inconsistencies detected by

Figure 1. The brain-plant Example

(=>
(and

(instance ?BRAIN Brain)
(instance ?PLANT Plant))

(not
(part ?BRAIN ?PLANT)))

the FO theorem provers led us to start debugging the ontol-
ogy. On the basis of the explanations (or refutations) pro-
vided by the FO theorem provers, we investigated the con-
flicting axioms. Once we determined the final reason of
the inconsistencies, we tested possible solutions for the in-
volved axioms. Following this procedure, we found spurious
knowledge in the ontology – that is, axioms that do not pro-
duce the expected logical consequences – as well as some
non-desirable properties, incorrectly defined axioms, redun-
dancies, etc. Furthermore, we also discovered basic design
problems in SUMO which impede its appropriate use by a
FO theorem prover. Thus, we reengineered the ontology to
solve these basic design problems.

As a result of this process, we have developed an auto-
matic translator that transforms around 88% of the original
SUMO axioms into FOL. Our translated ontology, which is
called Adimen-SUMO, can be used by FO theorem provers
to perform formal reasoning about the properties and rela-
tions of the classes defined by the ontology. For exam-
ple, it is now very straightforward to infer from Adimen-
SUMO that plants do not have brain (or any AnimalAnatom-
icalStructure). In fact, this question cannot be solved us-
ing the TPTP-SUMO translation. To answer this question,
it is enough to prove that the goal in Figure 1 follows from
Adimen-SUMO.7 In Section “Adimen-SUMO”, we provide
additional examples of inferences obtained by FO theorem
provers using Adimen-SUMO that cannot be obtained us-
ing any other version of SUMO, including TPTP-SUMO.
This type of non-trivial inferences could be very useful for
a wide range of knowledge intensive applications. For in-
stance, to help validating the consistency of associated se-
mantic resources like WordNet8 (Fellbaum, 1998; Niles &
Pease, 2003), or to derive new explicit knowledge from them.

2http://www.cs.miami.edu/~tptp/CASC/
3http://www.tptp.org
4http://www.ontologyportal.org/
5In fact, as acknowledged by the authors, some of our sugges-

tions are currently part of their translation thanks to a fruitful col-
laboration and discussion with them.

6In Basque, Adimen means intelligent.
7In Appendix B, we provide a full proof that is obtained with a

FO theorem prover.
8http://wordnet.princeton.edu
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Figure 2. Partial knowledge about plants represented in WordNet version 3.0.

Figure 2 shows a partial view of the knowledge contained in
WordNet. In this figure, each box represents a synset (set
of synonyms) and includes its word senses and offset num-
ber with part-of-speech,9 and solid arrows represent imme-
diate relations (subclass-of10 or part11) whereas dot arrows
represent longer subclass relation paths. Using WordNet, a
program can establish that an apple (apple2

n, the tree) has
apple (apple1

n, the fruit) and using a very simple inference
mechanism that an apple (the tree) also has fruit and possibly
food. However, only considering the current knowledge rep-
resented in WordNet, it is impossible to establish if an apple
(the tree) has a leaf or not. For instance, a systematic propa-
gation procedure would also infer that an apple (the tree) also
has a brain. Now, using Adimen-SUMO and its tight connec-
tion to WordNet,12 we can formally establish that no plant
has brain as well as a plant can have a leaf. Obviously, sim-
ilar reasoning mechanisms can also be established for other
semantic properties and relations among WordNet concepts
(Harabagiu & Moldovan, 1998; Álvez et al., 2008; Verde-
zoto & Vieu, 2011) or other semantic resources connected to
SUMO. Moreover, WordNet is being used world-wide to an-
chor different wordnets in other languages.13 Therefore, sim-
ilar inferences can be obtained for languages other than En-
glish. Likewise, WordNet is connected to several databases
such as OpenCyc (Reed & Lenat, 2002), DBpedia (Auer et
al., 2007; Bizer, Lehmann, et al., 2009) or YAGO (Hoffart,
Suchanek, Berberich, & Weikum, 2013) thanks to the Linked
Open Data (LOD) cloud initiative (Bizer, Heath, & Berners-
Lee, 2009). The interlinking of these diverse databases to a
fully operational upper level ontology promises a “Web of

Data” that will enable machines to more easily exploit its
content (Jain, Hitzler, Yeh, Verma, & Sheth, 2010). Thus,
the use of Adimen-SUMO and its tight connection to Word-
Net can significantly benefit both the Artificial Intelligence
and Semantic Web communities by providing better reason-
ing capabilities to a large set of resources and databases inte-
grated into the LOD cloud.

The outline of the paper is as follows. In the next sec-
tion, we introduce SUMO, the ontology of interest to this
work. Section “Logic Languages and KIF” is focused on
the format used for describing SUMO and its expressive-
ness. In Section “First-Order Theorem Proving”, we de-
scribe the operation of FO theorem provers, and in Section
“Detecting Inconsistencies” we illustrate the use of theo-
rem provers for finding inconsistencies in an ontology in
an automatic way. Section “Translating SUMO into First-
Order Logic” is devoted to the process of translating and
reengineering SUMO into a FOL ontology, and in Section
“Adimen-SUMO” we present the ontology that results from
our work. In Section “Concluding Remarks”, we summarize
our main contributions and discuss related work. Finally, for
the interested reader, we provide four appendixes. Appendix

9Instead of offset numbers, we will use the following format
to refer to a particular word sense: words

p, where p is the part-of-
speech (n for nouns) and s is the sense number.

10In WordNet, hyponymy relations
11In WordNet, meronymy relations
12brain1

n is subsumed by the SUMO concept Brain and plant2
n is

equivalent to the SUMO concept Plant.
13http://www.globalwordnet.org/
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A gives a detailed example of how to analyze the traces ob-
tained from FO theorem provers in order to debug the on-
tology and Appendix B presents another detailed example of
the new reasoning capabilities provided by Adimen-SUMO.
Appendix C provides a thorough description of our transla-
tion of SUMO into FOL. The Adimen-SUMO package14 is
described in Appendix D.

Suggested Upper Merged Ontology

An upper ontology is limited to concepts, relations and
axioms that are generic or abstract. Hence, these concepts
are general enough to address (at a high level) a broad range
of domain areas. Concepts that are specific to particular do-
mains are not included in the upper ontology, but such an
ontology does provide a structure upon which ontologies for
specific domains (e.g. medicine, finance, engineering, etc.)
can be constructed.

SUMO15 (Niles & Pease, 2001b) has its origins in the
nineties, when a group of engineers from the IEEE Stan-
dard Upper Ontology Working Group pushed for a formal
ontology standard. Their goal was to develop a standard up-
per ontology to promote data interoperability, information
search and retrieval, automated inference and natural lan-
guage processing. After a long and troublesome discussion,
the moderators decided to pick some available upper ontolo-
gies (e.g. John Sowa’s upper ontology (Sowa, 2000), James
Allen’s temporal axioms (Allen, 1984), Nicola Guarino’s
formal mereotopology (Borgo, Guarino, & Masolo, 1996,
1997), etc.) and merged them into SUMO (Niles & Pease,
2001a). The merging was severely criticized because of the
lack of criteria and strategy for the merging, and the lack of
formal procedure for checking the results.

Currently, SUMO (including the extended set of domain
ontologies based on it) consists of about 20,000 terms and
about 70,000 axioms. However, in the work reported here,
we concentrate on the upper part of the ontology. That is, on
SUMO itself (file Merge.kif, version 1.78) and the mid-level
ontology (file Mid-level-ontology.kif, version 1.114), which
consists of about 1,000 terms and 4,000 axioms. The exact
number of axioms in each part depends on the particular ver-
sion.16

SUMO aims to provide ontological support for an in-
creasing number of different knowledge repositories. For in-
stance, SUMO developers also maintain a complete mapping
to WordNet (Niles & Pease, 2003). WordNet17 (Fellbaum,
1998) is by far the most widely-used lexical knowledge base.
It contains manually coded information about English nouns,
verbs, adjectives and adverbs, and is organized around the
notion of synset. A synset is a set of words with the same
part-of-speech that can be interchanged in a certain con-
text. For example, 〈brain, encephalon〉 form a synset be-
cause they can be used to refer to the same concept. A
synset is often further described by a gloss, in the case

of the above synset “that part of the central nervous sys-
tem that includes all the higher nervous centers; enclosed
within the skull; continuous with the spinal cord”, and by
explicit semantic relations to other synsets. Each synset
represents a concept which is related to other concepts by
means of a large number of semantic relationships, includ-
ing hypernymy/hyponymy, meronymy/holonymy, antonymy,
entailment, etc. The WordNet-SUMO mapping provides
three types of connections: equivalent mapping, subsuming
mapping and instance mapping. For example, the synset
〈brain, encephalon〉 is subsumed by the SUMO concept
Brain.

In turn, WordNet is being used world-wide to anchor dif-
ferent types of semantic knowledge. For instance, the Mul-
tilingual Central Repository (MCR)18 (Atserias, Rigau, &
Villarejo, 2004; Gonzalez-Agirre, Laparra, & Rigau, 2012b,
2012a) integrates in the same EuroWordNet multilingual
framework (Vossen, 1998) wordnets from five different lan-
guages: English, Spanish, Catalan, Basque and Galician to-
gether with domain knowledge (Magnini & Cavaglià, 2000;
Bentivogli, Forner, Magnini, & Pianta, 2004) and ontologies
like the EuroWordNet Top Ontology (Álvez et al., 2008) and
SUMO (Pease & Fellbaum, 2010).

Furthermore, SUMO has also been merged with YAGO 19

(Suchanek, Kasneci, & Weikum, 2007; Hoffart et al., 2011),
thus combining the rich axiomatization of SUMO with the
large number of individuals acquired from Wikipedia and
GeoNames. Actually, as part of the Linking Open Data
project (Bizer, Heath, & Berners-Lee, 2009), YAGO is
also integrated into DBpedia (Kobilarov, Bizer, Auer, &
Lehmann, 2009), a large knowledge base of structured in-
formation also acquired from Wikipedia. In this way, SUMO
is becoming a potentially very useful resource for improving
the current automated reasoning capabilities of available in-
telligent web services (Jain, Hitzler, Sheth, Verma, & Yeh,
2010).

Additionally, the SMO category in the LTB division –
FO non-propositional theorems (axioms with a provable con-
jecture) from Large Theories presented in Batches – of the
CADE ATP System Competition CASC (Pelletier et al.,
2002; Sutcliffe & Suttner, 2006) is based on problems taken
from SUMO.

Logic Languages and KIF

SUMO is expressed in SUO-KIF (Standard Upper On-
tology Knowledge Interchange Format, see (Pease, 2009)),

14http://adimen.si.ehu.es/web/AdimenSUMO.
15http://www.ontologyportal.org
16Unless explicitly stated, all the examples in this paper are ex-

tracted from those files.
17http://wordnet.princeton.edu
18http://adimen.si.ehu.es/web/MCR
19http://www.mpi-inf.mpg.de/yago-naga/yago



ADIMEN-SUMO: REENGINEERING AN ONTOLOGY FOR FIRST-ORDER REASONING 5

which is a dialect of KIF (Knowledge Interchange Format,
see (Genesereth et al., 1992)). Both KIF and SUO-KIF are
knowledge interchange formats that provide a logic-based
notation for a suitable representation of knowledge. KIF and
SUO-KIF are not exactly formal languages (such as the FO
language), nor executable languages (such as Prolog). In
fact, they can be used to write FO formulas, but its syn-
tax goes beyond FOL. For instance, they can also be used
to write second-order (SO) formulas, allowing for variables
representing predicates and quantification over them. More-
over, KIF allows higher-order predicates – that is, predicates
having other predicates as arguments – and even formulas
acting as arguments of predicates. Another non-FO feature
of KIF are the so-called row variables. These variables are
related to infinitary logic (Keisler, 1971). Row variables al-
low the use of predicates and functions of arbitrary arity. A
formal declarative semantics for the first-order sublanguage
SKIF of KIF is presented in (Hayes & Menzel, 2001). How-
ever, some constructors of KIF and SUO-KIF lack corre-
sponding model-theoretic constructions which would give
them a rigorous meaning (Menzel & Hayes, 2003). For sim-
plicity, from now on we refer to SUO-KIF as KIF.

In KIF syntax, the operators are written in prefix notation
and, additionally, conjunction and disjunction are n-ary. The
only naming convention is that variable names always start
with a question mark ‘?’, since there is no restriction about
predicate and function names. For a complete reference to
KIF, the interested reader is referred to (Genesereth et al.,
1992). With respect to FO formulas, we use the standard
notation with the following notational conventions:
• x, y, z (possibly with super-/sub-scripts) are only used

for variables.
• Predicate names always start with lower case.

Additionally, and as long as it is possible, we always try
to use the same function and predicate names (starting with
lower case in the case of predicate names) used in SUMO.

KIF can be used to express FO formulas. For example, the
following KIF expression

(forall (?X)
(=>

(p ?X C)
(not (exists (?Y) (q ?Y ?X)))))

corresponds to the FO formula

∀x ( p(x,C)→ ¬∃y q(y, x) )

where
• C is a constant (0-ary function symbol),
• p and q are predicate symbols,
• x and y are variables.

In the rest of this section and by means of some examples,
we discuss the expressiveness of KIF in comparison with
OWL-DL, FOL and higher-order logic (HOL) languages.

First, some SUMO axioms cannot be expressed in OWL-
DL due to its syntactic restrictions.20 For example, the arity
of predicates in OWL-DL is restricted to be at most two. As
a consequence the following SUMO axiom

(=>
(occupiesPosition ?PERSON ?POSITION

?ORGANIZATION)
(member ?PERSON ?ORGANIZATION))

cannot be stated using OWL-DL because occupiesPosition is
a ternary predicate. Moreover, the OWL-DL restrictions on
the use of binary predicates prevents not only to replace the
above ternary predicate with two binary predicates, but also
to write transitivity-like axioms.21 This is the case of e.g. the
following SUMO axiom:

(=>
(and

(hole ?HOLE ?OBJ1)
(part ?OBJ1 ?OBJ2))

(or
(overlapsSpatially ?HOLE ?OBJ2)
(hole ?HOLE ?OBJ2)))

The latter two axioms are pure FO formulas. However,
there are many ways in which KIF goes beyond FOL. Our
proposal deals with some of them, but avoids some others.
For instance, the following SUMO axiom

(<=>
(instance ?REL SymmetricRelation)
(forall (?INST1 ?INST2)

(=>
(?REL ?INST1 ?INST2)
(?REL ?INST2 ?INST1))))

does not correspond to any FO formula because the variable
?REL acts in the second line as an individual variable (first
argument of the predicate instance), whereas in the last two
lines it is written in the position of a predicate. Moreover,
axioms are considered to be universally closed, which in this
concrete case means that the KIF axiom can be considered
to be prefixed by forall (?REL). The above kind of formula
is not allowed in FOL, but it is permitted in second-order
logic (SOL). In Section “Translating SUMO into First-Order
Logic”, we explain a relaxed interpretation of this SO feature
which allows us to translate many KIF axioms into FO for-
mulas.

The row variables in KIF serve to express properties of re-
lations of any arbitrary arity. This feature of KIF, when used

20Although SUMO axioms could be expressed in more expres-
sive sublanguages of OWL, like OWL-Full.

21For instance, when describing a relation between two objects
provided that each of both is related with a third object.
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in its whole expressiveness, relates KIF to infinitary logic
(Keisler, 1971). For example, the next KIF axiom states that
if a relation is single-valued, then there exists a unique value
that is related (as last argument) to any n-tuple:

(=>
(instance ?REL SingleValuedRelation)
(forall (@ROW ?ITEM1 ?ITEM2)

(=>
(and

(?REL @ROW ?ITEM1)
(?REL @ROW ?ITEM2))

(equal ?ITEM1 ?ITEM2))))

However, the above axiom does not determine the arity
of ?REL. In Section “Translating SUMO into First-Order
Logic”, we explain how to translate axioms with row vari-
ables into FO formulas.

KIF syntax also allows formulas to be embedded as ar-
guments of predicates, which is not possible in the FO lan-
guage. For example, in the following SUMO axiom that ex-
presses a temporal property

(<=>
(equal (WhereFn ?THING ?TIME) ?REGION)
(holdsDuring ?TIME

(exactlyLocated ?THING ?REGION)))

the formula (exactlyLocated ?THING ?REGION) occurs as an
argument of the predicate holdsDuring. This kind of em-
bedded formula enables to write expressions in the style
of modal and BDI22 logics (as introduced in (Cohen &
Levesque, 1990)). An example of BDI formula is

(=>
(wants ?AGENT ?OBJ)
(desires ?AGENT (possesses ?AGENT ?OBJ)))

where the formula (possesses ?AGENT ?OBJ) is an argument
of the predicate desires. However, without a suitable transla-
tion, these axioms are syntactically unacceptable by any FO
theorem prover. We currently do not consider those axioms
in SUMO that involve embedded formulas. In general, the
SUMO axioms that our translation avoids can be considered
higher-order logic (HOL). More precisely, most of these ax-
ioms correspond to different types of first-order modal log-
ics – e.g. temporal, BDI, etc. – that can be encoded in the
more expressive HOL. Moreover, since higher-order, modal
and temporal logics are conservative extensions (or super-
logics) of FOL, there is no theoretical problem to adapt the
translation to a more expressive (but conservative) logic. Ac-
tually, our proposal for partially translating SUMO could be
extended in the future to either a HOL-based or a FOL-based
translation in order to deal with HO axioms. In particular, for

the latter case there are well-known translations of some con-
crete temporal logics into FOL (Abadi, 1989) which, in fu-
ture work, can be taken into account to translate temporal ax-
ioms. Indeed, automated reasoning in HOL and non-classical
logics is rapidly evolving. In particular, there are very recent
efforts to foster the HO reasoning development through the
TPTP infrastructure (Sutcliffe & Benzmüller, 2010) and also
on the application of HO automated theorem provers to on-
tological reasoning (Benzmüller & Pease, 2012). However,
the development and optimization of FO theorem provers has
reached a higher degree of progress in the last decades and, as
a result, the scientific community has at its disposal several
FO theorem provers that are able to deal with large inputs
(such as a large part of SUMO) in a reasonable way. Addi-
tionally, a large part (even the whole) of many ontologies (in-
cluding SUMO) can be represented in FOL. Consequently,
we decided to concentrate on the translation of a large part of
SUMO to FOL.

First-Order Theorem Proving

In this section, we briefly review the most important as-
pects of FO automated reasoning and the main theorem
provers that we used in our work.

Automated theorem proving is one of the most well-
developed subfields of automated reasoning. Extensive work
has been done in order to develop techniques and tools for
automatically deciding whether a set of axioms is satisfiable
or if a formula can be derived from a set of axioms. Depend-
ing on the underlying logic, the satisfiability problem can be
decidable, semi-decidable or undecidable. Within automated
theorem proving, FO theorem proving is one of the most ma-
ture subfields and there are many fully automated systems
that implement different techniques for FO theorem proving.

Most common techniques of automated theorem proving
are based on refutation. Roughly speaking, this technique
consists in proving that a goal ψ follows from a set of axioms
Φ by proving that the conjunction Φ ∧ ¬ψ is unsatisfiable,
on the assumption that Φ is satisfiable. Note that any goal
(also its negation) follows from an unsatisfiable (also called
inconsistent) set of axioms. Hence, consistency (or satisfia-
bility) checking is a critical task. According to this approach,
consistency is proved by effectively proving that there is no
inconsistency in Φ. Another technique consists in directly
building a model for Φ ∧ ¬φ. In this case, if there is no
model, then we can decide that Φ ∧ ¬φ is inconsistent. The
major drawback of the above two approaches comes from the
fact that the satisfiability problem of FOL is semi-decidable.
As a consequence, refutation-based techniques are able to
find a refutation when it does exist. Otherwise, when there
is no refutation, the system may never terminate (i.e. it does
not answer) if the refutation search space is infinite. Addi-

22Belief, Desires and Intentions
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tionally, a model for a satisfiable set of axioms may also be
infinite. Note that the construction of an infinite model that
is not finitely representable requires an infinite process.

There is a large library of standard benchmark examples
– the Thousands of Problems for Theorem Provers (TPTP)
(Sutcliffe, 2009) – that has allowed significant progress on
the efficiency and accuracy of the many systems imple-
mented. The TPTP Library is used in the CADE ATP Sys-
tem Competition (CASC) (Pelletier et al., 2002; Sutcliffe &
Suttner, 2006), which evaluates the performance of FO theo-
rem provers. In this competition, some of the most success-
ful systems are Vampire (Riazanov & Voronkov, 2002) and
E-Prover (Schulz, 2002) (which are refutation-based auto-
mated theorem provers), and Darwin (Baumgartner, Fuchs,
& Tinelli, 2006), Paradox (Claessen & Sörensson, 2003)
and iProver (Korovin, 2008) (which try to find a model for
the given theory). Some other systems, such as MetaProver
(Streeter, Golovin, & Smith, 2007) and SinE23 (Hoder &
Voronkov, 2011) (the winning system of the SMO category
in the 2009 edition of CASC and integrated in the last ver-
sions of Vampire), are based on the above systems, mainly
Vampire and E-Prover, but implement different resolution
strategies, especially related to axiom selection. Since them,
many other systems have also adopted similar strategies.
Apart from the CASC competition, it is worth mentioning
the Mace4 (that searches for finite models of first-order for-
mula) and Prover9 (refutation-based) systems, which are the
successors of Mace2 (McCune, 2001) and Otter (McCune &
Wos, 1997), respectively.

In our research work, we have tested (and used) all the
above-mentioned systems, mainly the Vampire and E-Prover
systems. We have translated a large part of SUMO into a
set of FO axioms, which is the FO ontology used as input
for a theorem prover. In general, we have two options when
running a FO theorem prover regarding execution time. Ac-
cording to the first option, the user sets no time limit. Hence,
if the ontology is satisfiable, then the system may not termi-
nate. According to the second option, we specify a limit on
execution time and thus the system always finishes, although
the answer could be “time limit expired”. In both cases, if
the theorem prover finds a refutation, then we have a for-
mal proof of the existence of an inconsistency, which helps
us debugging the ontology. On the contrary, if the theorem
prover finds a model, then we have a proof that the ontology
is consistent. Otherwise (no proof and no model), we receive
no information from the theorem prover. For our purposes,
we expect the theorem prover to find inconsistencies until
no more inconsistency arises. However, finding a model is
a hard task for current theorem provers. Thus, proving the
consistency of the ontology is out of the scope of this work.
In this sense, the work presented in (Kutz & Mossakowski,
2011) provides a plausible natural direction for future work
in order to provide a consistency proof for Adimen-SUMO.

Detecting Inconsistencies

A FO theorem prover allows to detect inconsistencies in
FO ontologies and, furthermore, to analyse the trace of the
inconsistency proof (refutation) to discover the axioms that
cause the inconsistency. In this section, we illustrate this
process and provide some examples. In these examples, we
point out some SUMO axioms that were in conflict and the
solution we adopted to avoid exactly the mentioned conflict.
In this sense, we should warn that the solutions described
in this section are still preliminary and that further transfor-
mations are required, as described in Section “Translating
SUMO into First-Order Logic”, in order to avoid other non-
desirable inferences (even inconsistencies).

The procedure we have used for finding inconsistencies in
the ontology can be sketched as follows:

1. An automated procedure translates a large part of
SUMO (and discharges the remaining axioms).

2. Then, the whole resulting formula is given (as input) to
a theorem prover for automatically finding an inconsistency
(that is, without providing a goal).

3. When a refutation is found, the theorem prover pro-
vides a description of the proof, from which we select the
collection of axioms involved in that refutation.

4. With the help of theorem provers (for example, for find-
ing minimal inconsistent subcollections of axioms), we iden-
tify the source of the inconsistency and repair it.

5. Once we repair the problem, the process is repeated
from the beginning.

In the following subsections, we describe two types of
inconsistencies that require different reasoning capabilities
to detect and correct them. Firstly, in Subsection “Simple
Inconsistencies”, we describe a kind of inconsistency that
could also be detected using more simple tools than FO theo-
rem provers and that are simple to correct. Secondly, finding
the kind of inconsistency described in Subsection “Complex
Inconsistencies” requires FO theorem proving, and correct-
ing the involved axioms is not trivial since it directly affects
some design decisions.

Simple Inconsistencies

The first kind of inconsistency corresponds to incompati-
bilities in the structure of classes of SUMO. Instead of using
FO theorem provers, more efficient tools and reasoners can
be used for detecting those inconsistencies, as it is done for
example in Protégé24 with the automatic reasoners Fact++

(Tsarkov & Horrocks, 2006) and Pellet (Sirin et al., 2007).
In our case, the following inconsistency was detected us-

ing FO theorem provers by just keeping the facts involv-
ing disjoint, subclass and instance predicates, together with
the common axiomatization of disjoint, subclass (reflexivity,

23http://www.cs.manchester.ac.uk/~hoderk/sine
24http://protege.stanford.edu/
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Figure 3. An Example of Complex Inconsistency.

# KIF Axioms FO Formulas

1. (<=> (disjoint ?CLASS1 ?CLASS2) ∀x1∀x2 ( dis joint(x1, x2)↔ ( instance(x1,NonNullS et) ∧
(and (instance ?CLASS1 NonNullSet) instance(x2,NonNullS et) ∧

(instance ?CLASS2 NonNullSet) ∀y ¬[ instance(y, x1) ∧ instance(y, x2) ] ) )
(forall (?INST)

(not (and (instance ?INST ?CLASS1)
(instance ?INST ?CLASS2))))))

2. (<=> (instance ?ABS Abstract) ∀x ( instance(x, Abstract)↔ ¬∃y ( located(x, y) ∨
(not (exists (?POINT) (or (located ?ABS ?POINT) time(x, y) ) )

(time ?ABS ?POINT)))))

3. (<=> (instance ?PHYS Physical) ∀x ( instance(x, Physical)↔ ∃y1∃y2 ( located(x, y1) ∧
(exists (?LOC ?TIME) (and (located ?PHYS ?LOC) time(x, y2) ) )

(time ?PHYS ?TIME))))

4. (=> (and (subclass ?X ?Y) ∀x∀y∀z ( ( subclass(x, y) ∧ instance(z, x) )→ instance(z, y) )
(instance ?Z ?X))

(instance ?Z ?Y))

5. (subclass NonNullSet SetOrClass) subclass(NonNullS et, S etOrClass)

6. (subclass Region Object) subclass(Region,Ob ject)

7. (subclass Object Physical) subclass(Ob ject, Physical)

8. (subclass SetOrClass Abstract) subclass(S etOrClass, Abstract)

9. (disjoint Indoors Outdoors) dis joint(Indoors,Outdoors)

10. (instance Outdoors Region) instance(Outdoors,Region)

transitivity) and instance (inheritance through subclass). The
axioms in conflict are:25

(instance Gray SecondaryColor)

(instance Gray SystemeInternationalUnit)

According to SUMO knowledge, the class SecondaryColor
is a subclass of Attribute and SystemeInternationalUnit is a
subclass of Quantity. In both cases, the transitive property of
subclass should be used in the inference. Further, the classes
Attribute and Quantity are inferred to be disjoint. Hence-
forth, the inconsistency is detected, because Gray cannot be
a common instance of two disjoint classes.

After advising about this inconsistency to the developers
of SUMO, it was corrected in Mid-level-ontology.kif version
1.44 by replacing the above first axiom with

(instance GrayColor SecondaryColor).

Complex Inconsistencies

An example of more substantial bugs that can be found
using theorem provers is given in Figure 3.26 From that set
of axioms, a theorem prover can infer falsehood or inconsis-
tency. Analysing the proof provided by the theorem prover

(see Appendix A), we extract the following trace:

a. instance(Outdoors,NonNullS et) [1, 9]

b. instance(Outdoors, S etOrClass) [4, 5, a]

c. instance(Outdoors, Abstract) [4, 8, b]

d. ∀x ( ¬located(Outdoors, x) ) [2, c]

e. instance(Outdoors,Ob ject) [4, 6, 10]

f . instance(Outdoors, Physical) [4, 7, e]

g. ∃x ( located(Outdoors, x) ) [3, f ]

h. ⊥ [d, g]

In summary, it is easy to see that formula d is the negation
of formula g. These two formulas are obtained from Axioms
2 and 3 respectively since Outdoors is an instance of both
Abstract and Physical: on one hand, Outdoors is an instance
of Physical because it is also an instance of Region; on the

25Extracted from Merge.kif version 1.36.
26Axioms 1-8 are extracted from Merge.kif version 1.21 and Ax-

ioms 9-10 from Mid-level-ontology.kif version 1.26.
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Figure 4. Translation of First-Order Axioms.

KIF Axiom FO Formula

(=> (immediateInstance ?ENTITY ?CLASS) ∀x1∀x2 ( immediateInstance(x1, x2)→
(not (exists (?SUBCLASS) ¬∃y ( subclass(y, x2) ∧ ¬(y = x2) ∧ instance(x1, y) ) )

(and (subclass ?SUBCLASS ?CLASS)
(not (equal ?SUBCLASS ?CLASS))
(instance ?ENTITY ?SUBCLASS)))))

other hand, Outdoors is an instance of Abstract because it is
also an instance of NonNullSet.

In set theory, the empty set is disjoint from any other set.
Hence, we decided to replace Axiom 1 with the following
one

(<=>
(disjoint ?CLASS1 ?CLASS2)
(forall (?INST)

(not
(and

(instance ?INST ?CLASS1)
(instance ?INST ?CLASS2)))))

as suggested to the developers of SUMO and introduced in
Merge.kif version 1.22. This replacement repairs the incon-
sistency. 27

Translating SUMO into First-Order Logic

In this section, we introduce the main contribution of this
work, which is a translation of a large part of SUMO into a
FOL formula. The translation is explained in four steps, each
of them focusing on a different kind of axiom. Additionally,
we compare our solutions for each case with the ones pro-
posed by other works that can be found in the literature. In
particular, with the proposal in (Pease & Sutcliffe, 2007) –
which partially includes some of our suggestions to the au-
thors – and with TPTP-SUMO.

We describe our translation of SUMO in the follow-
ing four subsections. In the first subsection, we describe
the translation of first-order axioms, which is the simplest
case. In the second subsection, we explain the translation of
second-order axioms. The translation of axioms containing
row variables is described in the third subsection. Finally, in
the last subsection, we explain a suitable translation of the
type information contained in SUMO, which also requires
some additional transformation of the information in the on-
tology. We have developed a program which implements the
four translation steps. The result of this automatic transla-
tion process is Adimen-SUMO, which is described in Section
“Adimen-SUMO”.

First-Order Axioms

The translation of first-order axioms in SUMO is straight-
forward since it simply requires a syntax transformation. In
Figure 4, we illustrate the transformation by means of the
axiom that characterizes the concept of immediateInstance.

In SUMO, around 71% (5580 of 7787) of all axioms can
be translated in this direct way.

Second-Order Axioms

The standard semantics of SOL interprets an n-ary pred-
icate symbol by any possible subset of n-tuples of values of
the discourse domain. Under this standard semantics, SOL
is incomplete. That is, there is no deductive calculus able to
derive all theorems. Since FOL has a complete calculus,28

it is obvious that SOL, under standard semantics, cannot be
translated into FOL. However, there is a well-known transla-
tion of SOL into FOL (see (Manzano, 1996) for a detailed ex-
planation of this translation) which preserves a non-standard
semantics – called Henkin semantics (Henkin, 1950) – that
interprets predicate symbols as any definable set of n-tuples.
Therefore, SOL under Henkin semantics is less expressive
than SOL under standard semantics, but it is complete. The
basic idea for translating SO formulas into FO ones is to
use a collection of predicates holdsk, where k ≥ 2 stands
for the arity of the predicate.29 Using these predicates, any
atom P(t1, . . . , tn) where P is a variable is translated into
holdsn+1(P, t1, . . . , tn). However, in order to preserve Henkin
semantics, an infinite collection of FO axioms, called com-
prehension axioms, should be added to the axiomatization.
Roughly speaking, comprehension axioms characterize the
predicate holdsk. Of course, this is a great limitation for au-
tomated reasoning.

However, ontologies are finite theories over a finite alpha-
bet and the intended meaning of a second-order KIF axiom

27Axiom 10 has been replaced with (subclass Outdoors Region)
in the latest versions of Mid-level-ontology.kif to make it consistent
with type information.

28Its semi-decidability is caused by the non-existence of an algo-
rithm (implementing a complete deduction calculus) which always
finishes stating whether its input is or is not deducible.

29In old versions of SUMO (until Merge.kif version 1.27), a vari-
able arity predicate holds was used to express second-order features.
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Figure 5. Translation of Second-Order Axioms.

KIF Axioms FO Formulas

(<=> Adimen-SUMO:
(instance ?REL SymmetricRelation) ∀x1∀x2 ( relative(x1, x2) ↔ holds3(relative′, x1, x2) )
(forall (?INST1 ?INST2) ∀x ( instance(x, S ymmetricRelation) ↔

(=> ∀y1∀y2 ( holds3(x, y1, y2) → holds3(x, y2, y1) ) )
(?REL ?INST1 ?INST2) instance(relative′, S ymmetricRelation)
(?REL ?INST2 ?INST1))))

(Pease & Sutcliffe, 2007):
(instance relative SymmetricRelation) ∀x ( holds3(instance, x, S ymmetricRelation) ↔

∀y1∀y2 ( holds3(x, y1, y2) → holds3(x, y2, y1) ) )
holds3(instance, relative′, S ymmetricRelation)

TPTP-SUMO:
∀x1∀x2 ( relative(x1, x2) → relative(x2, x1) )
instance(relative′, S ymmetricRelation)

like the first one in Figure 5 is to assert (or infer) the property
∀x1∀x2 ( r(x1, x2) → r(x2, x1) ) for any predicate symbol r
defined to be an instance of SymmetricRelation (either di-
rectly or as a logical consequence). For example, as stated
by the second KIF axiom in Figure 5:

∀x1∀x2 ( relative(x1, x2)→ relative(x2, x1) )

From a semantic point of view, this translation is equivalent
to dealing with structures that comprise an arbitrary set of
relations of the domain for interpreting predicate symbols of
the alphabet, instead of all the relations that are definable in
the domain (like in Henkin semantics) or all possible rela-
tions in the domain (like in standard semantics). In some
sense, this means to interpret second-order KIF axioms as
meta-axioms or axiom schemas. For this purpose, we use
the so-called reflection axioms (Feferman, 1962), which ax-
iomatize the predicate holdsk in a finite way, by relating each
predicate to a single constant symbol. In this way, we can
use predicate symbols as usual, while predicates are replaced
with their corresponding constant symbols when used as ar-
guments of the predicates holdsk.

This is the approach that we follow in the first transforma-
tion step of our proposal, which can be described as follows
(by now, row variables are treated as standard variables).

1. For each n-ary predicate symbol r in the alphabet of the
ontology, a reflection axiom of the form

∀x1 . . .∀xn ( r(x1, . . . , xn)↔ holdsn+1(r′, x1, . . . , xn) )

is added, where r′ is a new constant symbol associated to r.
2. Every atom of the form

(?REL ?INST1 . . . ?INSTn)

in any KIF axiom is replaced with

(holdsn+1 ?REL ?INST1 . . . ?INSTn).

3. Every occurrence of a predicate symbol r acting as an
argument is replaced with r′.

Note that the use of a new constant symbol (r′) that is asso-
ciated to each predicate symbol (r) in the ontology allows us
to express reflection using a FO formula while retaining its
deductive power.

In Figure 5, we provide the formula that is obtained us-
ing our transformation with the characterization of Symmet-
ricRelation, where the constant relative′ is associated to the
predicate relative (the two other depicted proposals will be
commented in the next paragraph). We would like to remark
that in the portion of SUMO that we translate, the number of
relations is 517, which is the number of reflection axioms that
our transformation introduces. Additionally, only 24 axioms
require the use of predicates holdsk.

In (Pease & Sutcliffe, 2007), the authors also propose to
use predicates holdsk in order to translate SO axioms into
FO formulas. However, their proposal is completely differ-
ent from ours since they use the predicates holdsk to translate
all the atoms. In other words, they do not restrict the use of
predicates holdsk to atoms with variable predicates. Thus,
holdsk are the only predicate symbols in the translated on-
tology. This fact is illustrated by the example in Figure 5.
This exhaustive use of predicates holdsk makes it unneces-
sary to provide reflection axioms, but at the same time theo-
rem provers cannot benefit from the heuristics that are based
on the defined relations. For example, a simple and efficient
axiom selection strategy can be implemented on the basis of
a graph of relation dependences (Schlicht & Stuckenschmidt,
2007; Stuckenschmidt & Schlicht, 2009). According to that
strategy, only the axioms with relations depending on rela-
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Figure 6. Row Variable Elimination

# KIF Axioms FO Formulas

1. (<=>

(partition @ROW) ∀x1∀x2∀x3 ( partition3(x1, x2, x3) ↔
(and ( exhaustiveDecomposition3(x1, x2, x3) ∧

(exhaustiveDecomposition @ROW) dis jointDecomposition3(x1, x2, x3) ) )
(disjointDecomposition @ROW))) ∀x1∀x2∀x3∀x4 ( partition4(x1, x2, x3, x4) ↔

( exhaustiveDecomposition4(x1, x2, x3, x4) ∧
dis jointDecomposition4(x1, x2, x3, x4) ) )

2. (partition Entity Physical Abstract) partition3(Entity, Physical, Abstract)

3. (partition Number RealNumber ImaginaryNumber partition4(Number,RealNumber, ImaginaryNumber,ComplexNumber)
ComplexNumber)

tions that occur in the goal to be solved are selected. If
only holdsk predicates are used, then the dependence anal-
ysis on relations cannot be performed. More sophisticated
and time-consuming strategies are required for the proposal
of (Pease & Sutcliffe, 2007), as the ones presented in (Hoder
& Voronkov, 2011).

On the contrary, in TPTP-SUMO predicates holdsk are not
used since axioms with variables as predicates are used as
axiom schemes. That is, variable predicates are instantiated
to every possible value defined in the ontology, yielding an
axiom for each value. The set of TPTP-SUMO formulas
that is obtained from the example of SymmetricRelation is
given in Figure 5. Applying this transformation to the por-
tion of SUMO that is translated in this paper, the number of
resulting additional axioms is more than 12000 (24 axioms
that use a variable predicate and more than 500 relations).
It is important to remark that the total number of axioms in
Adimen-SUMO is actually less than 8000. Additionally, the
collection of axioms in TPTP-SUMO can be derived from
Adimen-SUMO by logical consequence. For instance, it suf-
fices to see that the formula ∀x1∀x2 ( relative(x1, x2) →
relative(x2, x1) ) can be deduced from the Adimen-SUMO
formulas in Figure 5, since there exists an identical deduction
that works for any defined relation r.

Row Variables

In FOL, it is assumed that every predicate and function
symbol is used with just one arity and, in addition, predicate
and function symbols are disjoint. This is just a syntactic re-
striction that can be fulfilled when using FO theorem provers
by just conveniently renaming predicates/functions. How-
ever, in KIF, some predicate/function symbols are implicitly
used with several arities by means of row variables that can
be instantiated to tuples of variables of distinct length. This is
the case with the axioms in Figure 6. In Axiom 1, the pred-
icate partition is used with the row variable @ROW, where
@ROW stands for a tuple of variables with arbitrary size. Ad-

ditionally, partition is used with arities 3 and 4 in the last two
axioms.

Thus, the predicates in the last two axioms must be distinct
according to FOL syntax. However, the characterization of
both predicates (with arities 3 and 4) is given by means of a
single axiom (Axiom 1). This is possible in KIF thanks to
the possibility of using row variables.

In TPTP-SUMO, row variables are converted into single
variables, where the number of single variables varies from
one to seven. For example, the above characterization of par-
tition that uses a row variable is translated in TPTP-SUMO
as follows:

∀x1 ( partition1(x1)↔
( exhaustiveDecomposition1(x1) ∧
dis jointDecomposition1(x1) ) )

∀x1∀x2 ( partition2(x1, x2)↔
( exhaustiveDecomposition2(x1, x2) ∧
dis jointDecomposition2(x1, x2) ) )

· · ·

∀x1∀x2∀x3∀x4∀x5∀x6∀x7 (
partition7(x1, x2, x3, x4, x5, x6, x7)↔
( exhaustiveDecomposition7(x1, x2, x3, x4, x5, x6, x7) ∧
dis jointDecomposition7(x1, x2, x3, x4, x5, x6, x7) ) )

In the same way, in (Pease & Sutcliffe, 2007) row variables
are expanded from 1 to a given number of variables. This
translation produces many predicates that are never used in
the ontology. A good example is partition1 in the above set
of formulas, which indeed defines a non-sense relation: the
partition of a class into an empty subset of classes.

In order to avoid the introduction of useless formulas, our
approach to translating KIF axioms with row variables (into
FO formulas) uses the following iterative process. For each
predicate symbol r used in some KIF axiom with row vari-
ables, we proceed as follows.30 First, our translation process

30The translation of function symbols follows the same steps.
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Figure 7. Definition of Variable Arity Predicates

# SUMO Adimen-SUMO

1. (=> (disjointDecomposition ?CLASS @ROW) (forall (?CLASS @ROW)
(forall (?ITEM1 ?ITEM2) (<=> (disjointDecomposition ?CLASS @ROW)

(=> (and (inList ?ITEM1 (ListFn @ROW)) (@and (@ROW ?CLASS1 @TAIL)
(inList ?ITEM2 (ListFn @ROW)) (@and (@TAIL ?CLASS2 @_)
(not (equal ?ITEM1 ?ITEM2))) (disjoint ?CLASS1 ?CLASS2)))))

(disjoint ?ITEM1 ?ITEM2)))))

2. (=> (inList ?ITEM ?LIST)
(exists (?NUMBER)

(equal (ListOrderFn ?LIST ?NUMBER) ?ITEM)))

3. (=> (and (instance ?LIST1 List)
(instance ?LIST2 List)
(forall (?NUMBER)

(equal (ListOrderFn ?LIST1 ?NUMBER)
(ListOrderFn ?LIST2 ?NUMBER))))

(equal ?LIST1 ?LIST2))

determines all the possible arities of r. The set of possible
arities of a predicate symbol r is given by the arities of atoms
with predicate symbol r that do not contain row variables.
Then, every axiom containing atoms with predicate symbol r
and one row variable (two row variables in one atom are not
allowed) is replaced by an axiom for each possible arity n of
r. In the new axioms, the arity of atoms with root predicate
r has to be at most n. For this purpose, the row variable
is replaced with a tuple of variables of the adequate length,
which is determined by n and the arity of the predicate in
which the row variable occurs. For example, if r is used with
arity 4 and there are two more terms in the atom that con-
tains a row variable, then the length of the tuple of variables
is 4 − 2 = 2. We proceed in this way until all of the row
variables are eliminated. Note that, after this transformation,
it is necessary to rename the predicate symbols that are used
with several arities (if any) due to the above-mentioned FOL
notational convention.31

For example, the result of translating the previous set of
axioms containing row variables is given in Figure 6. In
these axioms, the predicate partition is used with arities 3
and 4 in the second and third axioms, respectively. Thus, the
first axiom is replaced with two axioms, one for each arity of
partition. Further, since @ROW is the only term in the atom
(partition @ROW) of the first axiom, in the new axioms @ROW
is replaced with a tuple of 3 and 4 variables, respectively.

In the portion of SUMO translated in this work, 56 axioms
contain row variables.

However, a suitable use of row variables also requires ad-
ditional transformation in SUMO. The problem is related to
the characterization of predicates that take row variables as
arguments. In Figure 7, we compare the current characteri-

zation of the variable arity predicate disjointDecomposition
in SUMO with our proposal in Adimen-SUMO. In SUMO,
disjointDecomposition is characterized in Axiom 1 using the
predicate inList. The axiomatization of inList in Axiom 2
essentially characterizes inList as an irreflexive and asym-
metric binary predicate in terms of the function ListOrderFn.
In the same way, the partial binary function ListOrderFn is
poorly axiomatized by Axiom 3. This axiomatization of List-
OrderFn is not enough for deducing its basic properties. For
example, the following assertion cannot be deduced

∀x1∀x2∀x3 ( ListOrderFn(ListFn(x1, x2, x3), 2) = x2 )

where ListFn is a variable-arity function that returns the list
with all the subterms as elements. As a consequence, the
function ListOrderFn and also the predicates inList, disjoint-
Decomposition and partition (and several others) do not pro-
duce the expected results. In the proposal of (Pease & Sut-
cliffe, 2007) and in TPTP-SUMO, this problem remains un-
solved. For example, since partition is only partially charac-
terized in TPTP-SUMO, the axiom

(partition Organism Animal Plant Microorganism)

does not define a real partition. In particular, an instance of
Organism could simultaneously be an instance of both Ani-
mal and Plant.

We overcome this problem by providing specific operators
to deal with row variables: the row operators @and and @or,
which take 3 variables as arguments (2 row variables and a

31Additionally, it is also necessary to generate the type informa-
tion for the new predicates (see Subsection “Translation of Type
Information”).
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Figure 8. Axiomatization of domain and domainSubclass

Type Information in SUMO

(=>
(and (domain ?REL ?NUMBER ?CLASS)

(?REL @ROW))
(instance (ListOrderFn (ListFn @ROW ?NUMBER)) ?CLASS))

(=>
(and (domainSubclass ?REL ?NUMBER ?CLASS)

(?REL @ROW))
(subclass (ListOrderFn (ListFn @ROW ?NUMBER)) ?CLASS))

single variable). An example of the usage of row operators
is given in Figure 7 in the characterization of disjointDecom-
position. These operators are a kind of iterator that enable us
to iteratively process each element in the row variable. The
first element (head) in the row variable that occurs in the first
argument of a row operator can be addressed using the sec-
ond argument of the row operator and the remaining elements
(@TAIL) are addressed in the third argument, which allows
for recursive definitions.32 Thus, an @and (resp. @or) for-
mula is translated into a conjunction (resp. disjunction) of
formulas, one for each element in the row variable occurring
in the first argument. For example, when the row variable
@ROW in Figure 7 is instantiated to a tuple of 3 variables, the
formula that results from Axiom 1 in Adimen-SUMO is

∀x∀y1∀y2∀y3 ( dis jointDecompostion4(x, y1, y2, y3)↔
( dis joint(y1, y2) ∧ dis joint(y1, y3) ∧ dis joint(y2, y3) ) )

Alternatively, we can maintain the original characterization
of disjointDecomposition in SUMO by using row operators
@and and @or to provide a suitable characterization of the
predicate inList and the function ListOrderFn.

Translation of Type Information

In SUMO, there is information that describes the signature
of each predicate. That is, the number and argument types of
each predicate. This type information is provided by means
of the predicates domain and domainSubclass (also the pred-
icates range and rangeSubclass for the values of functions),
which associate each argument of a predicate to a class. In
this way, arguments of predicates are restricted to be an in-
stance (a subclass in the case of domainSubclass) of its as-
sociated class. As it occurs with every other construct in
SUMO, those predicates are also axiomatized in SUMO (see
Figure 8). Thus, one possibility to deal with type informa-
tion in SUMO is to directly translate the axiomatization of
domain and domainSubclass as regular axioms. However, in
the current state of SUMO, a direct translation of this type
information produces unexpected inconsistencies. Next, we

Figure 9. Axiomatization of temporalPart

# Axioms

1. (domain temporalPart 1 TimePosition)

2. (domain temporalPart 2 TimePosition)

3. (domain time 1 Physical)

4. (domain time 2 TimePosition)

5. (<=> (instance ?ABS Abstract)
(not (exists (?POINT)

(or (located ?ABS ?POINT)
(time ?ABS ?POINT)))))

6. (instance temporalPart PartialOrderingRelation)

7. (<=> (temporalPart ?POS (WhenFn ?THING))
(time ?THING ?POS) )

8. (=> (and (subclass ?X ?Y)
(instance ?Z ?X))

(instance ?Z ?Y))

9. (subclass PartialOrderingRelation ReflexiveRelation)

10. (<=> (instance ?REL ReflexiveRelation)
(forall (?INST) (?REL ?INST ?INST)))

describe this problem in detail. Then, we propose an ap-
propriate translation of type information in SUMO, which
is based on the classical translation of many-sorted FO for-
mulas into one-sorted FO formulas. Finally, we describe a
structural design problem of SUMO that was discovered af-
ter applying our translation of type information.

Unexpected Results from the Direct Translation of
Type Information in SUMO. Applying a direct transla-
tion to the SUMO axioms, the automatic theorem provers re-
ported many inconsistencies. Surprisingly, these inconsisten-
cies involved semantically correct and well-written axioms.
The source of the problem was that a direct translation of
SUMO axioms without properly including type information
produces too strong formulas.33 Indeed, in some cases the re-
sulting formulas are even unsatisfiable (possibly in conjunc-
tion with other formulas). This is the case with the direct
translation of the axioms in Figure 9, that can be proved to
be unsatisfiable in the following way. First, the formula

instance(temporalPart,Re f lexiveRelation)

32@_ denotes an anonymous row variable, following the classical
Prolog notation.

33A formula φ is stronger than ψ if ψ is entailed by φ but not vice
versa. Likewise, φ is weaker than ψ if φ is entailed by ψ but not vice
versa.
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Figure 10. Translation of Type Information

# KIF Axioms FO Formulas

Domain axioms:

1. (domain exploits 1 Object) Axiom 7 without using domain information:
2. (domain exploits 2 Agent) ∀x∀y ( exploits(x, y)→ ∃z ( agent(z, y) ∧ resource(z, x) ) )
3. (domain agent 1 Process)
4. (domain agent 2 Agent) Axiom 7 using domain information:
5. (domain resource 1 Process) ∀x∀y ( ( instance(x,Ob ject) ∧ instance(y, Agent) ) →
6. (domain resource 2 Object) ( exploits(x, y) → ∃z ( instance(z, Process) ∧

agent(z, y) ∧
Rule axioms: resource(z, x) ) ) )

7. (forall (?OBJ ?AGENT)
(=>

(exploits ?OBJ ?AGENT)
(exists (?PROCESS)

(and
(agent ?PROCESS ?AGENT)
(resource ?PROCESS ?OBJ)))))

is a logical consequence of Axioms 6, 8 and 9. Thus, by
Axiom 10, we get

∀x ( temporalPart(x, x) ).

From the above formula and Axiom 7, it follows that

∀x ( time(x,WhenFn(x)) )

which, along with Axiom 5, turns out that

∀x ( ¬instance(x, Abstract) ).

Finally, this formula yields an inconsistency for
each instance of Abstract defined in SUMO, e.g.
instance(YearDuration, Abstract). It is easy to see that
the formulas obtained from Axioms 1-4 (which provide the
type information about temporalPart and time) have not
been used. Thus, the direct translation as regular axioms of
type information does not solve the problem.

Next, we describe a translation of type information in
SUMO that produces weaker formulas for Axioms 5-10. In-
deed, our translation of these axioms allows to deduce the
disjointness of the classes Abstract and Physical, but not the
emptiness of Abstract as the direct translation of type infor-
mation as regular axioms allows to infer.

Translation of Type Information into First-Order For-
mulas. A suitable translation of type information in SUMO
is the classical technique that transforms many-sorted FO
formulas into equivalent one-sorted FO ones. This tech-
nique is described in (Manzano, 1996). Following this pro-
posal, we first distribute universal/existential quantification
over conjunction/disjunction in every FO formula φ that re-
sults from the direct translation of KIF axioms.34 Then, for

each subformula ψ of the form ∀x(α) where α is any formula,
we infer the type of x according to the information provided
by predicates domain, domainSubclass, range and rangeSub-
class. Next
• if the type of x is instance of T , then ψ is replaced with

∀x ( instance(x,T )→ α ).

• if the type of x is subclass of T , then ψ is replaced with

∀x ( subclass(x,T )→ α ).

Similarly, for each subformula ψ of the form ∃x(α) where
α is any formula and according to the type information
provided by predicates domain, domainSubclass, range and
rangeSubclass
• if the type of x is instance of T , then ψ is replaced with

∃x ( instance(x,T ) ∧ α ).

• if the type of x is subclass of T , then ψ is replaced with

∃x ( subclass(x,T ) ∧ α ).

In Figure 10, we illustrate this transformation, comparing
the formula that results from our proposal (the second one)
with the formula that is obtained by direct translation (the
first one), which is weaker. Note that type information re-
stricts x to be an instance of Object by Axioms 1 and 6, y to
be an instance of Agent by Axioms 2 and 4, and z to be an

34Note that implication and equivalence can be interpreted as
Boolean combinations of disjunction and conjunction with nega-
tion.
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instance of Process by Axioms 3 and 5. In the same way, the
translation of Axiom 7 in Figure 9 using the type information
in Axioms 1-4 from the same figure gives the formula

∀x∀y ( ( instance(x,TimePosition) ∧
instance(y,TimeInterval) ) →

( temporalPart(x,WhenFn(y)) ↔ time(x, y) ) )

which is weaker than the direct translation of Axiom 7:

∀x∀y ( temporalPart(x,WhenFn(y))↔ time(y, x) )

Indeed, thanks to the instance guards, the above formula is
weak enough in order to prevent the inconsistency reported
above regarding the axiomatization of temporalPart. In gen-
eral, by means of the guards, the universal and existential
variables in axioms are correctly restricted to their domain,
whereas the (separately given) information about domains is
not used in deductions as already discussed.

It is worth to note that no type checking is performed be-
fore applying the above transformation. In particular, our
program does not check if some variable becomes to be in-
stance/subclass of two disjoint classes, which can be consid-
ered as a wrongly-typed variable. The effect of a wrongly-
typed variable varies depending on whether it is existential
or universal. Wrongly-typed existential variables yield an in-
consistency (the introduced axiom itself is unsatisfiable) that
can be easily detected using FO theorem provers. On the con-
trary, wrongly-typed universally quantified variables produce
tautologies of the form “False implies Formula”. Obviously,
those types of formulas are not useful for reasoning purposes
and, in particular, do not produce any inconsistency.

Regarding other proposals, TPTP-SUMO just performs a
direct translation of type information and, in (Pease & Sut-
cliffe, 2007), the authors describe a transformation that is
also intended to solve the problem of making usable the type
information in SUMO. However, their translation deals with
universally and existentially quantified variables in a uniform
way that is semantically incorrect. More specifically, impli-
cation is used to connect the guard with the original formula
also in the case of existential quantifiers. For example, for
each subformula ψ of the form ∃x(α) where α is any formula
and the type of x is instance of T , then ψ is replaced with

∃x ( instance(x,T )→ α )

which is trivially equivalent to

∃x ( ¬instance(x,T ) ∨ α ).

Thus, the existential quantifier can be distributed over dis-
junction, yielding

∃x ( ¬instance(x,T ) ) ∨ ∃x ( α )

where the second subformula is ψ. Obviously, this transfor-
mation does not properly employ type information.

Still, the axioms obtained using our transformation are not
usable for reasoning yet (that is, these axioms do not produce
the expected results), because of a self-referentiality problem
of SUMO that we explain in the next subsection.

Self-referentiality Problem. After translating SUMO
as explained in the above subsection, we realize that most
of the information that is intended to be defined in SUMO
cannot be inferred because of a self-reference problem. In
the following example, we illustrate this problem by show-
ing that Object cannot be inferred to be a subclass of Entity.
First, in SUMO Object is characterized as a subclass of Phys-
ical, and Physical as a subclass of Entity:

(subclass Object Physical)
(subclass Physical Entity)

Second, the predicate subclass is characterized as an instance
of PartialOrderingRelation, which is a subclass of Transi-
tiveRelation:

(instance subclass PartialOrderingRelation)
(subclass PartialOrderingRelation TransitiveRelation)

Furthermore, the next axiom establishes the relation between
the subclass and instance predicates:

(=>
(and

(subclass ?X ?Y)
(instance ?Z ?X))

(instance ?Z ?Y))

Using the following type information regarding subclass and
instance predicates

(domain subclass 1 SetOrClass)
(domain subclass 2 SetOrClass)
(domain instance 1 Entity)
(domain instance 2 SetOrClass)

the resulting FO formula is:

∀x∀y∀z ( ( instance(x, S etOrClass) ∧
instance(y, S etOrClass) ∧ instance(z, Entity) ) →
( subclass(x, y) ∧ instance(z, x) → instance(z, y) ) )

Since the predicate subclass is an instance of PartialOrder-
ingRelation and, additionally, PartialOrderingRelation is a
subclass of TransitiveRelation, from the above formula we
can infer that the predicate subclass is an instance of Tran-
sitiveRelation, provided that PartialOrderingRelation is an
instance of SetOrClass. However, PartialOrderingRelation
is not characterized in SUMO to be an instance of SetOr-
Class. Thus, the above formula cannot be used to infer that
the predicate subclass is an instance of TransitiveRelation
and, therefore, it does not follow that Object is a subclass
of Entity.
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In this way, much other information that is supposed to be
implicitly defined in SUMO cannot be inferred in practice.

A deeper analysis of this problem shows that its origin lies
in the fact that SUMO is defined in terms of SUMO. That
is, SUMO is self-referential in the sense that the predicates
used to structure the knowledge in SUMO – like subclass,
instance, etc. – are also axiomatized inside SUMO. The self-
referential nature of SUMO is illustrated by the following
axiom

(instance instance BinaryPredicate)

which is the only characterization of instance in the ontology.
Obviously, the above axiom is rejected by every FO theorem
prover, since it cannot be expressed in FOL. In every other
attempt to translate SUMO into FOL (in particular, in the
most recent (Pease & Sutcliffe, 2007)), the above axiom is
removed and instance becomes undefined, which blocks the
deductive process whenever some property of instance is re-
quired.

A very simple solution to this problem would be to distin-
guish between the meta-predicates $instance and $subclass,
which are used for the definition of the ontology, from
the predicates instance and subclass, which are defined in
SUMO. Note that $instance and $subclass form the minimal
set of predicates used for defining SUMO, since any other
predicate can be characterized in terms of them. That is, the
remaining “structural” predicates are expressible in terms of
$instance and $subclass. First, the predicate $dis joint is
expressed in terms of $instance as follows:

∀x∀y ( $dis joint(x, y)↔
∀z ¬( $instance(z, x) ∧ $instance(z, y) ) )

Similarly, the predicate $exhaustiveDecomposition is also
definable (see Appendix C). For example, the characteriza-
tion of $exhaustiveDecomposition for classes that are de-
composed in two subclasses is given by the following:

∀x∀y1∀y2 ( $exhaustiveDecomposition(x, y1, y2) ↔
∀z ( $instance(z, x) → ( $instance(z, y1) ∨

$instance(z, y2) ) ) )

Then, the predicates $dis jointDecomposition and
$partition can be expressed in terms of $dis joint and
$exhaustiveDecompostion. For example, for two sub-
classes, the axiom is:

∀x∀y1∀y2 ( $dis jointDecomposition(x, y1, y2) ↔
$dis joint(y1, y2) )

∀x∀y1∀y2 ( partition(x, y1, y2)↔
( $exhaustiveDecomposition(x, y1, y2) ∧

$dis jointDecomposition(x, y1, y2) ) )

Hence, the taxonomy of classes in an ontology is FO-
axiomatizable in terms of the predicates $instance and
$subclass.

Our proposal consists in translating the whole ontology
using a predefined schema. A detailed description of this
translation is given in Appendix C. This schema is just a
collection of axioms that is commonly used in most ontolo-
gies.35 The schema includes the basic predefined predicates
$instance, $subclass, $dis joint and $partition, which are
characterized as usual. Adding the axioms in this schema to
SUMO and replacing in the SUMO axioms the predicates
instance, subclass, disjoint and partition with $instance,
$subclass, $dis joint and $partition accordingly, all the re-
sulting axioms belong to FOL, also the axiom that character-
izes instance

($instance instance BinaryPredicate)

where a dollar (’$’) is used to mark the predefined predicate.
In this way, we obtain Adimen-SUMO, overcoming the self-
referentiality problem. Thus, it is now possible to transform a
large portion of the SUMO ontology into a set of FO axioms.
This solution exhibits one of the main advantages of using
FOL to work with ontologies: very simple foundations (or
base axiomatizations) are required to define the knowledge
described in an ontology. The self-referentiality of SUMO
is not mentioned in (Pease & Sutcliffe, 2007). However,
the translation in TPTP-SUMO overcomes this problem by
means of an axiom that explicitly asserts that every class de-
fined in the ontology is an instance of SetOrClass. Obvi-
ously, this is an ad-hoc solution that, depending on the on-
tology, could cause serious problems (for example, unsatisfi-
ability if objects and classes are assumed to be disjoint). On
the contrary, our solution respects the structural foundations
of any taxonomy. Hence, it could be applied to any other
ontology, independently of its design or the information that
is contained.

Adimen-SUMO

Adimen-SUMO is obtained in a fully automatic way by
a translator which, in particular, detects the type of axioms
to be processed and the transformations to be applied. Re-
garding the order in which the transformation steps are ap-
plied, firstly our program transforms second-order axioms
into first-order axioms. Next, row variables are eliminated,
which also yields first-order axioms. Then, our system trans-
lates type information, eliminating the self-referential prob-
lem of SUMO by means of the predefined predicates. Fi-
nally, all the resulting axioms are written in TPTP syntax.
As a result of this process, around 88% of the original SUMO
(files Merge.kif version 1.78 and Mid-level-ontology.kif ver-
sion 1.114) axioms have been automatically translated solv-
ing all the problems described in this paper.

35We use the word schema because different formulas are ob-
tained from our predefined set of axioms depending on the infor-
mation in the ontology, due to the use of row operators.
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Figure 11. Implicit Knowledge in Adimen-SUMO

Goals

a. “Plants do not suffer from headache”:
(=>

(attribute ?OBJ Headache)
(not

(instance ?OBJ Plant)))

b. “The child of an animal cannot be a plant’:
(=>

(and
(instance ?PARENT Animal)
(parent ?CHILD ?PARENT))

(not
(instance ?CHILD Plant)))

c. “Plants cannot breathe”:
(=>

(instance ?PLANT Plant)
(not

(capability Breathing experiencer ?PLANT)))

d. “Carnivores do not eat plants”:
(=>

(and
(instance ?CARNIVORE Carnivore)
(instance ?EATING Eating)
(agent ?EATING ?CARNIVORE)
(patient ?EATING ?FOOD))

(not
(instance ?FOOD Plant)))

By means of this suitable translation of SUMO, we were
able to find many inconsistencies like the ones described in
Section “Detecting Inconsistencies”. We finished correcting
SUMO when no more inconsistencies arose from Adimen-
SUMO.36 Thus, Adimen-SUMO could be used by FO theo-
rem provers to establish formal reasoning about the proper-
ties and relations of the classes defined by the ontology.

There exist many examples of knowledge that can be in-
ferred using Adimen-SUMO that cannot be obtained using
previous FO translations of SUMO. For instance, any prop-
erty that is a consequence of the axiomatizations of lists
or the predicate partition cannot be inferred from TPTP-
SUMO. Actually, TPTP-SUMO explicitly asserts some ax-
ioms that should be inferred – hence, it should be implicit
knowledge – as a way of repairing this limitation of the trans-
lation. An example is the axiom stating the transitivity of the
subclass relation (see Subsection “Translation of Type Infor-
mation: Self-referentiality Problem”).

In fact, as explained in Section “Introduction” with the
brain-plant example, we plan to exploit Adimen-SUMO in a
broad set of knowledge intensive applications. For example,

to increase the knowledge contained in WordNet by inferring
large volumes of appropriate semantic properties and rela-
tions between WordNet synsets. In Figure 11, we provide
additional examples of implicit knowledge that can be in-
ferred from Adimen-SUMO (but neither from TPTP-SUMO
nor from (Pease & Sutcliffe, 2007) proposals) to illustrate
its current reasoning capabilities. Next, we describe these
examples in detail:
• The plant-headache example (Figure 11.a): “Plants

do not suffer from headache” follows from Adimen-SUMO
since for suffering from headache it is necessary to have a
head:

(=>
(attribute ?E Headache)
(exists (?H)

(and
(instance ?H Head)
(part ?H ?E)
(attribute ?H Pain))))

• The parent-child example (Figure 11.b): “The child of
an animal cannot be a plant” since:

(=>
(and

(parent ?CHILD ?PARENT)
(subclass ?CLASS Organism)
(instance ?PARENT ?CLASS))

(instance ?CHILD ?CLASS))
• The plant-breathing example (Figure 11.c): “Plants

cannot breathe” can be proved because Adimen-SUMO
states that the act of breathing requires to have lungs:

(=>
(capability Breathing experiencer ?OBJ)
(exists (?LUNG)

(and
(component ?LUNG ?OBJ)
(instance ?LUNG Lung))))

• The carnivore-eat-plant example (Figure 11.d): “Car-
nivores do not eat plants” follows from Adimen-SUMO since
carnivores exclusively eat animals:

(=>
(and

(instance ?CARNIVORE Carnivore)
(instance ?EAT Eating)
(agent ?EAT ?CARNIVORE)
(patient ?EAT ?PREY))

(instance ?PREY Animal))
The fact that this kind of implicit knowledge is really in-

ferred from Adimen-SUMO confirms that, despite the inher-
ent design problems of SUMO, we have been able to create

36That is, current FO theorem provers are not able to find any
inconsistency running for a few days, but there is no proof of the
existence of a model.
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a fully operational version of the ontology by exploiting the
current capabilities of FO theorem provers.

Regarding the performance of current FO theorem provers
working with Adimen-SUMO and using a standard 64-bit
Intel R© CoreTM i3-2100 CPU @ 3.10GHz desktop machine
with 4Gb of ram memory, the brain-plant example (see Fig-
ure 1) is solved in less than 19 seconds, the plant-headache
example (Figure 11.a) in less than 193 seconds, the parent-
child (Figure 11.b) example in less than 57 seconds, the
plant-breathing (Figure 11.c) example in less than 762 sec-
onds, and the carnivore-eat-plant example (Figure 11.d) in
less than 194 seconds.

Concluding Remarks

Knowledge representation is a very old field in Artificial
Intelligence. There is a tight connection between the formal-
ism for representing knowledge and the inferencing capabil-
ities supported by the formalism.

Although OWL-DL is a very common formal knowledge
representation formalism, it is unable to cope with expressive
ontologies like SUMO. The development of more expressive
ontology languages requires the use of theorem provers able
to reason with full first-order logic (FOL) and even its exten-
sions (Horrocks & Voronkov, 2006).

Fortunately, state-of-the-art theorem provers for FOL are
highly sophisticated and efficient systems allowing its poten-
tial application in Natural Language Processing, Knowledge
Engineering, Semantic Web infrastructure, etc.

Moreover, lately a growing interest on FO theorem prov-
ing is arising. For instance, the work presented in (Tsarkov,
Riazanov, Bechhofer, & Horrocks, 2004) explores the feasi-
bility of using FO theorem provers to compute the inferences
that DL (Description Logic) reasoners cannot handle. In an-
other work (Schneider & Sutcliffe, 2011), the authors pro-
pose a translation of a fragment of OWL 2 Full (Schneider,
2009) into FOL with the purpose of using automated theorem
provers to do reasoning on OWL 2 Full ontologies. They
also evaluate the results in an experimental way using differ-
ent FO automated theorem provers. The results indicate that
this approach can be applied in practice for effective OWL
reasoning and offers a viable alternative to current Seman-
tic Web reasoners. In (Ramachandran, Reagan, & Goolsbey,
2005), the authors provide a translation of the Cyc ontol-
ogy into FOL and report experimental results using differ-
ent theorem provers (as well as the Cyc inference engine)
for reasoning in the resulting FO theory. The main objec-
tive of (Baumgartner & Suchanek, 2006) is to use existing
logic programming model generation systems for checking
the consistency of FO ontologies. To this end, a translation
from FO ontologies into disjunctive logic programs is pro-
posed.

In this paper, we have presented the development of
Adimen-SUMO, an operational off-the-shelf first-order on-

tology. Our main interest is to illustrate in a practical way
the use of first-order theorem provers as inference engines
for reengineering a large and complex ontology. In partic-
ular, we have concentrated our efforts on studying, revis-
ing and improving SUMO (Niles & Pease, 2001b) by us-
ing Vampire (Riazanov & Voronkov, 2002) and E-Prover
(Schulz, 2002). Our main contributions can be summarized
as follows. Firstly, we have described in detail the use of
FO theorem provers for the fully automatic detection of in-
consistencies and also for its correction. Secondly, we have
proposed suitable translations into FOL of second order ax-
ioms (by means of predicates holdsk and reflection axioms),
type information (using guards) and variable-length struc-
tures such as row variables (introducing row operators). Fi-
nally, we have detected and repaired some important de-
sign flaws in SUMO (undefined list predicates and self-
referentiality), which has been solved by distinguishing be-
tween meta-information and the information defined in the
ontology, and by providing the characterization of the struc-
tural meta-predicates (instance, subclass, partition, etc.).

It is worth to note that, although we have focused on
SUMO in this work, our proposals can be also applied to any
other ontology in order to work with FO theorem provers.
Indeed, we can easily adapt our translator to other ontolo-
gies by simply changing the input language or format. Re-
garding the concrete features of each ontology, many on-
tologies contain second-order axioms, type information and
variable-length structures. In particular, the ontologies that
are written in KIF, and also the ontologies written in lan-
guages that have emerged from KIF efforts, such as Com-
mon Logic (ISO/IEC International Standard, 2007).37 With
respect to other ontologies, another well-known and large on-
tology is DOLCE, which is basically a FO ontology, although
it also incorporates some axioms from modal logic. There
exists a proof of the consistency of the FO part of DOLCE
(Kutz & Mossakowski, 2011) that has been made in a mod-
ular/structured way using the Heterogeneous Tool Set (Hets)
(Mossakowski, Maeder, & Lüttich, 2007).38 However, the
modular consistency proof is semi-automatic. Thus, our pro-
posal could be applied to DOLCE in order to confirm that the
FO part of DOLCE does not give rise to inconsistencies, but
also to translate the modal constructs in DOLCE into FOL
and look for inconsistencies in the whole ontology. We guess
that holdsk and reflection axioms would be very useful for the
last task.

In order to maximally exploit existing semantic resources,
such as those already integrated into the Multilingual Central
Repository39 (MCR) (Gonzalez-Agirre et al., 2012a) or con-
nected to Linked Data (Bizer, Heath, & Berners-Lee, 2009),

37http://www.iso-commonlogic.org
38http://www.informatik.uni-bremen.de/agbkb/

forschung/formal_methods/CoFI/hets/index_e.htm
39http://adimen.si.ehu.es/web/MCR
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new capabilities for reasoning and logical inference should
be applied. These capabilities are essential for verifying
meta-properties, like consistency, and for inferring new im-
plied properties and relations from the combination of avail-
able semantic resources and formal ontologies. That is, be-
yond the literal meaning expressed in formal ontologies, an
intelligent system needs to know what the implications of
that meaning are.

In the near future, we plan to exploit Adimen-SUMO and
its complete mapping to WordNet for reasoning about the
implicit and explicit knowledge contained in the Multilin-
gual Central Repository (MCR), in a similar way as with
the EuroWordNet Top Ontology (Álvez et al., 2008). Apply-
ing efficient theorem provers, Adimen-SUMO can be directly
used for automatically inferring new semantic properties and
relations between WordNet concepts. Furthermore, since
the MCR integrates different wordnets in different languages
via the Inter-Lingual-Index (ILI) (Vossen, 1998), Adimen-
SUMO inferences can also be of utility to language resources
other than English.

Our final goal is to provide formal underpinnings and ad-
vanced reasoning capabilities to existing semantic resources
and advanced Natural Language Processing, Knowledge En-
gineering and Semantic Web tasks.
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Appendix A
Analysing Traces of FO Theorem Provers

In this appendix, we show a trace obtained by E-Prover for
the example of Section “Detecting Inconsistencies”. More
specifically, we use the set of axioms that helped us to dis-
cover the incorrect axiomatization of disjoint, which was cor-
rected in Merge.kif version 1.22. The interested reader can
easily reproduce the trace using the file disjoint.eprover.tstp
in the Adimen-SUMO package using the following com-
mand:

eprover -xAuto -tAuto �tstp-in -l 6
disjoint.eprover.tstp | epclextract

This command uses the default configuration of E-Prover
(that is, the system can use any axiom/atom selection
strategy). In Figure A1, we summarize the trace that is
obtained using the above command. The whole trace can
be consulted in the file output.disjoint.eprover.txt in the
Adimen-SUMO package. The ten first steps are the axioms
that will be used in the trace. These axioms are simplified
using some general transformations, such as Skolemization
or distribution. In addition, axioms are transformed into
conjunctive normal form (or CNF), where each disjunct is
represented as a list of atoms (separated by commas and
delimited by square brackets), positive atoms are marked
with ‘++’ and negative (or negated) atoms with ‘�’. After
this initial transformation, the formulas in steps 18, 28, 35
and 39 are disjuncts obtained from the transformation of the
formulas in steps 1-4, where the disjuncts that will not be
used in the trace have been discarded by E-Prover. Note that
esk3_1 (in step 35) is a unary Skolem function that comes
from the variable X7 of the formula in step 3. The formulas
in steps 40-46 are directly obtained from steps 5-10. Then,
E-Prover starts to obtain new formulas by resolution. On one
hand, the formula ++instance(outdoors,nonNullSet)
(step 71) follows from ++instance(X2,nonNullSet)
(in step 18) and ++disjoint(indoors,outdoors)
(in step 44). On the other hand, the formula
�instance(outdoors,nonNullSet) (in step 179)
is obtained after ten resolution steps. To sum up,
from the formulas in steps 39, 41 and 42 it follows
that everything is either physical or not region (in
step 154) after two resolution steps. Hence, we have
that ++instance(outdoors,physical) (in step 164)
since ++instance(outdoors,region) (from step
45). Additionally, from the formulas in steps 28 and

35, we have that everything is either not abstract
or not physical (in step 78). Therefore, it follows
that �instance(outdoors,abstract) (in step 172).
Similarly, from the formulas in steps 39, 40 and 43,
it follows that everything is either abstract or not
nonNullSet (in step 130) after two resolution steps.
Finally, from the last two results, we easily have that
�instance(outdoors,nonNullSet) (in step 179).
Hence, the formulas in steps 71 and 179 yield the inconsis-
tency �true (++false) in step 180.

Appendix B
Using Adimen-SUMO for Automated Reasoning

Here we show the trace that is obtained by E-Prover for the
example described in Section “Introduction” about plants
and brains. Figure B1 shows a brief summary of the proof
that is obtained using the file brain.eprover.tstp from the
Adimen-SUMO package. The whole proof is available in
file output.brain.eprover.txt. For brevity, we have used
some name abbreviations: the predicates exhaustiveDecom-
position4 and disjointDecomposition4 have been abbreviated
to exhDecomp4 and disDecomp4 respectively, whereas the
constant function symbol animalAnatomicalStructure has
been abbreviated to animalAS.

The proof starts with the axioms involved (up to step
20). Note that E-Prover does not use all the axioms in the
source file. Then, E-Prover assumes the negation of the ob-
jective (in step 21) and applies the initial transformation to
all the formulas (up to step 84). From the transformation of
the negated conjecture, E-Prover selects five disjuncts, which
are those in steps 25-29. Note that, after negation, the vari-
ables X1 and X2 in the objective become existentially quanti-
fied and, thus, cause the introduction of the Skolem constant
functions esk1_0 and esk2_0, respectively. Furthermore,
the disjuncts in steps 48, 53 and 71 are obtained by trans-
forming the formulas in 6, 7 and 9, where the disjuncts that
are not going to be used in the proof have been discarded.
The remaining formulas of the initial transformation are the
disjuncts in steps 40, 74, 75, 81 and 84, which are directly
obtained from the formulas in steps 5, 10, 11, 17 and 20,
respectively.

The inconsistency comes from both
�instance(esk1_0,animal) (in step 387) and
++instance(esk1_0,animal) (in step 442).
On one hand, �instance(esk1_0,animal) re-
sults from a 4 step resolution sequence that starts
with the formulas in steps 53 and 84 to finally
yield ++disDecomp4(organism,animal,plant,
microorganism) (in step 215). Then, using the formula
in step 71, it obtains ++disjoint(animal, plant) (in
step 340). Next, using the formula in step 48, it follows that
everything is not an instance of either plant or animal.
Hence, since ++instance(esk1_0,plant) (in step 26), the
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Figure A1. An Inconsistency Discovered by E-Prover

1 : : ![X1]:![X2]:(disjoint(X1,X2)<=>((instance(X1,nonNullSet)&instance(X2,nonNullSet))&
![X3]:∼((instance(X3,X1)&instance(X3,X2))))) : initial(“disjoint.eprover.tstp”, disjoint1)

2 : : ![X4]:(instance(X4,abstract)<=> ∼(?[X5]:(located(X4,X5)|time(X4,X5)))) : initial(“disjoint.eprover.tstp”, disjoint2)
3 : : ![X6]:(instance(X6,physical)<=>?[X7]:?[X8]:(located(X6,X7)&time(X6,X8))) : initial(“disjoint.eprover.tstp”, disjoint3)
4 : : ![X9]:![X10]:![X11]:((instance(X9,X10)&subclass(X10,X11))=>instance(X9,X11)) :

initial(“disjoint.eprover.tstp”, disjoint4)
5 : : subclass(nonNullSet,setOrClass) : initial(“disjoint.eprover.tstp”, disjoint5)
6 : : subclass(region,object) : initial(“disjoint.eprover.tstp”, disjoint6)
7 : : subclass(object,physical) : initial(“disjoint.eprover.tstp”, disjoint7)
8 : : subclass(setOrClass,abstract) : initial(“disjoint.eprover.tstp”, disjoint8)
9 : : disjoint(indoors,outdoors) : initial(“disjoint.eprover.tstp”, disjoint9)

10 : : instance(outdoors,region) : initial(“disjoint.eprover.tstp”, disjoint10)
...
18 : : [++instance(X2,nonNullSet),�disjoint(X1,X2)] : split_conjunct(15) *** from (1)

...
28 : : [�instance(X1,abstract),�located(X1,X2)] : split_conjunct(25) *** from (2)

...
35 : : [++located(X1,esk3_1(X1)),�instance(X1,physical)] : split_conjunct(33) *** from (3)

...
39 : : [++instance(X1,X2),�subclass(X3,X2),�instance(X1,X3)] : split_conjunct(38) *** from (4)

...
40 : : [++subclass(nonNullSet,setOrClass)] : split_conjunct(5)
41 : : [++subclass(region,object)] : split_conjunct(6)
42 : : [++subclass(object,physical)] : split_conjunct(7)
43 : : [++subclass(setOrClass,abstract)] : split_conjunct(8)
44 : : [++disjoint(indoors,outdoors)] : split_conjunct(9)
45 : : [++instance(outdoors,region)] : split_conjunct(10)

...
71 : : [++instance(outdoors,nonNullSet)] : spm(70,64) *** from (18, 44)

...
78 : : [�instance(X1,abstract),�instance(X1,physical)] : spm(77,76) *** from (28, 35)

...
85 : : [++instance(X1,setOrClass),�instance(X1,nonNullSet)] : spm(84,66) *** from (39, 40)
86 : : [++instance(X1,abstract),�instance(X1,setOrClass)] : spm(84,67) *** from (39, 43)
87 : : [++instance(X1,object),�instance(X1,region)] : spm(84,68) *** from (39, 41)
88 : : [++instance(X1,physical),�instance(X1,object)] : spm(84,69) *** from (39, 42)

...
130 : : [++instance(X1,abstract),�instance(X1,nonNullSet)] : spm(127,124) *** from (86, 85)
...
154 : : [++instance(X1,physical),�instance(X1,region)] : spm(151,134) *** from (88, 87)
...
164 : : [++instance(outdoors,physical)] : spm(163,65) *** from (154, 45)
...
172 : : [�instance(outdoors,abstract)] : spm(108,170) *** from (78, 164)
...
179 : : [�instance(outdoors,nonNullSet)] : spm(178,158) *** from (172, 130)
180 : : [�$true] : rw(179,118) *** from (179, 71)
181 : : [] : cn(180)
182 : : [] : 181 : ‘proof’

formula �instance(esk1_0,animal) is inferred at step
387. On the other hand, ++instance(esk1_0,animal)
results from an 8 step resolution sequence. First, from the
formulas in steps 40, 75 and 81, it follows that everything
is an instance of animalAS or not an instance of brain
(in step 157), and also that everything is an instance of
organism or not an instance of plant (in step 158).
Then, using ++instance(esk2_0,brain) (in step 27) and
++instance(esk1_0,plant) (in step 26), it respectively
obtains the formulas ++instance(esk2_0,animalAS)
(in step 239) and ++instance(esk1_0,organism)
(in step 249). Using these last two formulas
and also the formulas ++part(esk2_0,esk1_0),
++instance(esk1_0,object) and
++instance(esk2_0,object) (in steps 25, 28 and 29
respectively), it infers ++instance(esk1_0,animal) (in

step 442) from the disjunct in step 74 (after resolution steps
183, 436, 439 and 440). Hence, a contradiction is achieved
at step 443, that proves the original goal.

Appendix C
Translating SUMO into FO Formulas: A Detailed Example
In this appendix, we provide a detailed example of the trans-
lation of SUMO into FO formulas. Here, we especially focus
on some details that have not been presented in the body of
the paper. We choose TPTP syntax to write FO formulas,
since most of current FO theorem provers accept it. Here,
we just use the existential (?) and universal (!) quanti-
fiers and the classical connectives of negation (∼), conjunc-
tion (&), disjunction (|), implication (=>) and equivalence
(<=>). A whole description of TPTP syntax is available at
http://www.tptp.org.
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Figure B1. Do Plants Have Brain?

1 : conj : ![X1]:![X2]:((instance(X2,object)&instance(X1,object))=> ∼(((instance(X2,brain)&instance(X1,plant))&part(X2,X1)))) :
initial(“brain.eprover.tstp”, goal)

5 : : ![X3]:![X4]:![X5]:((instance(X3,X4)&subclass(X4,X5))=>instance(X3,X5)) : initial(“brain.eprover.tstp”, predefinitionsB4)
6 : : ![X6]:![X7]:(disjoint(X6,X7)<=>![X8]:∼((instance(X8,X6)&instance(X8,X7)))) :

initial(“brain.eprover.tstp”, predefinitionsB5)
7 : : ![X9]:![X10]:![X11]:![X12]:(partition4(X9,X10,X11,X12)<=>(exhDecomp4(X9,X10,X11,X12)&disDecomp4(X9,X10,X11,X12))) :

initial(“brain.eprover.tstp”, predefinitionsB6)
9 : : ![X9]:![X10]:![X11]:![X12]:(disDecomp4(X9,X10,X11,X12)<=>((disjoint(X10,X11)&disjoint(X10,X12))&disjoint(X11,X12))) :

initial(“brain.eprover.tstp”, predefinitionsB8)
10 : : ![X13]:![X14]:((instance(X13,object)&instance(X14,object))=>(((instance(X13,animalAS)&instance(X14,organism))&

part(X13,X14))=>instance(X14,animal))) : initial(“brain.eprover.tstp”, merge178B1)
11 : : subclass(brain,animalAS) : initial(“brain.eprover.tstp”, milo1114B1)
17 : : subclass(plant,organism) : initial(“brain.eprover.tstp”, merge178B7)
20 : : partition4(organism,animal,plant,microorganism) : initial(“brain.eprover.tstp”, merge178B10)
21 : neg : ∼(![X1]:![X2]:((instance(X2,object)&instance(X1,object))=> ∼(((instance(X2,brain)&instance(X1,plant))&part(X2,X1))))) :

assume_negation(1)
...
25 : neg : [++part(esk2_0,esk1_0)] : split_conjunct(24) *** from (21)
26 : neg : [++instance(esk1_0,plant)] : split_conjunct(24) *** from (21)
27 : neg : [++instance(esk2_0,brain)] : split_conjunct(24) *** from (21)
28 : neg : [++instance(esk1_0,object)] : split_conjunct(24) *** from (21)
29 : neg : [++instance(esk2_0,object)] : split_conjunct(24) *** from (21)

...
40 : : [++instance(X1,X2),�subclass(X3,X2),�instance(X1,X3)] : split_conjunct(39) *** from (5)

...
48 : : [�disjoint(X1,X2),�instance(X3,X2),�instance(X3,X1)] : split_conjunct(45) *** from (6)

...
53 : : [++disDecomp4(X1,X2,X3,X4),�partition4(X1,X2,X3,X4)] : split_conjunct(51) *** from (7)

...
71 : : [++disjoint(X2,X3),�disDecomp4(X1,X2,X3,X4)] : split_conjunct(67) *** from (9)

...
74 : : [++instance(X1,animal),�part(X2,X1),�instance(X1,organism),�instance(X2,animalAS),�instance(X1,object),

�instance(X2,object)] : split_conjunct(24) *** from (10)
75 : : [++subclass(brain,animalAS)] : split_conjunct(11)
81 : : [++subclass(plant,organism)] : split_conjunct(17)
84 : : [++partition4(organism,animal,plant,microorganism)] : split_conjunct(20)

...
157 : : [++instance(X1,animalAS),�instance(X1,brain)] : spm(156,125) *** from (40, 75)
158 : : [++instance(X1,organism),�instance(X1,plant)] : spm(156,126) *** from (40, 81)
...
183 : neg : [++instance(X1,animal),�part(esk2_0,X1),�instance(esk2_0,animalAS),�instance(X1,object),

�instance(X1,organism)] : spm(181,122) *** from (74, 29)
...
215 : : [++disDecomp4(organism,animal,plant,microorganism)] : spm(214,135) *** from (53, 84)
...
239 : neg : [++instance(esk2_0,animalAS)] : spm(238,123) *** from (157, 27)
...
249 : neg : [++instance(esk1_0,organism)] : spm(248,121) *** from (158, 26)
...
340 : : [++disjoint(animal,plant)] : spm(180,337) *** from (71, 215)
...
373 : : [�instance(X1,plant),�instance(X1,animal)] : spm(176,372) *** from (48, 340)
...
387 : neg : [�instance(esk1_0,animal)] : spm(386,121) *** from (373, 26)
...
436 : neg : [++instance(X1,animal),�part(esk2_0,X1),�$true,�instance(X1,object),�instance(X1,organism)] :

rw(187,247) *** from (183, 239)
...
439 : neg : [++instance(esk1_0,animal),�instance(esk1_0,object),�instance(esk1_0,organism)] : spm(438,124) *** from (436, 25)
440 : neg : [++instance(esk1_0,animal),�$true,�instance(esk1_0,organism)] : rw(439,120) *** from (439, 28)
441 : neg : [++instance(esk1_0,animal),�$true,�$true] : rw(440,257) *** from (440, 249)
442 : neg : [++instance(esk1_0,animal)] : cn(441)
443 : neg : [] : sr(442,395) *** from (442, 387)
444 : neg : [] : 443 : ’proof’
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Figure C1. Definition of Meta-predicates in Adimen-SUMO

# Axioms

1.1 ($domain $instance 1 $object)

1.2 ($domain $instance 2 $class)

1.3 ($domain $subclass 1 $class)

1.4 ($domain $subclass 2 $class)

1.5 (forall (?X)
($subclass ?X ?X))

1.6 (forall (?X?Y?Z)
(=>

($subclass ?X ?Y)
($subclass ?Y ?Z))

($subclass ?X ?Z))

1.7 (forall (?X?Y)
(=>

($subclass ?X ?Y)
($subclass ?Y ?X))

(equal ?X ?Y))

1.8 (forall (?X?Y?Z)
(=>

($instance ?X ?Y)
($subclass ?Y ?X))

($instance ?X ?Z))

As explained in Section “Translating SUMO into
First-Order Logic”, we translate first-order axioms, second-
order axioms, axioms containing row variables and type
information. Additionally, in Adimen-SUMO we intro-
duce new axioms that provide the axiomatization of meta-
predicates ($instance and $subclass), as shown in Fig-
ure C1, and predefined predicates ($dis joint, $partition,
$exhaustiveDecomposition and $dis jointDecomposition),
as shown in Figure C2. Note that the axiomatizations of
both meta-predicates and predefined predicates include type
information, which is provided using the predicate $domain
and also the predefined constants $ob ject and $class, which
respectively correspond to the meta-level concepts of object
and class.

In order to illustrate the translation of SUMO into FO
formulas, together with the axioms in Figures C1 and C2, we
also consider the set of axioms in Figure C3. In this exam-
ple, $holds3 is used to write the reflexive property of binary
relations in FOL (axiom 6). First, since the arities of the row
lists in axioms 3.1, 3.2 and 3.33 are 5, 3 and 2, respectively,
axioms 2.3, 2.6 and 2.9 have to be translated according to
each arity. Then, axioms 3.1-3.3 are directly translated into:

Figure C2. Definition of Predefined Predicates in Adimen-
SUMO

# Axioms

2.1 ($domain $partition 1 $class)

2.2 ($domain $partition 2 @$class)

2.3 (forall (?CLASS @ROW )
(<=>

($partition ?CLASS @ROW)
(=>

($exhaustiveDecomposition ?CLASS @ROW)
($disjointDecomposition ?CLASS ?ROW))))

2.4 ($domain $exhaustiveDecomposition 1 $class)

2.5 ($domain $exhaustiveDecomposition 2 @$class)

2.6 (forall (?CLASS @ROW )
(<=>

($exhaustiveDecomposition ?CLASS @ROW)
(forall (?X)

(=>
($instance ?X ?CLASS)
(@or (@ROW, ?HEAD,@_)

($instance ?X ?HEAD))))))

2.7 ($domain $disjointDecomposition 1 $class)

2.8 ($domain $disjointDecomposition 2 @$class)

2.9 (forall (?CLASS @ROW )
(@and (@ROW, ?CLASS1,@TAIL)

(@and (@TAIL, ?CLASS2,@_)
($disjoint ?CLASS1 ?CLASS2)))))

2.10 ($domain $disjoint 1 $class)

2.11 ($domain $disjoint 2 $class)

2.12 (forall (?CLASS1 ?CLASS2 )
(<=>

($disjoint ?CLASS1 ?CLASS2)
(forall (?INST)

(not
(and

($instance ?INST ?CLASS1)
($instance ?INST ?CLASS2))))))

$disjointDecomposition6(Relation,BinaryRelation,
TernaryRelation,QuaternaryRelation,
QuintaryRelation,VariableArityRelation)

$partition4(Relation,Predicate,Function,List)

$partition3(Relation,TotalValuedRelation,
PartialValuedRelation)
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Figure C3. An Example Extracted from Adimen-SUMO

# Axioms

3.1 ($disjointDecomposition Relation
@(BinaryRelation,TernaryRelation,

QuaternaryRelation,QuintaryRelation,
VariableArityRelation))

3.2 ($partition Relation 1
@(Predicate,Function,List))

3.3 ($partition Relation 1
@(TotalValuedRelation,PartialValuedRelation))

3.4 ($subclass BinaryRelation 1 Relation)

3.5 ($subclass ReflexiveRelation 1 BinaryRelation)

3.6 (<=>

($instance ?REL ReflexiveRelation)
(forall (?INST)

($holds3 ?REL ?INST ?INST)))

3.7 ($domain connected 1 Object)

3.8 ($domain connected 2 Object)

3.9 ($instance connected BinaryPredicate)

3.10 ($instance connected ReflexiveRelation)

3.11 ($subrelation meetsSpatially connected)

3.12 ($subrelation overlapsSpatially connected)

3.13 (=>
(connected ?OBJ1 ?OBJ2)
(or

(meetsSpatially ?OBJ1 ?OBJ2)
(overlapsSpatially ?OBJ1 ?OBJ2)))

Then, the translation of axioms 3.4-3.6 is also direct:

$subclass(BinaryRelation,Relation)

$subclass(ReflexiveRelation,BinaryRelation)

(![REL]: $instance(REL,ReflexiveRelation) <=>
![INST]: $holds3(REL,INST,INST))

Next, we translate axioms 3.9, 3.10 and 3.13. Note
that, since the predicates meetsSpatially and overlapsSpa-
tially are subrelations of connected, type information for
meetsSpatially and overlapsSpatially is inherited from ax-
ioms 3.7-3.8. Further, we use constConnected for the oc-
currences of connected as term. Thus, we obtain:

$instance(constConnected,BinaryPredicate)

$instance(constConnected,ReflexiveRelation)

(![OBJ1,OBJ2]: ($instance(OBJ2,Object) &
$instance(OBJ1,Object)) =>

(connected(OBJ1,OBJ2) =>
(meetsSpatially(OBJ1,OBJ2) |

overlapsSpatially(OBJ1,OBJ2))))

Finally, we add the reflection formula that allows
to relate the predicates connected, meetsSpatially and over-
lapsSpatially with $holds3 via the constants constCon-
nected, constMeetsSpatially, constOverlapsSpatially:

(![X,Y]: connected(X,Y) <=>
$holds3(constConnected,X,Y))

(![X,Y]: meetsSpatially(X,Y) <=>
$holds3(constMeetsSpatially,X,Y))

(![X,Y]: overlapsSpatially(X,Y) <=>
$holds3(constOverlapsSpatially,X,Y))

Appendix D
Resources

In this appendix, we briefly describe the files contained in
the Adimen-SUMO package42 that have been used along the
work reported in this paper. The interested reader may try
the examples described in this work, and many others, using
a FO theorem prover such as e.g. E-Prover or Vampire.

The translator implemented in Prolog is included in
“E-KIFtoFOF” folder. The main file is E-KIFtoFOF.pl.

The files that contain the ontology in KIF format are
predefinitions.kif, merge1.78.kif and milo1.114.kif. The
file predefinitions.kif contains the definitions of the basic
predicates that are used in the rest of the ontology, as de-
scribed at the end of Section “Translating SUMO into First-
Order Logic”. The syntax of this file also includes some non
KIF features, such as row operators (see Subsection “Row
Variables” and Appendix C), that are very useful to sup-
port the translation. The whole description of these extra
syntactic features is out of the scope of this paper (we plan
to include a complete description in a future work), but its
meaning can be easily inferred from the context. The files
merge1.78.kif and milo1.114.kif correspond to the top and
mid level of SUMO respectively. Some minor syntactic mod-
ifications have been done in these files in order to be adapted
to our translator. Moreover, we have repaired all the axioms
that produced an inconsistency.

The result of translating and eliminating inconsis-
tencies from the above three files can be found in adi-
men.sumo.eprover.tstp, which has been designed to be used
with E-Prover.43 This file has been tested using several FO

42Available at http://adimen.si.ehu.es/web/
AdimenSUMO.

43We also provide the file adimen.sumo.vampire.tstp that has
been prepared to be used with the last versions of Vampire.
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theorem provers during many hours (even days) and no more
inconsistencies have been found. Thus, it can be used to ex-
plore the reasoning capabilities of Adimen-SUMO.

An example of inconsistency that has been found
by a FO theorem prover in a preliminary version of adi-
men.sumo.eprover.tstp is described in Section “Detecting
Inconsistencies” (see also Appendix A). The axioms that
are necessary to reproduce the inconsistency have been col-
lected in the file disjoint.eprover.tstp. The whole refutation
provided by E-Prover for this inconsistency can be consulted

in output.disjoint.eprover.txt.
Regarding the reasoning capabilities of Adimen-

SUMO, in brain.eprover.tstp we have written the axioms
from adimen.sumo.eprover.tstp that are necessary to in-
fer that plants do not have brain (see Section “Intro-
duction” and Appendix B). The proof for the goal in
brain.eprover.tstp given by E-Prover can be consulted in
output.brain.eprover.txt.


